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Recall the following result:

Theorem 0.1 (See for instance Theorem 4.34 in

[3]) If W is a relatively weakly compact subset of

a Banach lattice, then every disjoint sequence in

the solid hull of W converges weakly to zero.

This theorem plays an important role in the proofs

of many results (for instance, concerning Dunford-

Pettis operators and the Dunford-Pettis property on

Banach lattices).

0 [3] Aliprantis, C. D., Burkinshaw, O. “Positive Opera-
tors”.
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The objective in this talk is to introduce the notion

of “(1, p)-limited” subset of a Banach space and to

show that:

”If E is a Banach lattice and (xn) ⊂ E is a disjoint

sequence in the solid hull of a (1, p)-limited subset of

E, then (xn) is weakly p-summable in E”

– and then to consider some applications of this result

to operators on Banach lattices.
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1 Notation

For Banach spaces X , Y , we let:

L(X,Y ) be the space of bounded linear opera-

tors and L(X,K) = X∗;

K(X, Y ) be the space of compact linear opera-

tors;

W(X,Y ) be the space of weakly compact linear

operators;

ℓstrongp (X) (1 ≤ p < ∞) be the space of all p-

summable sequences in X , i.e

(xn) ∈ ℓstrongp (X) ⇐⇒ (∥xn∥) ∈ ℓp;

ℓweakp (X) (1 ≤ p < ∞) be the space of all weakly

p-summable sequences in X , i.e.

(xn) ∈ ℓweakp (X) ⇐⇒ (⟨x∗, xn⟩) ∈ ℓp, ∀x∗ ∈ X∗;

ℓup(X) be the closure in ℓweakp (X) of the set of all

finitely non-zero sequences in X ;

ℓweak
∗

p (X∗) (1 ≤ p < ∞) be the space of all

weak∗ p-summable sequences in X , i.e.

(x∗n) ∈ ℓweak
∗

p (X∗) ⇐⇒ (⟨x∗n, x⟩) ∈ ℓp, ∀x ∈ X

(note that ℓweak
∗

p (X∗) = ℓweakp (X∗))
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cweak0 (X) be the vector space of all weakly null

sequences in X ;

Remark 1.1

(1) The elements of ℓup(X) are called the uncon-

ditionally p-summable sequences in X. It is

well-known that (xn) ∈ ℓu1(X) if and only if

(xn) is an unconditionally summable sequence

in X and ℓweak1 (X) = ℓu1(X) if and only if X

does not contain a copy of c0.

(2) All Banach lattices will be assumed to be real

and will be denoted by E,F,G etc.

2 Weakly p-summable sequences in Banach lat-
tices

We assume throughout this section that 1 ≤ p < ∞.

Remark 2.1 Suppose E is a Banach lattice and

(xn) ∈ ℓweakp (E) satisfies xn ≥ 0 for all n. Suppose

yn ∈ E satisfies 0 ≤ yn ≤ xn for all n. One

verifies readily that (yn) ∈ ℓweakp (E) as well.
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In general, (xn) ∈ ℓweakp (E) does not necessarily im-

ply (|xn|) ∈ ℓweakp (E). However, a standard argu-

ment argument yields that:

Proposition 2.2 Suppose (xn) is a disjoint se-

quence in E. Then,

(xn) ∈ ℓweakp (E) ⇐⇒ (|xn|) ∈ ℓweakp (E).

It follows from Proposition 2.2 and x+n ≤ |xn| and
x−n ≤ |xn| for all n, that:

Corollary 2.3 Let E be a Banach lattice and (xn) ⊂
E a disjoint sequence. Then,

(xn) ∈ ℓweakp (E) ⇐⇒ (x+n ), (x
−
n ) ∈ ℓweakp (E).

We recall the notion of “weak p-consistent”:

Definition 2.4 We say a Banach lattice E is weak

p-consistent (for 1 ≤ p < ∞) if it follows from

(xn) ∈ ℓweakp (E) that (|xn|) ∈ ℓweakp (E).

It is known that:

Lemma 2.5 Let 1 ≤ p < ∞. The space C(Ω) is

weak p-consistent and therefore, all AM-spaces

with unit are weak p-consistent.
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Recall the following definition of a p-limited subset

of a Banach space:

Definition 2.6 (refer to [9]) Let 1 ≤ p < ∞.

A subset W of a Banach space X is said to be

p-limited if for each weak∗ p-summable sequence

(x∗n) in X∗ there exists a sequence (λi) ∈ ℓp such

that

|⟨x∗n, x⟩| ≤ λn, ∀x ∈ W,

and for each n ∈ N.

If in the above definition we allow p = ∞ (and then

replace ℓ∞ by c0), then we have the well-known def-

inition of a limited set.

0 [9] Delgado, J.M.; Piñeiro, C. “On p-limited sets”.
J.Math.Anal.Appl.(2014)
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It follows from [9] that every p-limited set is rela-

tively weakly compact and that if 1 ≤ p ≤ q < ∞,

then every p-limited set is q-limited.

However, it is not necessarily true that a p-limited

set is limited (for instance, Bℓ2 is 1-limited in c0, but

not limited).

If X is a Grothendieck space (i.e. weak∗ convergent

sequences in X∗ are weakly convergent) then each

p-limited set is indeed limited.

If, however, 2 ≤ p < q < ∞ and every q-limited

subset of X is p-limited, then X has to be finite

dimensional.

A Banach space X is said to have the Gelfand-

Phillips property (GPP for short) or X is said

to be a Gelfand-Phillips space, if all limited subsets

of X are relatively (norm) compact. This is the case

if and only if every limited weakly null sequence in

X is norm null.

Similarly,

0 [9] Delgado, J.M.; Piñeiro, C. “On p-limited sets”.
J.Math.Anal.Appl.(2014)
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Definition 2.7 Let 1 ≤ p < ∞. A Banach space

X is said to have the p-Gelfand-Phillips prop-

erty (pGPP for short) if every limited weakly p-

summable sequence (xn) in X is norm null. If

X has this property, then we call X a p-Gelfand-

Phillips space.

The Definition 2.6 above (of p-limited set), extends

to:

Definition 2.8 A subset W of a Banach space X

is said to be (p, q)-limited (where 1 ≤ p, q < ∞) if

for each weak∗ p-summable sequence (x∗n) in X∗

there exists a sequence (λi) ∈ ℓq such that

|⟨x∗n, x⟩| ≤ λn, ∀x ∈ W,

and for each n ∈ N.

It is immediate that the (p, p)-limited sets are the p-

limited sets. Clearly, if 1 ≤ r ≤ p, then each (p, q)-

limited set is (r, q)-limited, i.e. each (p, q)-limited set

is (1, q)-limited. On the other hand, if 1 ≤ r ≤ q,

then each (p, r)-limited set is (p, q)-limited.
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Again, we may include p = ∞ or/and q = ∞ in Defi-

nition 2.8, if ℓ∞ is replaced by c0. Thus, a set A ⊂ X

is (p,∞)-limited if for each weak∗ p-summable se-

quence (x∗n) in X∗ there exists (λn) ∈ c0 such that

sup
x∈A

|⟨x∗n, x⟩| ≤ λn, ∀n ∈ N.

Let A be a weakly compact subset of X . For each

(x∗n) ∈ ℓweak1 (X∗), the set {(⟨x∗n, x⟩)n : x ∈ A}
is weakly compact in ℓ1 as image of A under the

bounded linear operator

X → ℓ1 : x 7→ (⟨x∗n, x⟩),

and so it is compact in ℓ1. Thus it is contained in the

closed convex hull of a norm null sequence ((λni)i)n
in ℓ1. It then follows that

sup
x∈A

|⟨x∗n, x⟩| ≤ ∥(λni)i∥ℓ1 for all n,

where ∥(λni)i∥ℓ1 → 0 as n → ∞. This shows that:

Remark 2.9 All weakly compact sets in a Ba-

nach space X are (1,∞)-limited.
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Recall that:

Definition 2.10 (Type and cotype) A Banach space

has type p (1 ≤ p ≤ 2) if there exists a constant

C ≥ 0 such that, however we choose finitely many

x1, . . . , xn from X,(∫ 1

0

∥
n∑

k=1

rk(t)xk∥2 dt

)1/2

≤ C(

n∑
k=1

∥xk∥p)1/p

and it has cotype q (2 ≤ q ≤ ∞) if there is a

constant K ≥ 0 such that no matter how we select

finitely many x1, . . . , xn from X,

(

n∑
k=1

∥xk∥q)1/q ≤ K

(∫ 1

0

∥
n∑

k=1

rk(t)xk∥2 dt

)1/2

,

where rn : [0, 1] → R denotes the Rademacher

function rn(t) := sign(sin 2nπt) and where q =

∞ is covered by replacing the left hand side by

maxk≤n ∥xk∥.

Next we discuss some examples of Banach spaces in

which all bounded sets are (1, p)-limited for some p:
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Example 2.11

1. Clearly, BX in X is (1, p)-limited iff

(†) ℓweak1 (E∗) ⊆ ℓstrongp (E∗).

If a Banach space X has type 1 < p′ ≤ 2,

then X∗ has cotype p and (†) holds (see [11],

Theorem 11.17). Thus, all bounded sets in

a Banach space X with type 1 < p′ ≤ 2 are

(1, p)-limited. In case of a Banach lattice E

with finite cotype, then E has type p′ if and

only if E∗ has cotype p and this is so, if and

only if ℓweak1 (E∗) ⊆ ℓstrongp (E∗).

2. The assumption that X has non-trivial type

in the previous example is not necessary. For

instance, the space ℓ1 has cotype 2, which im-

plies that the inclusion ℓweak1 (ℓ1) ⊆ ℓstrong2 (ℓ1)

holds; i.e. ℓweak1 (c∗0) ⊆ ℓstrong2 (c∗0). Thus the

bounded sets in c0 are (1, 2)-limited. Recall

that c0 does not have non-trivial type.

Similarly, since C(K)∗ = ℓ1 for every count-

able compact metric space K, it follows that

the bounded sets in C(K) are (1, 2) limited.

0 [11] Diestel, J., Jarchow, H., Tonge, A.: Absolutely
summing operators
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3. Recall that a Banach space X is said to have

Orlicz property, when unconditionally conver-

gent series in X are strongly 2-summable. If

X does not contain a copy of c0, then it sat-

isfies the Orlicz property if and only if

ℓweak1 (X) ⊆ ℓstrong2 (X).

Therefore, if X is a Banach space such that

its dual space X∗ does not contain a copy of

c0 and satisfies the Orlicz property, then all

bounded sets in X are (1, 2)-limited.

The previous example where X = c0 is a spe-

cial case.

Let K = [0, 1]. The space C(K) fails to have

non-trivial type, whereas its dual space M(K)

(of finite regular Borel measures on K) has

cotype 2. Therefore, M(K) satisfies the Or-

licz property, i.e. the bounded sets in C(K)

are (1, 2) limited.

The proof of the following theorem is based on the

proof of Theorem 0.1 (Theorem 4.34 in [3]):

0 [3] Aliprantis, C. D., Burkinshaw, O. “Positive Opera-
tors”.
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Theorem 2.12 Let 1 ≤ p ≤ ∞. Suppose (xn) ⊂
E is a disjoint sequence in the solid hull of a

(1, p)-limited set W . Then, (xn) ∈ ℓweakp (E).

Proof Let (xn) be the sequence in the statement

of the theorem. Pick a sequence (yn) ⊆ W satisfying

|xn| ≤ |yn| for all n. Fix 0 ≤ x∗ ∈ E∗.

Considering each xn as an element of E∗∗, denote by

Pn the order projection of E∗ onto the carrier Cxn of

xn. Using that xn⊥xm (n ̸= m), and so (by Nakano)

Pnx
∗⊥Pmx

∗ holds for n ̸= m, it follows for the given

positive functional x∗ that

|x∗(xn)| ≤ x∗(|xn|) = [Pnx
∗](|xn|)

≤ [Pnx
∗](|yn|)

= max{y∗(yn) : |y∗| ≤ Pnx
∗},

for each n ∈ N. Thus, for each n, there exists some

y∗n ∈ E∗ with |y∗n| ≤ Pnx
∗ and

|x∗(xn)| ≤ y∗n(yn). (∗)

For each x ∈ E and each k ∈ N, we have
k∑

i=1

|y∗i (x)| ≤

[
k∑

i=1

Pix
∗

]
(|x|) ≤ x∗(|x|),
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and so (y∗i ) ∈ ℓweak
∗

1 (E∗). SinceW is a (1, p)-limited

set, it follows that there exists a sequence (λn) ∈ ℓp
so that

|x∗(xn)| ≤ y∗n(yn) ≤ λn, ∀n ∈ N.

This shows that (x∗(xn)) ∈ ℓp for all 0 ≤ x∗ ∈ E∗,

from which it follows that for all x∗ ∈ E∗ and for all

(αi) ∈ ℓp′, we have

∞∑
n=1

|αnx
∗(xn)| =

∞∑
n=1

|αn||x∗(xn)| ≤

∞∑
n=1

|αn||(x∗)+(xn)| +
∞∑
n=1

|αn||(x∗)−(xn)| < ∞,

thereby showing that (xi) ∈ ℓweakp (E). �

Theorem 0.1 follows from theorem2.12, since rela-

tively weakly compact sets are (1,∞)-limited.

3 Applications to classes of operators on Banach
lattices

We recall the following definitions from [6]:
0 [6] Castillo, J.M.F., Sánchez, F. “Dunford-Pettis-like

properties of continuous vector function spaces”, Revista
Mat.Complut.Madrid 6(1)(1993)
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Definition 3.1

(1.) A sequence (xn) in a Banach space X is called

weakly p-convergent if there exists x ∈ X such

that (xn − x) ∈ ℓweakp (X). A subset W of

a Banach space X is called relatively weakly

p-compact if each sequence (xn) ⊆ W has a

weakly p-convergent subsequence. If a rela-

tively weakly p-compact set contains the “lim-

its” of all its weakly p-convergent sequences,

then it is called weakly p-compact.

(2.) An operator T : X → Y is called p-convergent

if ∥Txn∥ → 0 for all (xn) ∈ ℓweakp (X).

We recall the well-known Dunford-Pettis property

and similar properties that were studied widely in

the literature in recent years:

Definition 3.2 A Banach space X is said to have

(1.) DPP (Dunford-Pettis property), if for all Ba-

nach spaces Y each weakly compact operator

T : X → Y maps weakly compact sets to

norm-compact sets (i.e. T is Dunford-Pettis

or completely continuous) or, equivalently, if

x∗n → 0 weakly in X∗ and xn → 0 weakly in

X imply x∗n(xn) → 0;
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(2.) DP ∗P , if all weakly compact subsets of X are

limited (equivalently, if each bounded linear

operator T : X → c0 is completely continuous

or, equivalently, if x∗n → 0 weak∗ in X∗ and

xn → 0 weakly in X, then x∗n(xn) → 0);

(3.) DPPp (Dunford-Pettis property of order p),

if each weakly compact operator

T : X → Y

is p-convergent or, equivalently, if x∗n → 0

weakly in X∗ and (xn) ∈ ℓweakp (X) imply

x∗n(xn) → 0.

(4.) DP ∗Pp (DP ∗ of order p), if all weakly

p-compact sets in X are limited (equivalently,

if each bounded linear operator T : X → c0 is

p-convergent or, equivalently, if x∗n → 0 weak∗

in X∗ and (xn) ∈ ℓweakp (X) imply x∗n(xn) → 0)

In the light of the above discussion, we have:

Definition 3.3 Let p ≤ q. We say a Banach

space X has the DP ∗P(p,q) if each weakly q-compact

subset of X is (p, q)-limited.
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Refer to Example 2.11 above for examples of Banach

spaces with DP ∗P(1,p) (for some values of p).

The well-known Kalton-Saab Theorem states:

Theorem 3.4 Let E,F be Banach lattices such

that F has order continuous norm. If a positive

operator S : E → F is dominated by a Dunford-

Pettis operator, then S itself is Dunford-Pettis.

Using our Theorem 2.12, the proof of Theorem 3.4

(as is discussed in [3]) can be adjusted to show that:

Theorem 3.5 Let E, F be Banach lattices such

that E has DP ∗P(1,p) (with 1 ≤ p < ∞) and F

has order continuous norm. If T : E → F is a

positive p-convergent operator, then each positive

operator S : E → F satisfying 0 ≤ S ≤ T is

p-convergent itself.

Aliprantis and Burkinshaw introduced the class of

weak Dunford-Pettis operators. Recall that an oper-

ator T : X → Y is weak Dunford-Pettis if it follows

from xn → 0 weakly in X and y∗n → 0 weakly in Y ∗,

that limn⟨y∗n, Txn⟩ → 0. Again, due to N.J. Kalton

and P. Saab, we have
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Theorem 3.6 If a positive operator S is domi-

nated by a weak Dunford-Pettis operator, then S

is a weak Dunford-Pettis operator.

In our context we consider the weak∗ p-convergent

operators:

Definition 3.7 An operator T from a Banach space

X into a Banach space Y is called weak∗ p-convergent

if (y∗n(Txn)) converges to 0 for every (xn) ∈ ℓweakp (X)

and every (y∗n) ∈ cweak
∗

0 (Y ∗).

By a result in the paper [8], the σ-Dedekind com-

pleteness of a Banach lattice F assures that that both

the sequences of positive parts and absolute values of

a disjoint weak∗ null sequence in F ∗ are weak∗ null

themselves. Using this result, one proves that

Lemma 3.8 Let E, F be Banach lattices such

that F is σ-Dedekind complete and let T : E → F

be a positive weak∗ p-convergent operator. Then

for every weakly p-summable sequence (xn) in E+

and every weak∗ null sequence (fn) in F ∗, we have

|fn|(Txn) → 0 as n → ∞.

0 [8] CHEN,J.X.; CHEN, Z.L. & JI, G.X. “Almost limited
sets in Banach lattices”, J.Math.Anal.Appl. 412 (2014)
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Notice that by the definition of weak∗ p-convergent

operator, it follows that for the sequences (xn) and

(fn) in the statement of Lemma 3.8, we already have

fn(Txn) → 0 as n → ∞. The important conse-

quence of the σ-Dedekind completeness of F is that

we have the stronger property |fn|(Txn) → 0 as

n → ∞.

Remark 3.9 For 1 < p < ∞, T is weak∗ p-

convergent if and only if it carries relatively weakly

p-compact subsets of X to limited subsets of Y .

Based on the discussion by Kalton and Saab in [18]

(to prove Theorem 3.6) and Lemma 3.8 we verify

that:

Theorem 3.10 Let T : E → F be a positive

weak∗ p-convergent operator (for 1 ≤ p < ∞),

where E,F are Banach lattices such that E is

weak p-consistent and F is σ-Dedekind complete.

If 0 ≤ S ≤ T , then S is weak∗ p-convergent.

0 [18] KALTON, N.J. & SAAB,P. “Ideal properties of reg-
ular operators between Banach lattices”, Illinois J.Math.
29 (1985)
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Proof Let (xn) ∈ ℓweakp (E) and let (fn) ∈ cweak
∗

0 (F ∗).

By assumption, (|xn|) ∈ ℓweakp (E) and T : E → F

is weak∗ p-convergent. So, by Lemma 3.8, we have

|fn|(T |xn|) → 0 as n → ∞.

This implies that f+
n (T |xn|) → 0 and f−

n (T |xn|) →
0 as n → ∞. Therefore,

|f+
n (Sxn)| ≤ f+

n (|Sxn|) ≤ f+
n (S|xn|) ≤ f+

n (T |xn|) → 0.

Similarly, |f−
n (Sxn)| → 0 as n → ∞. This proves

that fn(Sxn) → 0 as n → ∞. �

Corollary 3.11 Let T : E → F be a positive

weak∗ p-convergent operator (for 1 ≤ p < ∞),

where E,F are Banach lattices such that E is an

AM-space with unit and F is σ-Dedekind com-

plete. If 0 ≤ S ≤ T , then S is weak∗ p-convergent.

By using Theorem 2.12 and following similar argu-

ments to the proof of a theorem in [7] (again, based

on results in [3]), we have:

0 [7] CHEN,J.X., CHEN Z.L. & JI, G.X. “Domination
by positive weak* Dunford-Pettis operators on Banach lat-
tices”, Bull. Aust. Math. Soc. 90 (2014)
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Theorem 3.12 Let T : E → F be a positive

weak∗ p-convergent operator, where E, F are Ba-

nach lattices such that E has DP ∗P(1,p) (with 1 ≤
p < ∞) and F is σ-Dedekind complete. Given

a weak p-summable sequence (zn) in E, let W

be the set of elements in the sequence (zn). If

fn → 0 weak∗ in F ∗, then for each ϵ > 0 there

exists N ∈ N and some w ∈ E+ lying in the ideal

generated by W such that

|fn|(T (|x| − w)+) < ϵ,

for all n > N and all x ∈ W .

Application of Theorem 3.12 then yields the follow-

ing extension of Theorem 3.10:

Theorem 3.13 Let E, F be Banach lattices such

that E has DP ∗P(1,p) (with 1 ≤ p < ∞) and F is

σ-Dedekind complete. If T : E → F is a positive

weak∗ p-convergent operator, then each positive

operator S : E → F satisfying 0 ≤ S ≤ T is

weak∗ p-convergent itself.
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The following proposition provides a connection be-

tween the weak∗ p-convergent and p-convergent op-

erators:

Proposition 3.14 Let X, Y be Banach spaces

and T ∈ L(X,Y ). The following are equivalent:

(a) T is weak∗ p-convergent.

(b) ST is p-convergent for each S ∈ L(Y, Z) and
any separable Banach space Z.

(c) ST is p-convergent for each S ∈ L(Y, c0).

It follows from Proposition 3.14 that

Corollary 3.15 If X, Y are Banach spaces, with

Y separable, then each weak∗ p-convergent opera-

tor T : X → Y is p-convergent.

Corollary 3.16 A Banach space X has DP ∗Pp

if and only if the identity operator idX is weak∗

p-convergent. If X is separable, then by Corollary

3.15, this is equivalent to idX being p-convergent.
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4 The Schur and positive Schur properties of or-
der p

If the lattice operations in a Banach lattice E are

weakly sequentially continuous, then in particular

|xn| → 0 weakly for all (xn) ∈ ℓweakp (E). It is

well-known that the lattice operations in AM -spaces

are weakly sequentially continuous. However, in the

spaces Lp[0, 1] (where 1 ≤ p < ∞) the lattice oper-

ations fail to be weakly sequentially continuous (see

[19]). It is also proved in [19] that in every atomic

Banach lattice with order continuous norm, the lat-

tice operations are weakly sequentially continuous.

Since we need the lattice operations to satisfy a seem-

ingly weaker property than being weakly sequentially

continuous, we introduce the notion “weakly sequen-

tially p-continuous” as follows:

Definition 4.1 The lattice operations in a Ba-

nach lattice E are said to be weakly sequentially p-

continuous if the sequence (|xn|) converges weakly
to 0 for every weakly p-summable sequence (xn).

0 [19] Meyer-Nieberg, P. “Banach lattices”, Springer-
Verlag, Berlin, Heidelberg, 1991
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Definition 4.2 Let 1 ≤ p < ∞. A Banach lat-

tice E is said to have the positive Schur prop-

erty of order p (briefly, E has the SP+
p ) if each

sequence (xn) ∈ ℓweakp (E) with positive terms, is

norm convergent to 0.

If we agree to say that E has the SP+
∞ if each se-

quence (xn) ∈ cweak0 (E) with positive terms, is norm

convergent to 0, then we may assume 1 ≤ p ≤ ∞ in

Definition 4.2; the SP+
∞, however, will then coincide

with the well known positive Schur property.

Lemma 4.3 If in a Banach lattice E there exists

a sequence (xn) ∈ ℓweakp (E) with positive terms,

which is not norm convergent to 0, then there ex-

ists a sequence (zk) ∈ ℓweakp (E) such that zn ≥ 0

for all n, zn∧zm = 0 for all m ̸= n and ∥zn∥ 9 0.

It therefore follows that:

Proposition 4.4 A Banach lattice E has the pos-

itive Schur property of order p if and only if each

disjoint sequence (xn) ∈ ℓweakp (E) with positive

terms, is norm convergent to 0.
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Definition 4.5 A Banach space X is said to have

the Schur property of order p (briefly, X has the

SPp) if every weakly p-summable sequence is norm

convergent to 0.

It follows from the literature (cf. for instance [4],

Proposition 2.1) that every weakly p-summable se-

quence in a Banach space X is norm convergent to

0 (for 1 ≤ p < ∞) if and only if ℓweakp (X) = ℓup(X).

As is mentioned in Remark 1.1, it is a well-known

fact that ℓweak1 (X) = ℓu1(X) if and only if X con-

tains no copy of c0. Thus, we immediately conclude

that:

Proposition 4.6 Let X be a Banach space which

contains no copy of c0. Then X has the SP1.

Corollary 4.7 In each Banach lattice E which

contains no copy of c0, the lattice operations are

weakly sequentially 1-continuous.

0 [4] Aywa, S., Fourie, J.H. “On convergence of sections
of sequences in Banach spaces”. Rend.Circ. Mat.Palermo
II (XLIX), (2000)
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In general, the weakly sequential continuity of the

lattice operations in a Banach lattice is not implied

by the weakly sequentially p-continuity of the same,

as is illustrated by the following result:

Proposition 4.8 The space L1[0, 1] has SP1. Thus,

the lattice operations in L1[0, 1] are weakly sequen-

tially 1-continuous, but they are not weakly se-

quentially continuous.

Proof L1[0, 1] does not contain a copy of c0;

i.e. by Proposition 4.6, it has SP1. Thus, the lat-

tice operations in L1[0, 1] are weakly sequentially 1-

continuous. It is however well-known that the lattice

operations inL1[0, 1] are not weakly sequentially con-

tinuous. �

Actually, more is known:
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Example 4.9

(i) Let 1 ≤ p < ∞. Recalling that every weak

ℓ1-sequence in an Lp-space is a strong ℓr se-

quence where r = max{p, 2}, it follows that

any Lp-space has SP1. Thus, the lattice op-

erations in Lp[0, 1] are weakly sequentially 1-

continuous, but they are not weakly sequen-

tially continuous.

(ii) All Banach spaces with finite cotype have SP1.

(iii) A Banach space X has the SPp (for 1 < p <

∞) iff each bounded linear operator from ℓp
′

to X is compact (and X has the SP1 if each

bounded linear operator from c0 to X is com-

pact). This provides us with an abundance

of examples of Banach spaces which have the

SPp for some 1 ≤ p < ∞, but which do not

have the Schur property, such as all closed

subspaces of ℓq (for all 1 < q < p′) where

1 < p < ∞. Also, all the ℓp-spaces have the

SP1, whereas none of the ℓp-spaces (for p > 1)

have the Schur property.

On the other hand, we have the following example of

a space with the DPP which does not have SP2:
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Example 4.10 Let (Ω,Σ, µ) be some probability

space. The space L1(µ) has the DPP (by the

Dunford-Pettis Theorem) and thus also has the

DPPp for all 1 ≤ p ≤ ∞. By the above discus-

sion, every weakly 2-summable sequence in L1(µ)

would be a norm null sequence if and only if each

bounded linear operator from the sequence space

ℓ2 to L1(µ) were compact. This is impossible,

since for instance we know that ℓ2 embeds isomet-

rically in L1(µ). Thus, there has to be a weakly 2-

summable sequence which is not norm null, show-

ing that L1(µ) does not have the SP2.

For separable Banach spaces we have:

Theorem 4.11 A separable Banach space X with

the DP ∗Pp has the Schur property of order p.

More examples of Lp-spaces without the Schur prop-

erty of order p for some choices of p follow from The-

orem 6.4.19 in [2]:

(i) Lr does not have SPp for all 2 ≤ p ≤ r′.

(ii) Let 2 < r < ∞, then Lr does not have SPp for

p = 2 or p = r′.
0 [2] Albiac, F., Kalton, N. J.: “Topics in Banach Space

Theory”.
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It is clear that if a Banach lattice E has the SPp,

then the lattice operations are weakly sequentially

p-continuous and E has the SP+
p . On the other

hand, if E is a weak p-consistent Banach lattice and

E has the SP+
p , then for each (xn) ∈ ℓweakp (E) we

have (|xn|) ∈ ℓweakp (E) and so ∥xn∥ = ∥|xn|∥ → 0

as n → ∞. Thus we have:

Proposition 4.12 Let E be a weak p-consistent

Banach lattice. Then the following are equivalent:

(i) E has the SPp.

(ii) E has the SP+
p .
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5 More on p-convergent operators on Banach lat-
tices

Theorem 5.1 Let E and F be Banach lattices.

Suppose the p-convergent operators from E to F

satisfy the following domination property: “If S,

T : E → F , with 0 ≤ S ≤ T such that T is

p-convergent, then likewise S is p-convergent”.

Then at least one of the following conditions has

to hold:

(a) F has order continuous norm.

(b) The lattice operations in E are weakly sequen-

tially p-continuous.

The following result is a partial converse of Theorem

5.1, assuming a stronger property than in Theorem

5.1(b):

Proposition 5.2 Let E be a weak p-consistent

Banach lattice and F any Banach lattice. If S, T :

E → F are positive operators satisfying 0 ≤ S ≤
T and T is p-convergent, then likewise S is p-

convergent.
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When the target space is an AL-space, then we have

the following easy characterisation of a p-convergent

operator:

Proposition 5.3 Let E be a Banach lattice and

let F be an AL-space. Then the following are

equivalent:

(1) T is p-convergent.

(2) |Txn| → 0 as n → ∞ weakly in F for all

(xi) ∈ ℓweakp (E).

Proof (1) =⇒ (2) is clear from ∥ |Txn| ∥ =

∥Txn∥ → 0 as n → ∞.

To prove (2) =⇒ (1), observe that the linear func-

tional e ∈ F ∗ defined by

e(y) := ∥y+∥ − ∥y−∥

on the AL-space F satisfies e(|y|) = ∥y∥ for all y ∈
F (see [3], page 200). Thus,

∥Txn∥ = e(|Txn|) → 0

for all (xi) ∈ ℓweakp (E); i.e. T is a p-convergent op-

erator. �
0 [3] Aliprantis, C. D., Burkinshaw, O. “Positive Opera-

tors”.
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From the previous result we see that:

Proposition 5.4 Let E be a Banach lattice and

let F be an AL-space in which the lattice oper-

ations are weakly p-sequentially continuous, then

each positive operator T : E → F is p-convergent.

Proof Being positive, T is bounded. Thus, if

(xi) ∈ ℓweakp (E) is given, then (Txi) ∈ ℓweakp (F ).

By assumption, |Txn| → 0 weakly. Therefore, by

Proposition 5.3, the operator T is p-convergent. �

Remark 5.5 Let E be a Banach lattice. From

Proposition 4.8 and Proposition 5.4 it follows that

each positive operator T : E → L1[0, 1] is 1-

convergent.

Theorem 5.6 Let E be a Banach lattice. Then,

the following assertions are equivalent:

(1) Each positive operator from E into ℓ∞ is p-

convergent.

(2) E has the SPp.
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limited sets. J.Math.Anal.Appl. 10 (2014),

713–718.

[10] Diestel, J.: Sequences and Series in Banach

spaces. Graduate Texts in Mathematics 922,

Springer-Verlag, New York, 1984

[11] Diestel, J., Jarchow, H., Tonge, A.: Abso-

lutely summing operators, Cambrigde Univer-

sity Press, Cambridge, 1995

[12] Dodds, P. G., Fremlin, D. H.: Compact oper-

ators on Banach lattices, Israel J. Math., 34,

287–320 (1979)

[13] Drewnowski, L.: On Banach spaces with the

Gelfand-Phillips property. Math.Z. 193, 405–

411 (1986)

34



[14] Fourie, J.H., Swart, J.: Banach ideals of p-

compact operators, Manuscripta Math. 26,

349–362 (1979)

[15] Fourie, J.H., Zeekoei, E. D.: DP ∗-properties of

order p on Banach spaces, Quaestiones Math.

37(3), 349–358 (2014)

[16] Fourie, J.H., Zeekoei, E. D.: On weak-star p-

convergent operators. Quaestiones Math. (Ac-

cepted).

[17] Groenewegen, G., Meyer-Nieberg, P.: An el-

ementary and unified approach to disjoint se-

quence theorems, Indag. Math. 48, 313–317

(1986)

[18] N.J. KALTON AND P. SAAB, Ideal properties

of regular operators between Banach lattices,

Illinois J.Math. 29 (1985), 382–400.

[19] Meyer-Nieberg, P.: Banach lattices, Springer-

Verlag, Berlin, Heidelberg, 1991

[20] Moussa, M., Bouras, K.: About positive weak

Dunford–Pettis operators on Banach lattices, J.

Math. Anal. Appl., 381, 891–896 (2011)

35



[21] Sánchez, J.A.: The positive Schur property in

Banach lattices, Extracta Math. 7 (2-3), 161-

163 (1992)

[22] Schaefer, H. H.: Banach Lattices and Positive

Operators, Springer–Verlag, New York, 1974

[23] Wickstead, A. W.: Converses for the Dodds-

Fremlin and Kalton-Saab theorems, Math.

Proc. Camb. Phil. Soc. 120, 175–179 (1996)

[24] Wnuk, W.: Some characterizations of Banach

lattices with the Schur property, Revista Mat.

de la Universidad Complutence de Madrid.,

2, 217–224 (1989)

[25] Wnuk, W.: A note on the positive Schur prop-

erty. Glasgow Math. J. 31, 169–172 (1989)

[26] Wnuk, W.: Banach Lattices with the Weak

Dunford-Pettis Property, Atti Sem. Mat. Fis.

Univ. Modena XLII, 227–236 (1994)

36


