Convergence of positive operator semigroups joint work with Jochen Glück

Moritz Gerlach

Universität Potsdam

Positivity IX, July 2017, Edmonton

Introduction

Consider a positive semigroup $(T_t)_{t\geq 0}$ on a Banach lattice E, i.e. a familiy of positive operators $T_t \in \mathscr{L}(E)$ such that $T_t T_s = T_{t+s}$. If $T_t x \to x$ as $t \downarrow 0$ for all $x \in E$, $(T_t)_{t\geq 0}$ is a C_0 -semigroup.

Aim:

Find sufficient conditions for $(T_t)_{t\geq 0}$ to converge strongly, i.e. that

 $\lim_{t\to\infty} T_t x \text{ exists in } E$

for every $x \in E$.

Theorem (Greiner 1982)

Let $E = L^{p}(\Omega, \mu)$, (Ω, μ) σ -finite, $1 \le p < \infty$. A positive, contractive C_{0} -semigroup $(T_{t})_{t \ge 0}$ on E is strongly convergent if

Theorem (Greiner 1982)

Let $E = L^{p}(\Omega, \mu)$, (Ω, μ) σ -finite, $1 \le p < \infty$. A positive, contractive C_{0} -semigroup $(T_{t})_{t \ge 0}$ on E is strongly convergent if

▶ some *T_s* is a kernel operator and

Theorem (Greiner 1982)

Let $E = L^{p}(\Omega, \mu)$, (Ω, μ) σ -finite, $1 \le p < \infty$. A positive, contractive C_{0} -semigroup $(T_{t})_{t \ge 0}$ on E is strongly convergent if

- some T_s is a kernel operator and
- the semigroup $(T_t)_{t\geq 0}$ possesses a fixed point h(x) > 0 a.e.

Theorem (Greiner 1982)

Let $E = L^{p}(\Omega, \mu)$, (Ω, μ) σ -finite, $1 \le p < \infty$. A positive, contractive C_{0} -semigroup $(T_{t})_{t \ge 0}$ on E is strongly convergent if

- some T_s is a kernel operator and
- the semigroup $(T_t)_{t\geq 0}$ possesses a fixed point h(x) > 0 a.e.

Here: $T \in \mathscr{L}(L^p)$ is a *kernel operator* if there exists a measurable $k \colon \Omega \times \Omega \to \mathbb{R}$ such that for every $f \in L^p$

$$(Tf)(x) = \int_{\Omega} k(x, y) f(y) d\mu(y)$$
 almost everywhere.

Theorem (Greiner 1982)

Let $E = L^{p}(\Omega, \mu)$, (Ω, μ) σ -finite, $1 \le p < \infty$. A positive, contractive C_{0} -semigroup $(T_{t})_{t \ge 0}$ on E is strongly convergent if

- some T_s is a kernel operator and
- the semigroup $(T_t)_{t\geq 0}$ possesses a fixed point h(x) > 0 a.e.

Here: $T \in \mathscr{L}(L^p)$ is a *kernel operator* if there exists a measurable $k \colon \Omega \times \Omega \to \mathbb{R}$ such that for every $f \in L^p$

$$(Tf)(x) = \int_{\Omega} k(x, y) f(y) d\mu(y)$$
 almost everywhere.

More generally: On an order complete Banach lattice E, $T \in \mathscr{L}(E)$ is a *kernel operator* if $T \in (E' \otimes E)^{\perp \perp}$.

Theorem (Greiner extended)

Let E be Banach lattice with order continuous norm. A positive, contractive C_0 -semigroup $(T_t)_{t\geq 0}$ on E is strongly convergent if

- some T_s is a kernel operator and
- the semigroup $(T_t)_{t\geq 0}$ possesses a fixed point h(x) > 0 a.e.

Here: $T \in \mathscr{L}(L^p)$ is a *kernel operator* if there exists a measurable $k \colon \Omega \times \Omega \to \mathbb{R}$ such that for every $f \in L^p$

$$(Tf)(x) = \int_{\Omega} k(x, y) f(y) d\mu(y)$$
 almost everywhere.

More generally: On an order complete Banach lattice E, $T \in \mathscr{L}(E)$ is a *kernel operator* if $T \in (E' \otimes E)^{\perp \perp}$.

Theorem (Greiner extended)

Let E be Banach lattice with order continuous norm. A positive, contractive C_0 -semigroup $(T_t)_{t\geq 0}$ on E is strongly convergent if

- some T_s is a kernel operator and
- the semigroup $(T_t)_{t\geq 0}$ possesses a quasi-interior fixed point.

Here: $T \in \mathscr{L}(L^p)$ is a *kernel operator* if there exists a measurable $k \colon \Omega \times \Omega \to \mathbb{R}$ such that for every $f \in L^p$

$$(Tf)(x) = \int_{\Omega} k(x, y) f(y) d\mu(y)$$
 almost everywhere.

More generally: On an order complete Banach lattice E, $T \in \mathscr{L}(E)$ is a *kernel operator* if $T \in (E' \otimes E)^{\perp \perp}$.

If (Ω, μ) is atomic, every operator on $L^{p}(\Omega)$ is a kernel operator.

If (Ω, μ) is atomic, every operator on $L^{p}(\Omega)$ is a kernel operator.

Theorem (Bukhvalov 1978)

A positive operator T on L^p is a kernel operator iff

 $\lim f_n = f \& |f_n| \le g \Rightarrow \lim Tf_n(x) = Tf(x)$ almost everywhere.

If (Ω, μ) is atomic, every operator on $L^{p}(\Omega)$ is a kernel operator.

Theorem (Bukhvalov 1978)

A positive operator T on L^p is a kernel operator iff

 $\lim f_n = f \& |f_n| \le g \Rightarrow \lim Tf_n(x) = Tf(x)$ almost everywhere.

Consequences:

• If $TL^{p}(\Omega) \subseteq C(\Omega)$, then T is a kernel operator.

If (Ω, μ) is atomic, every operator on $L^{p}(\Omega)$ is a kernel operator.

Theorem (Bukhvalov 1978)

A positive operator T on L^p is a kernel operator iff

 $\lim f_n = f \& |f_n| \le g \Rightarrow \lim Tf_n(x) = Tf(x)$ almost everywhere.

Consequences:

- If $TL^{p}(\Omega) \subseteq C(\Omega)$, then T is a kernel operator.
- Let Ω be Polish and $T: \mathscr{M}(\Omega) \to \mathscr{M}(\Omega)$ Markov operator such that $T^*B_b(\Omega) \subseteq C_b(\Omega)$. Then T^2 is a kernel operator.

If (Ω, μ) is atomic, every operator on $L^{p}(\Omega)$ is a kernel operator.

Theorem (Bukhvalov 1978)

A positive operator T on L^p is a kernel operator iff

 $\lim f_n = f \& |f_n| \le g \Rightarrow \lim Tf_n(x) = Tf(x)$ almost everywhere.

Consequences:

- If $TL^{p}(\Omega) \subseteq C(\Omega)$, then T is a kernel operator.
- Let Ω be Polish and $T: \mathscr{M}(\Omega) \to \mathscr{M}(\Omega)$ Markov operator such that $T^*B_b(\Omega) \subseteq C_b(\Omega)$. Then T^2 is a kernel operator. **However:** Semigroups on $\mathscr{M}(\Omega)$ are not strongly continuous!

If (Ω, μ) is atomic, every operator on $L^{p}(\Omega)$ is a kernel operator.

Theorem (Bukhvalov 1978)

A positive operator T on L^p is a kernel operator iff

 $\lim f_n = f \& |f_n| \le g \Rightarrow \lim Tf_n(x) = Tf(x)$ almost everywhere.

Consequences:

- If $TL^{p}(\Omega) \subseteq C(\Omega)$, then T is a kernel operator.
- Let Ω be Polish and $T: \mathscr{M}(\Omega) \to \mathscr{M}(\Omega)$ Markov operator such that $T^*B_b(\Omega) \subseteq C_b(\Omega)$. Then T^2 is a kernel operator. **However:** Semigroups on $\mathscr{M}(\Omega)$ are not strongly continuous!

Same problem with dual semigroups on non-reflexive spaces, Gaussian semigroup on $C_b(\mathbb{R})$, ...

Getting rid of the continuity condition

Continuity (at 0) is not important for convergence as $t \to \infty$!

Getting rid of the continuity condition

Continuity (at 0) is not important for convergence as $t \to \infty!$

Claim (Greiner's theorem without continuity)

Let *E* be Banach lattice with order continuous norm. A positive, contractive semigroup $(T_t)_{t\geq 0}$ on *E* is strongly convergent if

- ▶ some *T_s* is a kernel operator and
- the semigroup $(T_t)_{t\geq 0}$ possesses a quasi-interior fixed point.

Getting rid of the continuity condition

Continuity (at 0) is not important for convergence as $t \to \infty!$

Claim (Greiner's theorem without continuity)

Let *E* be Banach lattice with order continuous norm. A positive, contractive semigroup $(T_t)_{t\geq 0}$ on *E* is strongly convergent if

- ▶ some *T_s* is a kernel operator and
- the semigroup $(T_t)_{t\geq 0}$ possesses a quasi-interior fixed point.

How (not) to prove this?

Theorem (Lotz, Doob)

For a bounded semigroup $(T_t)_{t\geq 0}$ on a Banach space X

 $\lim_{t \to \infty} \, T_t \, \, \text{exists strongly} \, \Leftrightarrow \lim_{n \to \infty} (\, T_t)^n \, \, \text{exists strongly for each} \, \, t > 0$

Theorem (Lotz, Doob)

For a bounded semigroup $(T_t)_{t\geq 0}$ on a Banach space X

 $\lim_{t\to\infty} T_t \text{ exists strongly } \Leftrightarrow \lim_{n\to\infty} (T_t)^n \text{ exists strongly for each } t>0$

Example

 $T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is a positive and contractive kernel operator on \mathbb{R}^2 with fixed point (1, 1) but $T^n(1, 0)$ does not converge!

Theorem (Lotz, Doob)

For a bounded semigroup $(T_t)_{t\geq 0}$ on a Banach space X

 $\lim_{t\to\infty} T_t \text{ exists strongly } \Leftrightarrow \lim_{n\to\infty} (T_t)^n \text{ exists strongly for each } t>0$

Example

 $T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is a positive and contractive kernel operator on \mathbb{R}^2 with fixed point (1, 1) but $T^n(1, 0)$ does not converge!

 \rightsquigarrow This operator has no positive root!

Theorem (Lotz, Doob)

For a bounded semigroup $(T_t)_{t\geq 0}$ on a Banach space X

 $\lim_{t \to \infty} \, T_t \, \, \text{exists strongly} \, \Leftrightarrow \, \lim_{n \to \infty} (\, T_t)^n \, \, \text{exists strongly for each} \, \, t > 0$

Example (refinement)

Let $T, S \in \mathbb{R}^{3 \times 3}$ be permutation matrices for the cycles (1, 2, 3)and (1, 3, 2). Then $T^2 = S$ and $S^2 = T$.

Theorem (Lotz, Doob)

For a bounded semigroup $(T_t)_{t\geq 0}$ on a Banach space X

 $\lim_{t \to \infty} \, T_t \, \, \text{exists strongly} \, \Leftrightarrow \, \lim_{n \to \infty} (\, T_t)^n \, \, \text{exists strongly for each} \, \, t > 0$

Example (refinement)

Let $T, S \in \mathbb{R}^{3 \times 3}$ be permutation matrices for the cycles (1, 2, 3)and (1, 3, 2). Then $T^2 = S$ and $S^2 = T$. Hence T has a positive matrix root $T^{1/2^n}$ for every $n \in \mathbb{N}$ but lim $T^n(1, 0, 0)$ does not converge!

Theorem (Lotz, Doob)

For a bounded semigroup $(T_t)_{t\geq 0}$ on a Banach space X

 $\lim_{t \to \infty} \, T_t \, \, \text{exists strongly} \, \Leftrightarrow \, \lim_{n \to \infty} (\, T_t)^n \, \, \text{exists strongly for each} \, \, t > 0$

Example (refinement)

Let $T, S \in \mathbb{R}^{3 \times 3}$ be permutation matrices for the cycles (1, 2, 3)and (1, 3, 2). Then $T^2 = S$ and $S^2 = T$. Hence T has a positive matrix root $T^{1/2^n}$ for every $n \in \mathbb{N}$ but lim $T^n(1, 0, 0)$ does not converge!

One has to exploit that every operator has arbitrary positive roots!

Let S = (S, +) be a commutative semigroup such that

▶ S is embedable into a group G (equivalent: $st = sr \Rightarrow t = r$). Then $\langle S \rangle$, the smallest subgroup containing S, is independent of G.

Let S = (S, +) be a commutative semigroup such that

• S is embedable into a group G (equivalent: $st = sr \Rightarrow t = r$). Then $\langle S \rangle$, the smallest subgroup containing S, is independent of G.

Moreover, assume that

▶
$$\langle S \rangle$$
 is *divisible*, i.e. $\forall g \in \langle S \rangle \forall n \in \mathbb{N} \exists h \in \langle S \rangle$ with $nh = g$.

Examples: $S = ((0,\infty),+)$, $S = (\mathbb{Q} \cap (0,\infty),+)$, $S = ((0,\infty)^d,+)$

Let S = (S, +) be a commutative semigroup such that

• S is embedable into a group G (equivalent: $st = sr \Rightarrow t = r$). Then $\langle S \rangle$, the smallest subgroup containing S, is independent of G.

Moreover, assume that

▶
$$\langle S \rangle$$
 is *divisible*, i.e. $\forall g \in \langle S \rangle \forall n \in \mathbb{N} \exists h \in \langle S \rangle$ with $nh = g$.

Examples: $S = ((0, \infty), +)$, $S = (\mathbb{Q} \cap (0, \infty), +)$, $S = ((0, \infty)^d, +)$ Nonexample: dyadic numbers $S = (\{k2^{-n} : k, n \in \mathbb{N}\}, +)$

Let S = (S, +) be a commutative semigroup such that

• S is embedable into a group G (equivalent: $st = sr \Rightarrow t = r$). Then $\langle S \rangle$, the smallest subgroup containing S, is independent of G.

Moreover, assume that

▶
$$\langle S \rangle$$
 is *divisible*, i.e. $\forall g \in \langle S \rangle \forall n \in \mathbb{N} \exists h \in \langle S \rangle$ with $nh = g$.

Examples: $S = ((0, \infty), +)$, $S = (\mathbb{Q} \cap (0, \infty), +)$, $S = ((0, \infty)^d, +)$ Nonexample: dyadic numbers $S = (\{k2^{-n} : k, n \in \mathbb{N}\}, +)$

Semigroup representation $(T_t)_{t \in S}$: Homomorphism $S \to \mathscr{L}(E)$.

Let S = (S, +) be a commutative semigroup such that

• S is embedable into a group G (equivalent: $st = sr \Rightarrow t = r$). Then $\langle S \rangle$, the smallest subgroup containing S, is independent of G.

Moreover, assume that

▶
$$\langle S \rangle$$
 is *divisible*, i.e. $\forall g \in \langle S \rangle \forall n \in \mathbb{N} \exists h \in \langle S \rangle$ with $nh = g$.

Examples: $S = ((0, \infty), +)$, $S = (\mathbb{Q} \cap (0, \infty), +)$, $S = ((0, \infty)^d, +)$ Nonexample: dyadic numbers $S = (\{k2^{-n} : k, n \in \mathbb{N}\}, +)$

Semigroup representation $(T_t)_{t \in S}$: Homomorphism $S \to \mathscr{L}(E)$.

 $(T_t)_{t\in S}$ is strongly convergent if $(T_tx)_{t\in S}$ converges for all $x \in E$ with respect to $t \leq s :\Leftrightarrow t = s$ or $\exists r \in S$ such that s = t + r

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ divisible and let E be a Banach lattice with o.c. norm.

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ divisible and let E be a Banach lattice with o.c. norm. A positive and bounded semigroup representation $(T_t)_{t \in S}$ on E converges strongly if

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ divisible and let E be a Banach lattice with o.c. norm. A positive and bounded semigroup representation $(T_t)_{t \in S}$ on E converges strongly if

some *T_s* is a kernel operator and

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ divisible and let E be a Banach lattice with o.c. norm. A positive and bounded semigroup representation $(T_t)_{t \in S}$ on E converges strongly if

- some T_s is a kernel operator and
- $(T_t)_{t\in S}$ possesses a quasi-interior fixed point.

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ divisible and let E be a Banach lattice with o.c. norm. A positive and bounded semigroup representation $(T_t)_{t \in S}$ on E converges strongly if

- some T_s is a kernel operator and
- $(T_t)_{t\in S}$ possesses a quasi-interior fixed point.

Comments:

Convergence of semigroup representations

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ divisible and let E be a Banach lattice with o.c. norm. A positive and bounded semigroup representation $(T_t)_{t \in S}$ on E converges strongly if

- some T_s is a kernel operator and
- $(T_t)_{t\in S}$ possesses a quasi-interior fixed point.

Comments:

• We do not require $(T_t)_{t \in S}$ to be contractive.

Convergence of semigroup representations

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ divisible and let E be a Banach lattice with o.c. norm. A positive and bounded semigroup representation $(T_t)_{t \in S}$ on E converges strongly if

- some T_s is a kernel operator and
- $(T_t)_{t\in S}$ possesses a quasi-interior fixed point.

Comments:

- We do not require $(T_t)_{t \in S}$ to be contractive.
- The proof only uses that the kernel operator T_s is AM-compact.

Convergence of semigroup representations

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ divisible and let E be a Banach lattice with o.c. norm. A positive and bounded semigroup representation $(T_t)_{t \in S}$ on E converges strongly if

- some T_s is a kernel operator and
- $(T_t)_{t\in S}$ possesses a quasi-interior fixed point.

Comments:

- We do not require $(T_t)_{t \in S}$ to be contractive.
- ► The proof only uses that the kernel operator T_s is AM-compact.
- The existence of quasi-interior fixed point is cruical!

Example

Example

Let $E = \ell^{p}(\mathbb{Q})$. There exists positive and bounded group representation $(T_t)_{t \in \mathbb{R}}$ on E which is not strongly convergent:

Example

Let $E = \ell^{p}(\mathbb{Q})$. There exists positive and bounded group representation $(T_t)_{t \in \mathbb{R}}$ on E which is not strongly convergent:

• Let $\{v_j : j \in J\}$ basis of \mathbb{R} over \mathbb{Q} .

Example

Let $E = \ell^{p}(\mathbb{Q})$. There exists positive and bounded group representation $(T_t)_{t \in \mathbb{R}}$ on E which is not strongly convergent:

- Let $\{v_j : j \in J\}$ basis of \mathbb{R} over \mathbb{Q} .
- Fix $i \in J$ and let $V \coloneqq \operatorname{span}\{v_j : j \neq i\}$.

Example

Let $E = \ell^{p}(\mathbb{Q})$. There exists positive and bounded group representation $(T_t)_{t \in \mathbb{R}}$ on E which is not strongly convergent:

- Let $\{v_j : j \in J\}$ basis of \mathbb{R} over \mathbb{Q} .
- Fix $i \in J$ and let $V := \operatorname{span}\{v_j : j \neq i\}$.
- ▶ $V \triangleleft \mathbb{R}, \varphi \colon \mathbb{R} \to \mathbb{R} / V \cong \mathbb{Q}$ surjective group homomorphism.

Example

Let $E = \ell^{p}(\mathbb{Q})$. There exists positive and bounded group representation $(T_{t})_{t \in \mathbb{R}}$ on E which is not strongly convergent:

- Let $\{v_j : j \in J\}$ basis of \mathbb{R} over \mathbb{Q} .
- Fix $i \in J$ and let $V := \operatorname{span}\{v_j : j \neq i\}$.
- ▶ $V \triangleleft \mathbb{R}, \varphi : \mathbb{R} \rightarrow \mathbb{R}/V \cong \mathbb{Q}$ surjective group homomorphism.
- ► The Koopman group T_t(x_q)_{q∈Q} := (x_{q+φ(t)})_{q∈Q} is positive, contractive but not strongly convergent.

Theorem (Pichór, Rudnicki, 2000)

A Markovian C_0 -semigroup $(T_t)_{t\geq 0}$ on L^1 is strongly convergent if

- $(T_t)_{t\geq 0}$ is irreducible and possesses a quasi-interior fixed point
- some T_s dominates a kernel operator K > 0 (we say: T_s is a partial kernel operator).

Theorem (Pichór, Rudnicki, 2000)

A Markovian C_0 -semigroup $(T_t)_{t\geq 0}$ on L^1 is strongly convergent if

- $(T_t)_{t\geq 0}$ is irreducible and possesses a quasi-interior fixed point
- some T_s dominates a kernel operator K > 0 (we say: T_s is a partial kernel operator).

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ is divisible and let E be a Banach lattice with o.c. norm. A positive and contractive semigroup representation $(T_t)_{t \in S}$ on E converges strongly if

Theorem (Pichór, Rudnicki, 2000)

A Markovian C_0 -semigroup $(T_t)_{t\geq 0}$ on L^1 is strongly convergent if

- $(T_t)_{t\geq 0}$ is irreducible and possesses a quasi-interior fixed point
- some T_s dominates a kernel operator K > 0 (we say: T_s is a partial kernel operator).

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ is divisible and let E be a Banach lattice with o.c. norm. A positive and contractive semigroup representation $(T_t)_{t \in S}$ on E converges strongly if

• $(T_t)_{t\in S}$ possesses a quasi-interior fixed point and

Theorem (Pichór, Rudnicki, 2000)

A Markovian C_0 -semigroup $(T_t)_{t\geq 0}$ on L^1 is strongly convergent if

- $(T_t)_{t\geq 0}$ is irreducible and possesses a quasi-interior fixed point
- some T_s dominates a kernel operator K > 0 (we say: T_s is a partial kernel operator).

Theorem (G., Glück, preprint 2017)

Let S be a commutative semigroup such that $\langle S \rangle$ is divisible and let E be a Banach lattice with o.c. norm. A positive and contractive semigroup representation $(T_t)_{t \in S}$ on E converges strongly if

- $(T_t)_{t\in S}$ possesses a quasi-interior fixed point and
- For each fixed point x > 0 there exists s ∈ S and kernel operator K_s ≥ 0 such that T_s ≥ K_s and K_sx > 0.

Theorem (brand-new)

Let E be a separable Banach lattice with o.c. norm. For every positive $T: E \rightarrow E$ the following are equivalent:

Theorem (brand-new)

Let E be a separable Banach lattice with o.c. norm. For every positive $T: E \rightarrow E$ the following are equivalent:

 (i) There exists kernel operator K such that T ≥ K and Kx > 0 for all x > 0.

Theorem (brand-new)

Let E be a separable Banach lattice with o.c. norm. For every positive $T: E \rightarrow E$ the following are equivalent:

- (i) There exists kernel operator K such that $T \ge K$ and Kx > 0 for all x > 0.
- (ii) There exists an at most countable set B ⊆ E₊ \ {0} such that for each x > 0 there exists b ∈ B that that Tx ≥ b.

Theorem (brand-new)

Let E be a separable Banach lattice with o.c. norm. For every positive $T: E \rightarrow E$ the following are equivalent:

- (i) There exists kernel operator K such that T ≥ K and Kx > 0 for all x > 0.
- (ii) There exists an at most countable set B ⊆ E₊ \ {0} such that for each x > 0 there exists b ∈ B that that Tx ≥ b.

Example

Let $T: L^p(\Omega) \to L^p(\Omega)$ positive, Ω second countable topological space with a regular Borel measure.

Theorem (brand-new)

Let E be a separable Banach lattice with o.c. norm. For every positive $T: E \rightarrow E$ the following are equivalent:

- (i) There exists kernel operator K such that T ≥ K and Kx > 0 for all x > 0.
- (ii) There exists an at most countable set B ⊆ E₊ \ {0} such that for each x > 0 there exists b ∈ B that that Tx ≥ b.

Example

Let $T: L^{p}(\Omega) \to L^{p}(\Omega)$ positive, Ω second countable topological space with a regular Borel measure.

If Tf > 0 is lower semi-continuous for all f > 0, then T is a partial kernel operator.