On weakly p-summable sequences in Banach lattices

Jan Fourie Potchefstroom, South Africa

July 18, 2017

Recall the following result:

Theorem 0.1 (See for instance Theorem 4.34 in [3]) If W is a relatively weakly compact subset of a Banach lattice, then every disjoint sequence in the solid hull of W converges weakly to zero.

This theorem plays an important role in the proofs of many results (for instance, concerning Dunford-Pettis operators and the Dunford-Pettis property on Banach lattices).

 $^{^{\}rm o}$ [3] Aliprantis, C. D., Burkinshaw, O. "Positive Operators".

The objective in this talk is to introduce the notion of "(1, p)-limited" subset of a Banach space and to show that:

"If E is a Banach lattice and $(x_n) \subset E$ is a disjoint sequence in the solid hull of a (1, p)-limited subset of E, then (x_n) is weakly p-summable in E"

 – and then to consider some applications of this result to operators on Banach lattices.

1 Notation

For Banach spaces X, Y, we let:

 $\mathcal{L}(X, Y)$ be the space of bounded linear operators and $\mathcal{L}(X, \mathbb{K}) = X^*$;

 $\mathcal{K}(X, Y)$ be the space of compact linear operators;

 $\mathcal{W}(X, Y)$ be the space of weakly compact linear operators;

 $\ell_p^{strong}(X) \ (1 \le p < \infty)$ be the space of all *p*-summable sequences in X, i.e

 $(x_n) \in \ell_p^{strong}(X) \iff (||x_n||) \in \ell_p;$

 $\ell_p^{weak}(X) \ (1 \le p < \infty)$ be the space of all weakly *p*-summable sequences in X, i.e.

$$(x_n) \in \ell_p^{weak}(X) \iff (\langle x^*, x_n \rangle) \in \ell_p, \, \forall x^* \in X^*;$$

 $\ell_p^u(X)$ be the closure in $\ell_p^{weak}(X)$ of the set of all finitely non-zero sequences in X;

 $\ell_p^{weak^*}(X^*)$ $(1 \le p < \infty)$ be the space of all weak^{*} *p*-summable sequences in *X*, i.e.

$$(x_n^*) \in \ell_p^{weak^*}(X^*) \iff (\langle x_n^*, x \rangle) \in \ell_p, \, \forall x \in X$$

(note that $\ell_p^{weak^*}(X^*) = \ell_p^{weak}(X^*)$)

 $c_0^{weak}(X)$ be the vector space of all weakly null sequences in X;

Remark 1.1

- (1) The elements of $\ell_p^u(X)$ are called the unconditionally p-summable sequences in X. It is well-known that $(x_n) \in \ell_1^u(X)$ if and only if (x_n) is an unconditionally summable sequence in X and $\ell_1^{weak}(X) = \ell_1^u(X)$ if and only if X does not contain a copy of c_0 .
- (2) All Banach lattices will be assumed to be real and will be denoted by E, F, G etc.

2 Weakly *p*-summable sequences in Banach lattices

We assume throughout this section that $1 \le p < \infty$.

Remark 2.1 Suppose E is a Banach lattice and $(x_n) \in \ell_p^{weak}(E)$ satisfies $x_n \ge 0$ for all n. Suppose $y_n \in E$ satisfies $0 \le y_n \le x_n$ for all n. One verifies readily that $(y_n) \in \ell_p^{weak}(E)$ as well.

In general, $(x_n) \in \ell_p^{weak}(E)$ does not necessarily imply $(|x_n|) \in \ell_p^{weak}(E)$. However, a standard argument argument yields that:

Proposition 2.2 Suppose (x_n) is a disjoint sequence in E. Then,

$$(x_n) \in \ell_p^{weak}(E) \iff (|x_n|) \in \ell_p^{weak}(E).$$

It follows from Proposition 2.2 and $x_n^+ \leq |x_n|$ and $x_n^- \leq |x_n|$ for all n, that:

Corollary 2.3 Let E be a Banach lattice and $(x_n) \subset E$ a disjoint sequence. Then,

$$(x_n) \in \ell_p^{weak}(E) \iff (x_n^+), (x_n^-) \in \ell_p^{weak}(E).$$

We recall the notion of "weak p-consistent":

Definition 2.4 We say a Banach lattice E is weak p-consistent (for $1 \le p < \infty$) if it follows from $(x_n) \in \ell_p^{weak}(E)$ that $(|x_n|) \in \ell_p^{weak}(E)$.

It is known that:

Lemma 2.5 Let $1 \le p < \infty$. The space $C(\Omega)$ is weak p-consistent and therefore, all AM-spaces with unit are weak p-consistent. Recall the following definition of a p-limited subset of a Banach space:

Definition 2.6 (refer to [9]) Let $1 \leq p < \infty$. A subset W of a Banach space X is said to be p-limited if for each weak^{*} p-summable sequence (x_n^*) in X^{*} there exists a sequence $(\lambda_i) \in \ell_p$ such that

$$|\langle x_n^*, x \rangle| \le \lambda_n, \quad \forall x \in W,$$

and for each $n \in \mathbb{N}$.

If in the above definition we allow $p = \infty$ (and then replace ℓ_{∞} by c_0), then we have the well-known definition of a *limited set*.

[°] [9] Delgado, J.M.; Piñeiro, C. "On *p*-limited sets". J.Math.Anal.Appl.(2014)

It follows from [9] that every *p*-limited set is relatively weakly compact and that if $1 \leq p \leq q < \infty$, then every *p*-limited set is *q*-limited.

However, it is not necessarily true that a *p*-limited set is limited (for instance, B_{ℓ_2} is 1-limited in c_0 , but not limited).

If X is a Grothendieck space (i.e. weak^{*} convergent sequences in X^* are weakly convergent) then each p-limited set is indeed limited.

If, however, $2 \leq p < q < \infty$ and every *q*-limited subset of X is *p*-limited, then X has to be finite dimensional.

A Banach space X is said to have the **Gelfand-Phillips property** (*GPP* for short) or X is said to be a Gelfand-Phillips space, if all limited subsets of X are relatively (norm) compact. This is the case if and only if every limited weakly null sequence in X is norm null.

Similarly,

 $^{^{\}rm o}$ [9] Delgado, J.M.; Piñeiro, C. "On p-limited sets". J.Math.Anal.Appl.(2014)

Definition 2.7 Let $1 \le p < \infty$. A Banach space X is said to have the p-Gelfand-Phillips property (pGPP for short) if every limited weakly p-summable sequence (x_n) in X is norm null. If X has this property, then we call X a p-Gelfand-Phillips space.

The Definition 2.6 above (of p-limited set), extends to:

Definition 2.8 A subset W of a Banach space X is said to be (p,q)-limited (where $1 \le p, q < \infty$) if for each weak^{*} p-summable sequence (x_n^*) in X^{*} there exists a sequence $(\lambda_i) \in \ell_q$ such that

$$|\langle x_n^*, x \rangle| \le \lambda_n, \quad \forall x \in W,$$

and for each $n \in \mathbb{N}$.

It is immediate that the (p, p)-limited sets are the plimited sets. Clearly, if $1 \leq r \leq p$, then each (p, q)limited set is (r, q)-limited, i.e. each (p, q)-limited set is (1, q)-limited. On the other hand, if $1 \leq r \leq q$, then each (p, r)-limited set is (p, q)-limited. Again, we may include $p = \infty$ or/and $q = \infty$ in Definition 2.8, if ℓ_{∞} is replaced by c_0 . Thus, a set $A \subset X$ is (p, ∞) -limited if for each weak^{*} *p*-summable sequence (x_n^*) in X^* there exists $(\lambda_n) \in c_0$ such that

$$\sup_{x \in A} |\langle x_n^*, x \rangle| \le \lambda_n, \, \forall n \in \mathbb{N}.$$

Let A be a weakly compact subset of X. For each $(x_n^*) \in \ell_1^{weak}(X^*)$, the set $\{(\langle x_n^*, x \rangle)_n : x \in A\}$ is weakly compact in ℓ_1 as image of A under the bounded linear operator

$$X \to \ell_1 : x \mapsto (\langle x_n^*, x \rangle),$$

and so it is compact in ℓ_1 . Thus it is contained in the closed convex hull of a norm null sequence $((\lambda_{ni})_i)_n$ in ℓ_1 . It then follows that

$$\sup_{x \in A} |\langle x_n^*, x \rangle| \le ||(\lambda_{ni})_i||_{\ell_1} \text{ for all } n_i$$

where $\|(\lambda_{ni})_i\|_{\ell_1} \to 0$ as $n \to \infty$. This shows that:

Remark 2.9 All weakly compact sets in a Banach space X are $(1, \infty)$ -limited.

Recall that:

Definition 2.10 (Type and cotype) A Banach space has type p ($1 \le p \le 2$) if there exists a constant $C \ge 0$ such that, however we choose finitely many x_1, \ldots, x_n from X,

$$\left(\int_0^1 \|\sum_{k=1}^n r_k(t)x_k\|^2 \, dt\right)^{1/2} \le C(\sum_{k=1}^n \|x_k\|^p)^{1/p}$$

and it has cotype q $(2 \le q \le \infty)$ if there is a constant $K \ge 0$ such that no matter how we select finitely many x_1, \ldots, x_n from X,

$$\left(\sum_{k=1}^{n} \|x_k\|^q\right)^{1/q} \le K\left(\int_0^1 \|\sum_{k=1}^{n} r_k(t)x_k\|^2 dt\right)^{1/2},$$

where $r_n : [0,1] \to \mathbb{R}$ denotes the Rademacher function $r_n(t) := \operatorname{sign}(\sin 2^n \pi t)$ and where $q = \infty$ is covered by replacing the left hand side by $\max_{k \le n} ||x_k||.$

Next we discuss some examples of Banach spaces in which all bounded sets are (1, p)-limited for some p:

Example 2.11

1. Clearly, B_X in X is (1, p)-limited iff

$$(\dagger) \qquad \ell_1^{weak}(E^*) \subseteq \ell_p^{strong}(E^*).$$

If a Banach space X has type $1 < p' \leq 2$, then X* has cotype p and (†) holds (see [11], Theorem 11.17). Thus, all bounded sets in a Banach space X with type $1 < p' \leq 2$ are (1, p)-limited. In case of a Banach lattice E with finite cotype, then E has type p' if and only if E* has cotype p and this is so, if and only if $\ell_1^{weak}(E^*) \subseteq \ell_p^{strong}(E^*)$.

2. The assumption that X has non-trivial type in the previous example is not necessary. For instance, the space ℓ_1 has cotype 2, which implies that the inclusion $\ell_1^{weak}(\ell_1) \subseteq \ell_2^{strong}(\ell_1)$ holds; i.e. $\ell_1^{weak}(c_0^*) \subseteq \ell_2^{strong}(c_0^*)$. Thus the bounded sets in c_0 are (1, 2)-limited. Recall that c_0 does not have non-trivial type. Similarly, since $C(K)^* = \ell_1$ for every countable compact metric space K, it follows that the bounded sets in C(K) are (1, 2) limited.

[°] [11] Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators

3. Recall that a Banach space X is said to have Orlicz property, when unconditionally convergent series in X are strongly 2-summable. If X does not contain a copy of c₀, then it satisfies the Orlicz property if and only if

$$\ell_1^{weak}(X) \subseteq \ell_2^{strong}(X).$$

Therefore, if X is a Banach space such that its dual space X^* does not contain a copy of c_0 and satisfies the Orlicz property, then all bounded sets in X are (1, 2)-limited.

The previous example where $X = c_0$ is a special case.

Let K = [0,1]. The space C(K) fails to have non-trivial type, whereas its dual space $\mathcal{M}(K)$ (of finite regular Borel measures on K) has cotype 2. Therefore, $\mathcal{M}(K)$ satisfies the Orlicz property, i.e. the bounded sets in C(K)are (1,2) limited.

The proof of the following theorem is based on the proof of Theorem 0.1 (Theorem 4.34 in [3]):

[°] [3] Aliprantis, C. D., Burkinshaw, O. "Positive Operators".

Theorem 2.12 Let $1 \le p \le \infty$. Suppose $(x_n) \subset E$ is a disjoint sequence in the solid hull of a (1, p)-limited set W. Then, $(x_n) \in \ell_p^{weak}(E)$.

Proof Let (x_n) be the sequence in the statement of the theorem. Pick a sequence $(y_n) \subseteq W$ satisfying $|x_n| \leq |y_n|$ for all n. Fix $0 \leq x^* \in E^*$.

Considering each x_n as an element of E^{**} , denote by P_n the order projection of E^* onto the carrier C_{x_n} of x_n . Using that $x_n \perp x_m$ $(n \neq m)$, and so (by Nakano) $P_n x^* \perp P_m x^*$ holds for $n \neq m$, it follows for the given positive functional x^* that

$$\begin{aligned} |x^*(x_n)| &\leq x^*(|x_n|) &= [P_n x^*](|x_n|) \\ &\leq [P_n x^*](|y_n|) \\ &= \max\{y^*(y_n) : |y^*| \leq P_n x^*\}, \end{aligned}$$

for each $n \in \mathbb{N}$. Thus, for each n, there exists some $y_n^* \in E^*$ with $|y_n^*| \leq P_n x^*$ and

$$|x^*(x_n)| \le y_n^*(y_n).$$
 (*)

For each $x \in E$ and each $k \in \mathbb{N}$, we have

$$\sum_{i=1}^{k} |y_i^*(x)| \le \left[\sum_{i=1}^{k} P_i x^*\right] (|x|) \le x^*(|x|),$$

and so $(y_i^*) \in \ell_1^{weak^*}(E^*)$. Since W is a (1, p)-limited set, it follows that there exists a sequence $(\lambda_n) \in \ell_p$ so that

$$|x^*(x_n)| \le y^*_n(y_n) \le \lambda_n, \quad \forall n \in \mathbb{N}.$$

This shows that $(x^*(x_n)) \in \ell_p$ for all $0 \leq x^* \in E^*$, from which it follows that for all $x^* \in E^*$ and for all $(\alpha_i) \in \ell_{p'}$, we have

$$\sum_{n=1}^{\infty} |\alpha_n x^*(x_n)| = \sum_{n=1}^{\infty} |\alpha_n| |x^*(x_n)| \le \sum_{n=1}^{\infty} |\alpha_n| |(x^*)^+(x_n)| + \sum_{n=1}^{\infty} |\alpha_n| |(x^*)^-(x_n)| < \infty,$$

 \square

thereby showing that $(x_i) \in \ell_p^{weak}(E)$.

Theorem 0.1 follows from theorem 2.12, since relatively weakly compact sets are $(1, \infty)$ -limited.

3 Applications to classes of operators on Banach lattices

We recall the following definitions from [6]:

[°] [6] Castillo, J.M.F., Sánchez, F. "Dunford-Pettis-like properties of continuous vector function spaces", *Revista Mat.Complut.Madrid* **6(1)**(1993)

Definition 3.1

- (1.) A sequence (x_n) in a Banach space X is called weakly p-convergent if there exists $x \in X$ such that $(x_n - x) \in \ell_p^{weak}(X)$. A subset W of a Banach space X is called relatively weakly p-compact if each sequence $(x_n) \subseteq W$ has a weakly p-convergent subsequence. If a relatively weakly p-compact set contains the "limits" of all its weakly p-convergent sequences, then it is called weakly p-compact.
- (2.) An operator $T : X \to Y$ is called p-convergent if $||Tx_n|| \to 0$ for all $(x_n) \in \ell_p^{weak}(X)$.

We recall the well-known Dunford-Pettis property and similar properties that were studied widely in the literature in recent years:

Definition 3.2 A Banach space X is said to have

(1.) DPP (Dunford-Pettis property), if for all Banach spaces Y each weakly compact operator $T : X \to Y$ maps weakly compact sets to norm-compact sets (i.e. T is Dunford-Pettis or completely continuous) or, equivalently, if $x_n^* \to 0$ weakly in X^* and $x_n \to 0$ weakly in X imply $x_n^*(x_n) \to 0$;

- (2.) DP^*P , if all weakly compact subsets of X are limited (equivalently, if each bounded linear operator $T: X \to c_0$ is completely continuous or, equivalently, if $x_n^* \to 0$ weak* in X* and $x_n \to 0$ weakly in X, then $x_n^*(x_n) \to 0$);
- (3.) DPP_p (Dunford-Pettis property of order p), if each weakly compact operator

$$T: X \to Y$$

is p-convergent or, equivalently, if $x_n^* \to 0$ weakly in X^* and $(x_n) \in \ell_p^{weak}(X)$ imply

$$x_n^*(x_n) \to 0.$$

(4.) DP^*P_p (DP^* of order p), if all weakly p-compact sets in X are limited (equivalently, if each bounded linear operator $T: X \to c_0$ is p-convergent or, equivalently, if $x_n^* \to 0$ weak^{*} in X^* and $(x_n) \in \ell_p^{weak}(X)$ imply $x_n^*(x_n) \to 0$)

In the light of the above discussion, we have:

Definition 3.3 Let $p \leq q$. We say a Banach space X has the $DP^*P_{(p,q)}$ if each weakly q-compact subset of X is (p,q)-limited. Refer to Example 2.11 above for examples of Banach spaces with $DP^*P_{(1,p)}$ (for some values of p). The well-known Kalton-Saab Theorem states:

Theorem 3.4 Let E, F be Banach lattices such that F has order continuous norm. If a positive operator $S : E \to F$ is dominated by a Dunford-Pettis operator, then S itself is Dunford-Pettis.

Using our Theorem 2.12, the proof of Theorem 3.4 (as is discussed in [3]) can be adjusted to show that:

Theorem 3.5 Let E, F be Banach lattices such that E has $DP^*P_{(1,p)}$ (with $1 \le p < \infty$) and Fhas order continuous norm. If $T : E \to F$ is a positive p-convergent operator, then each positive operator $S : E \to F$ satisfying $0 \le S \le T$ is p-convergent itself.

Aliprantis and Burkinshaw introduced the class of weak Dunford-Pettis operators. Recall that an operator $T: X \to Y$ is weak Dunford-Pettis if it follows from $x_n \to 0$ weakly in X and $y_n^* \to 0$ weakly in Y^* , that $\lim_n \langle y_n^*, Tx_n \rangle \to 0$. Again, due to N.J. Kalton and P. Saab, we have **Theorem 3.6** If a positive operator S is dominated by a weak Dunford-Pettis operator, then S is a weak Dunford-Pettis operator.

In our context we consider the weak p-convergent operators:

Definition 3.7 An operator T from a Banach space X into a Banach space Y is called weak^{*} p-convergent if $(y_n^*(Tx_n))$ converges to 0 for every $(x_n) \in \ell_p^{weak}(X)$ and every $(y_n^*) \in c_0^{weak^*}(Y^*)$.

By a result in the paper [8], the σ -Dedekind completeness of a Banach lattice F assures that that both the sequences of positive parts and absolute values of a disjoint weak^{*} null sequence in F^* are weak^{*} null themselves. Using this result, one proves that

Lemma 3.8 Let E, F be Banach lattices such that F is σ -Dedekind complete and let $T : E \to F$ be a positive weak^{*} p-convergent operator. Then for every weakly p-summable sequence (x_n) in E^+ and every weak^{*} null sequence (f_n) in F^* , we have

 $|f_n|(Tx_n) \to 0 \text{ as } n \to \infty.$

[°] [8] CHEN, J.X.; CHEN, Z.L. & JI, G.X. "Almost limited sets in Banach lattices", *J.Math.Anal.Appl.* **412** (2014)

Notice that by the definition of weak^{*} p-convergent operator, it follows that for the sequences (x_n) and (f_n) in the statement of Lemma 3.8, we already have $f_n(Tx_n) \to 0$ as $n \to \infty$. The important consequence of the σ -Dedekind completeness of F is that we have the stronger property $|f_n|(Tx_n) \to 0$ as $n \to \infty$.

Remark 3.9 For 1 , T is weak^{*} pconvergent if and only if it carries relatively weaklyp-compact subsets of X to limited subsets of Y.

Based on the discussion by Kalton and Saab in [18] (to prove Theorem 3.6) and Lemma 3.8 we verify that:

Theorem 3.10 Let $T : E \to F$ be a positive weak^{*} p-convergent operator (for $1 \le p < \infty$), where E, F are Banach lattices such that E is weak p-consistent and F is σ -Dedekind complete. If $0 \le S \le T$, then S is weak^{*} p-convergent.

^o [18] KALTON, N.J. & SAAB, P. "Ideal properties of regular operators between Banach lattices", *Illinois J.Math.* **29** (1985)

Proof Let $(x_n) \in \ell_p^{weak}(E)$ and let $(f_n) \in c_0^{weak^*}(F^*)$. By assumption, $(|x_n|) \in \ell_p^{weak}(E)$ and $T : E \to F$ is weak^{*} *p*-convergent. So, by Lemma 3.8, we have

 $|f_n|(T|x_n|) \to 0 \text{ as } n \to \infty.$

This implies that $f_n^+(T|x_n|) \to 0$ and $f_n^-(T|x_n|) \to 0$ as $n \to \infty$. Therefore,

 $|f_n^+(Sx_n)| \le f_n^+(|Sx_n|) \le f_n^+(S|x_n|) \le f_n^+(T|x_n|) \to 0.$ Similarly, $|f_n^-(Sx_n)| \to 0$ as $n \to \infty$. This proves that $f_n(Sx_n) \to 0$ as $n \to \infty$.

Corollary 3.11 Let $T : E \to F$ be a positive weak^{*} p-convergent operator (for $1 \le p < \infty$), where E, F are Banach lattices such that E is an AM-space with unit and F is σ -Dedekind complete. If $0 \le S \le T$, then S is weak^{*} p-convergent.

By using Theorem 2.12 and following similar arguments to the proof of a theorem in [7] (again, based on results in [3]), we have:

^o [7] CHEN,J.X., CHEN Z.L. & JI, G.X. "Domination by positive weak* Dunford-Pettis operators on Banach lattices", *Bull. Aust. Math. Soc.* 90 (2014)

Theorem 3.12 Let $T : E \to F$ be a positive weak* p-convergent operator, where E, F are Banach lattices such that E has $DP^*P_{(1,p)}$ (with $1 \leq p < \infty$) and F is σ -Dedekind complete. Given a weak p-summable sequence (z_n) in E, let Wbe the set of elements in the sequence (z_n) . If $f_n \to 0$ weak* in F^* , then for each $\epsilon > 0$ there exists $N \in \mathbb{N}$ and some $w \in E^+$ lying in the ideal generated by W such that

$$|f_n|(T(|x|-w)^+) < \epsilon,$$

for all n > N and all $x \in W$.

Application of Theorem 3.12 then yields the following extension of Theorem 3.10:

Theorem 3.13 Let E, F be Banach lattices such that E has $DP^*P_{(1,p)}$ (with $1 \le p < \infty$) and F is σ -Dedekind complete. If $T : E \to F$ is a positive weak^{*} p-convergent operator, then each positive operator $S : E \to F$ satisfying $0 \le S \le T$ is weak^{*} p-convergent itself. The following proposition provides a connection between the weak* p-convergent and p-convergent operators:

Proposition 3.14 Let X, Y be Banach spaces and $T \in \mathcal{L}(X, Y)$. The following are equivalent:

- (a) T is weak^{*} p-convergent.
- (b) ST is p-convergent for each $S \in \mathcal{L}(Y, Z)$ and any separable Banach space Z.
- (c) ST is p-convergent for each $S \in \mathcal{L}(Y, c_0)$.

It follows from Proposition 3.14 that

Corollary 3.15 If X, Y are Banach spaces, with Y separable, then each weak^{*} p-convergent operator $T: X \to Y$ is p-convergent.

Corollary 3.16 A Banach space X has DP^*P_p if and only if the identity operator id_X is weak^{*} p-convergent. If X is separable, then by Corollary 3.15, this is equivalent to id_X being p-convergent.

4 The Schur and positive Schur properties of order p

If the lattice operations in a Banach lattice E are weakly sequentially continuous, then in particular $|x_n| \to 0$ weakly for all $(x_n) \in \ell_p^{weak}(E)$. It is well-known that the lattice operations in AM-spaces are weakly sequentially continuous. However, in the spaces $L_p[0, 1]$ (where $1 \leq p < \infty$) the lattice operations fail to be weakly sequentially continuous (see [19]). It is also proved in [19] that in every atomic Banach lattice with order continuous norm, the lattice operations are weakly sequentially continuous. Since we need the lattice operations to satisfy a seemingly weaker property than being weakly sequentially continuous, we introduce the notion "weakly sequentially p-continuous" as follows:

Definition 4.1 The lattice operations in a Banach lattice E are said to be weakly sequentially pcontinuous if the sequence $(|x_n|)$ converges weakly to 0 for every weakly p-summable sequence (x_n) .

^o [19] Meyer-Nieberg, P. "Banach lattices", Springer-Verlag, Berlin, Heidelberg, 1991

Definition 4.2 Let $1 \le p < \infty$. A Banach lattice E is said to have the positive Schur property of order p (briefly, E has the SP_p^+) if each sequence $(x_n) \in \ell_p^{weak}(E)$ with positive terms, is norm convergent to 0.

If we agree to say that E has the SP_{∞}^+ if each sequence $(x_n) \in c_0^{weak}(E)$ with positive terms, is norm convergent to 0, then we may assume $1 \le p \le \infty$ in Definition 4.2; the SP_{∞}^+ , however, will then coincide with the well known positive Schur property.

Lemma 4.3 If in a Banach lattice E there exists a sequence $(x_n) \in \ell_p^{weak}(E)$ with positive terms, which is not norm convergent to 0, then there exists a sequence $(z_k) \in \ell_p^{weak}(E)$ such that $z_n \ge 0$ for all $n, z_n \land z_m = 0$ for all $m \ne n$ and $||z_n|| \not\rightarrow 0$.

It therefore follows that:

Proposition 4.4 A Banach lattice E has the positive Schur property of order p if and only if each disjoint sequence $(x_n) \in \ell_p^{weak}(E)$ with positive terms, is norm convergent to 0. **Definition 4.5** A Banach space X is said to have the Schur property of order p (briefly, X has the SP_p) if every weakly p-summable sequence is norm convergent to 0.

It follows from the literature (cf. for instance [4], Proposition 2.1) that every weakly *p*-summable sequence in a Banach space X is norm convergent to 0 (for $1 \le p < \infty$) if and only if $\ell_p^{weak}(X) = \ell_p^u(X)$. As is mentioned in Remark 1.1, it is a well-known fact that $\ell_1^{weak}(X) = \ell_1^u(X)$ if and only if X contains no copy of c_0 . Thus, we immediately conclude that:

Proposition 4.6 Let X be a Banach space which contains no copy of c_0 . Then X has the SP_1 .

Corollary 4.7 In each Banach lattice E which contains no copy of c_0 , the lattice operations are weakly sequentially 1-continuous.

^o [4] Aywa, S., Fourie, J.H. "On convergence of sections of sequences in Banach spaces". *Rend.Circ. Mat.Palermo* **II** (XLIX), (2000)

In general, the weakly sequential continuity of the lattice operations in a Banach lattice is not implied by the weakly sequentially p-continuity of the same, as is illustrated by the following result:

Proposition 4.8 The space $L_1[0,1]$ has SP_1 . Thus, the lattice operations in $L_1[0,1]$ are weakly sequentially 1-continuous, but they are not weakly sequentially continuous.

Proof $L_1[0, 1]$ does not contain a copy of c_0 ; i.e. by Proposition 4.6, it has SP_1 . Thus, the lattice operations in $L_1[0, 1]$ are weakly sequentially 1continuous. It is however well-known that the lattice operations in $L_1[0, 1]$ are not weakly sequentially continuous.

Actually, more is known:

Example 4.9

- (i) Let $1 \leq p < \infty$. Recalling that every weak ℓ_1 -sequence in an L_p -space is a strong ℓ_r sequence where $r = \max\{p, 2\}$, it follows that any L_p -space has SP_1 . Thus, the lattice operations in $L_p[0, 1]$ are weakly sequentially 1-continuous, but they are not weakly sequentially continuous.
- (ii) All Banach spaces with finite cotype have SP_1 .
- (iii) A Banach space X has the SP_p (for $1) iff each bounded linear operator from <math>\ell^{p'}$ to X is compact (and X has the SP_1 if each bounded linear operator from c_0 to X is compact). This provides us with an abundance of examples of Banach spaces which have the SP_p for some $1 \le p < \infty$, but which do not have the Schur property, such as all closed subspaces of ℓ_q (for all 1 < q < p') where $1 . Also, all the <math>\ell_p$ -spaces have the SP_1 , whereas none of the ℓ_p -spaces (for p > 1) have the Schur property.

On the other hand, we have the following example of a space with the DPP which does not have SP_2 : **Example 4.10** Let (Ω, Σ, μ) be some probability space. The space $L_1(\mu)$ has the DPP (by the Dunford-Pettis Theorem) and thus also has the DPP_p for all $1 \leq p \leq \infty$. By the above discussion, every weakly 2-summable sequence in $L_1(\mu)$ would be a norm null sequence if and only if each bounded linear operator from the sequence space ℓ_2 to $L_1(\mu)$ were compact. This is impossible, since for instance we know that ℓ_2 embeds isometrically in $L_1(\mu)$. Thus, there has to be a weakly 2summable sequence which is not norm null, showing that $L_1(\mu)$ does not have the SP_2 .

For separable Banach spaces we have:

Theorem 4.11 A separable Banach space X with the DP^*P_p has the Schur property of order p.

More examples of L_p -spaces without the Schur property of order p for some choices of p follow from Theorem 6.4.19 in [2]:

(i) L_r does not have SP_p for all $2 \le p \le r'$.

(ii) Let $2 < r < \infty$, then L_r does not have SP_p for p = 2 or p = r'.

[°] [2] Albiac, F., Kalton, N. J.: "Topics in Banach Space Theory".

It is clear that if a Banach lattice E has the SP_p , then the lattice operations are weakly sequentially p-continuous and E has the SP_p^+ . On the other hand, if E is a weak p-consistent Banach lattice and E has the SP_p^+ , then for each $(x_n) \in \ell_p^{weak}(E)$ we have $(|x_n|) \in \ell_p^{weak}(E)$ and so $||x_n|| = |||x_n||| \to 0$ as $n \to \infty$. Thus we have:

Proposition 4.12 Let E be a weak p-consistent Banach lattice. Then the following are equivalent:

(i) E has the SP_p . (ii) E has the SP_p^+ . 5 More on *p*-convergent operators on Banach lattices

Theorem 5.1 Let E and F be Banach lattices. Suppose the p-convergent operators from E to Fsatisfy the following domination property: "If S, $T : E \to F$, with $0 \le S \le T$ such that T is p-convergent, then likewise S is p-convergent". Then at least one of the following conditions has to hold:

- (a) F has order continuous norm.
- (b) The lattice operations in E are weakly sequentially p-continuous.

The following result is a partial converse of Theorem 5.1, assuming a stronger property than in Theorem 5.1(b):

Proposition 5.2 Let E be a weak p-consistent Banach lattice and F any Banach lattice. If S, T: $E \rightarrow F$ are positive operators satisfying $0 \le S \le$ T and T is p-convergent, then likewise S is pconvergent. When the target space is an AL-space, then we have the following easy characterisation of a p-convergent operator:

Proposition 5.3 Let E be a Banach lattice and let F be an AL-space. Then the following are equivalent:

- (1) T is p-convergent.
- (2) $|Tx_n| \to 0 \text{ as } n \to \infty \text{ weakly in } F \text{ for all}$ $(x_i) \in \ell_p^{weak}(E).$

Proof (1) \implies (2) is clear from $|||Tx_n||| = ||Tx_n|| \to 0 \text{ as } n \to \infty.$

To prove (2) \implies (1), observe that the linear functional $e \in F^*$ defined by

$$e(y) := \|y^+\| - \|y^-\|$$

on the AL-space F satisfies e(|y|) = ||y|| for all $y \in F$ (see [3], page 200). Thus,

$$||Tx_n|| = e(|Tx_n|) \to 0$$

for all $(x_i) \in \ell_p^{weak}(E)$; i.e. T is a p-convergent operator.

[°] [3] Aliprantis, C. D., Burkinshaw, O. "Positive Operators".

From the previous result we see that:

Proposition 5.4 Let E be a Banach lattice and let F be an AL-space in which the lattice operations are weakly p-sequentially continuous, then each positive operator $T : E \to F$ is p-convergent.

Proof Being positive, T is bounded. Thus, if $(x_i) \in \ell_p^{weak}(E)$ is given, then $(Tx_i) \in \ell_p^{weak}(F)$. By assumption, $|Tx_n| \to 0$ weakly. Therefore, by Proposition 5.3, the operator T is p-convergent. \Box

Remark 5.5 Let E be a Banach lattice. From Proposition 4.8 and Proposition 5.4 it follows that each positive operator $T : E \rightarrow L_1[0,1]$ is 1convergent.

Theorem 5.6 Let E be a Banach lattice. Then, the following assertions are equivalent:

- (1) Each positive operator from E into ℓ_{∞} is p-convergent.
- (2) E has the SP_p .

References

- Abramovich, Y. A., Aliprantis, C. D.: Problems in Operator Theory. *Graduate Studies in Mathematics* 51, AMS, Providence, Rhode Island, 2002
- [2] Albiac, F., Kalton, N. J.: Topics in Banach Space Theory. *Graduate Texts in Mathematics* 233, Springer Inc., New York, 2006
- [3] Aliprantis, C. D., Burkinshaw, O.: Positive Operators, Springer, Dordrecht, 2006.
- [4] Aywa, S., Fourie, J. H.: On convergence of sections of sequences in Banach spaces. *Rendiconti Del Circ. Mat. Di Palermo* II (XLIX), 141– 150 (2000)
- [5] H. CARRIÓN, P. GALINDO AND M.L. LOURENÇO, A stronger Dunford-Pettis property, *Studia Mathematica* 3 (2008), 205–216.
- [6] Castillo, J.M.F., Sánchez, F.: Dunford-Pettislike properties of continuous vector function spaces, *Revista Mat. de la Universidad Complutense de Madrid* 6(1), 43–59 (1993)

- [7] J. X. CHEN, Z. L. CHEN AND G. X. JI, Domination by positive weak* Dunford-Pettis operators on Banach lattices, *Bull. Aust. Math. Soc.* 90 (2014), 311–318.
- [8] J. X. CHEN, Z. L. CHEN AND G. X. JI, Almost limited sets in Banach lattices, *J.Math.Amal.Appl.* **412** (2014), 547–553.
- [9] J.M. DELGADO AND C. PIÑEIRO, On plimited sets. J.Math.Anal.Appl. 10 (2014), 713–718.
- [10] Diestel, J.: Sequences and Series in Banach spaces. Graduate Texts in Mathematics 922, Springer-Verlag, New York, 1984
- [11] Diestel, J., Jarchow, H., Tonge, A.: Absolutely summing operators, Cambridge University Press, Cambridge, 1995
- [12] Dodds, P. G., Fremlin, D. H.: Compact operators on Banach lattices, *Israel J. Math.*, 34, 287–320 (1979)
- [13] Drewnowski, L.: On Banach spaces with the Gelfand-Phillips property. *Math.Z.* 193, 405– 411 (1986)

- [14] Fourie, J.H., Swart, J.: Banach ideals of pcompact operators, Manuscripta Math. 26, 349–362 (1979)
- [15] Fourie, J.H., Zeekoei, E. D.: DP*-properties of order p on Banach spaces, Quaestiones Math. 37(3), 349–358 (2014)
- [16] Fourie, J.H., Zeekoei, E. D.: On weak-star pconvergent operators. Quaestiones Math. (Accepted).
- [17] Groenewegen, G., Meyer-Nieberg, P.: An elementary and unified approach to disjoint sequence theorems, *Indag. Math.* 48, 313–317 (1986)
- [18] N.J. KALTON AND P. SAAB, Ideal properties of regular operators between Banach lattices, *Illinois J.Math.* 29 (1985), 382–400.
- [19] Meyer-Nieberg, P.: Banach lattices, Springer-Verlag, Berlin, Heidelberg, 1991
- [20] Moussa, M., Bouras, K.: About positive weak Dunford–Pettis operators on Banach lattices, J. Math. Anal. Appl., 381, 891–896 (2011)

- [21] Sánchez, J.A.: The positive Schur property in Banach lattices, *Extracta Math.* 7 (2-3), 161-163 (1992)
- [22] Schaefer, H. H.: Banach Lattices and Positive Operators, Springer–Verlag, New York, 1974
- [23] Wickstead, A. W.: Converses for the Dodds-Fremlin and Kalton-Saab theorems, *Math. Proc. Camb. Phil. Soc.* **120**, 175–179 (1996)
- [24] Wnuk, W.: Some characterizations of Banach lattices with the Schur property, *Revista Mat. de la Universidad Complutence de Madrid.*, 2, 217–224 (1989)
- [25] Wnuk, W.: A note on the positive Schur property. Glasgow Math. J. 31, 169–172 (1989)
- [26] Wnuk, W.: Banach Lattices with the Weak Dunford-Pettis Property, Atti Sem. Mat. Fis. Univ. Modena XLII, 227–236 (1994)