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Introduction

Consider a positive semigroup (Tt)t≥0 on a Banach lattice E , i.e.
a familiy of positive operators Tt ∈ L (E ) such that TtTs = Tt+s .
If Ttx → x as t ↓ 0 for all x ∈ E , (Tt)t≥0 is a C0-semigroup.

Aim:
Find sufficient conditions for (Tt)t≥0 to converge strongly, i.e. that

lim
t→∞

Ttx exists in E

for every x ∈ E .
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Greiner’s Theorem

Theorem (Greiner 1982)

Let E = Lp(Ω, µ), (Ω, µ) σ-finite, 1 ≤ p <∞.
A positive, contractive C0-semigroup (Tt)t≥0 on E is strongly
convergent if

I some Ts is a kernel operator and

I the semigroup (Tt)t≥0 possesses a fixed point h(x) > 0 a.e.

Here: T ∈ L (Lp) is a kernel operator if there exists a measurable
k : Ω× Ω→ R such that for every f ∈ Lp

(Tf )(x) =

∫
Ω
k(x , y)f (y) dµ(y) almost everywhere.

More generally: On an order complete Banach lattice E ,
T ∈ L (E ) is a kernel operator if T ∈ (E ′ ⊗ E )⊥⊥.
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Characterizations of kernel operators

If (Ω, µ) is atomic, every operator on Lp(Ω) is a kernel operator.

Theorem (Bukhvalov 1978)

A positive operator T on Lp is a kernel operator iff

lim fn = f & |fn| ≤ g ⇒ limTfn(x) = Tf (x) almost everywhere.

Consequences:

I If TLp(Ω) ⊆ C (Ω), then T is a kernel operator.

I Let Ω be Polish and T : M (Ω)→M (Ω) Markov operator
such that T ∗Bb(Ω) ⊆ Cb(Ω). Then T 2 is a kernel operator.

However: Semigroups on M (Ω) are not strongly continuous!

Same problem with dual semigroups on non-reflexive spaces,
Gaussian semigroup on Cb(R), . . .
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Getting rid of the continuity condition

Continuity (at 0) is not important for convergence as t →∞!

Claim (Greiner’s theorem without continuity)

Let E be Banach lattice with order continuous norm. A positive,
contractive semigroup (Tt)t≥0 on E is strongly convergent if

I some Ts is a kernel operator and

I the semigroup (Tt)t≥0 possesses a quasi-interior fixed point.

How (not) to prove this?
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First attempt

Theorem (Lotz, Doob)

For a bounded semigroup (Tt)t≥0 on a Banach space X

lim
t→∞

Tt exists strongly ⇔ lim
n→∞

(Tt)
n exists strongly for each t > 0

One has to exploit that every operator has arbitrary positive roots!
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New setting: Semigroup representations

Let S = (S ,+) be a commutative semigroup such that

I S is embedable into a group G (equivalent: st = sr ⇒ t = r).

Then 〈S〉, the smallest subgroup containing S , is independent of G .

Moreover, assume that

I 〈S〉 is divisible, i.e. ∀g ∈ 〈S〉 ∀n ∈ N ∃h ∈ 〈S〉 with nh = g .

Examples: S = ((0,∞),+), S = (Q ∩ (0,∞),+), S = ((0,∞)d ,+)
Nonexample: dyadic numbers S =

(
{k2−n : k , n ∈ N},+

)
Semigroup representation (Tt)t∈S : Homomorphism S → L (E ).

(Tt)t∈S is strongly convergent if (Ttx)t∈S converges for all x ∈ E
with respect to t ≤ s :⇔ t = s or ∃r ∈ S such that s = t + r
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Convergence of semigroup representations

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that 〈S〉 divisible and let E
be a Banach lattice with o.c. norm.

A positive and bounded
semigroup representation (Tt)t∈S on E converges strongly if

I some Ts is a kernel operator and

I (Tt)t∈S possesses a quasi-interior fixed point.

Comments:

I We do not require (Tt)t∈S to be contractive.

I The proof only uses that the kernel operator Ts is
AM-compact.

I The existence of quasi-interior fixed point is cruical!
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Time-continuous shift on `p(Q)

Example

Let E = `p(Q). There exists positive and bounded group
representation (Tt)t∈R on E which is not strongly convergent:

I Let {vj : j ∈ J} basis of R over Q.

I Fix i ∈ J and let V := span{vj : j 6= i}.
I V /R, ϕ : R→ R/V ∼= Q surjective group homomorphism.

I The Koopman group Tt(xq)q∈Q := (xq+ϕ(t))q∈Q is positive,
contractive but not strongly convergent.
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Further generalization

Theorem (Pichór, Rudnicki, 2000)

A Markovian C0-semigroup (Tt)t≥0 on L1 is strongly convergent if

I (Tt)t≥0 is irreducible and possesses a quasi-interior fixed point

I some Ts dominates a kernel operator K > 0
(we say: Ts is a partial kernel operator).

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that 〈S〉 is divisible and let
E be a Banach lattice with o.c. norm. A positive and contractive
semigroup representation (Tt)t∈S on E converges strongly if

I (Tt)t∈S possesses a quasi-interior fixed point and

I For each fixed point x > 0 there exists s ∈ S and kernel
operator Ks ≥ 0 such that Ts ≥ Ks and Ksx > 0.
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Characterization of partial kernel operators

Theorem (brand-new)

Let E be a separable Banach lattice with o.c. norm. For every
positive T : E → E the following are equivalent:

(i) There exists kernel operator K such that T ≥ K and Kx > 0
for all x > 0.

(ii) There exists an at most countable set B ⊆ E+ \ {0} such that
for each x > 0 there exists b ∈ B that that Tx ≥ b.

Example

Let T : Lp(Ω)→ Lp(Ω) positive, Ω second countable topological
space with a regular Borel measure.

If Tf > 0 is lower semi-continuous for all f > 0, then T is a partial
kernel operator.
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