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Comments:

I will present work in progress based on joint work in progress with Alfredo
Gonzalez from Mar del Plata National University.
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Abstract:

We extend the well known martingale convergence theorem by
replacing the martingale process by a set of trajectories. No apriori
given expectation or topology is assumed in such a set (which has no
cardinality restrictions). After defining the notion of a property
holding a.e. and of a full set one can define a native integral operator.

Natural and general hypothesis on the trajectory set lead to a
convergence theorem incorporating an almost everywhere notion. The
results have natural interpretations in terms of portfolios and
gambling in a worst case point of view as contrasted to an
expectation point of view.
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Summary:

We briefly motivate why one may consider weakening the reliance on
probability assumptions.

We emphasize the role of a minmax operator when probabilities are
not assumed.

After pointing out a few simple facts we define a trajectory based
martingale (non probabilistic martingale in discrete time).

We pursue the analogy with standard martingales and prove an a.e.
convergence result that also naturally leads to the development of an
integration theory.

Mention some work to be completed.
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Robust Market Modeling

Stochastic Market Models

X = {Xt} is a discrete time stochastic process on (Ω,P,F = {Ft}), the

portfolio value is V φ
t = φtXt + Bt with φt a predictable process and Bt a

riskless bank account that pays 0 interest rates. If no money enters or
leaves the portfolio holdings (φt ,Bt) during the life of the portfolio (i.e.
self-financing) we have a process transform:

V φ
t = V0 +

∑
t

φt∆tX (1)

where ∆tX ≡ Xt+1 − Xt .
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Robust Market Modeling

Stochastic Arbitrage

M = (Ω,P,F = {Ft},X ,B) (always discrete time) is the market model.
There is arbitrage (a riskless profit) in M if there exists φ and T so that

V φ
T (w) ≥ V φ

0 (w) a.e. and

V φ
T (w) > V φ

0 (w) on A ∈ FT and P(A) > 0.

A main result (FTAP= Fundamental Theorem of Asset Pricing) says that
M is arbitrage free iff X (discounted) is a martingale relative to Q ∼ P.
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Robust Market Modeling

Why does a martingale eliminates riskless profits?

Martingales need an expectation for their definition but the notion of
arbitrage can be expressed in a probability free way if we replace “a.e”
above for “everywhere”.

So, we ask: what is the structure of the trajectory set of a martingale
process that can guarantee markets without riskless profits? You will
see that one can develop a theory (work in progress) based on
trajectories where probabilities are replaced for uncertainty (just
meaning that one of many alternatives may occur).

The basic property is that of a martingale difference
E(∆tX |Ft) = 0 which requires that:
if Q(∆tX > 0|Ft) > 0 then Q(∆tX ) < 0|Ft) > 0 as well. Or if
Q(∆tX > 0|Ft) = 0 then Q(∆tX < 0|Ft) = 0 as well.
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Robust Market Modeling

Trajectory Sets (finite time portfolios)

A trajectory set S is a set of sequences S = {St}t≥0. A portfolio set
H is a set of sequences H = {Ht}, Ht : S → R
Ht(S) = Ht(S0, . . . ,St). For the time being we assume ∃
NH = NH(S) and Hi (S) = HNH

(S) ∀ i ≥ NH (one can take NH

constant for simplicity).

For Z : S → R define

V (Z ) ≡ inf
H∈H

sup
S∈S

[Z (S)−
NH−1∑
i=0

Hi (S) ∆iS ]. (2)

A trajectory market M≡ S ×H is (globally) 0-neutral if

V (0) = 0. (3)
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Robust Market Modeling
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Figure : Comparison between the hedging values for X = V (s0,Z ,M) + 0.01 and
X = V (s0,Z ,M)− 0.03
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Robust Market Modeling

Trajectories from Martingales and Minmax

Trajectories from Martingales: let S = {{St} : ∃ w St = Xt(w)},
H = {{Ht} : Ht(S) = φt(w), φ ∈ Ft}

Consider NH constant (or, more generally, a stopping time), because
[−
∑NH−1

i=0 Hi (S) ∆iS ] ≤ supS∈S [−
∑NH−1

i=0 Hi (S) ∆iS ] and

0 = E([−
∑NH−1

i=0 Hi (S) ∆iS ] and 0 ∈ H.

V (0) ≡ inf
H∈H

sup
S∈S

[−
NH−1∑
i=0

Hi (S) ∆iS ] = 0. (4)
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Robust Market Modeling

Conditional Sets of Trajectories

For S ∈ S and j ≥ 0 define

S(S ,k) = {Ŝ ∈ S : Ŝj = Sj , 0 ≤ j ≤ k}. (5)
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Robust Market Modeling
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Figure : A fast market

Alfredo Gonzalez and Sebastian Ferrando Trajectorial Martingales, Null Sets, Convergence and IntegrationJuly 18, 2017 12 / 26



Robust Market Modeling

Conditional Up Down Property

S is said to satisfy the conditional up down property if for S and j fixed

sup
Ŝ∈S(S,j)

(Ŝj+1 − Sj) > 0, and inf
Ŝ∈S(S,j)

(Ŝj+1 − Sj) < 0, (6)

or:

sup
Ŝ∈S(S,j)

(Ŝj+1 − Sj) = inf
Ŝ∈S(S,j)

(Ŝj+1 − Sj) = 0, (7)

for any j ≥ 0 and any S ∈ S.

Define also the (local at (S , t)) 0-neutral property

sup
S ′∈S(S,t)

(S ′t+1 − St) ≥ 0 and inf
S ′∈S(S,t)

(S ′t+1 − St) ≤ 0 (8)
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Robust Market Modeling

0-Neutrality a Generalization of the Martingale Property

A trajectory set S satisfying the local up-down property at every
(S , t) is our notion of trajectory based martingale. A more general
trajectory set S is when the local 0-neutral property is satisfied.

A locally 0-neutral trajectory set defines naturally a notion of
integration with an associated a.e. notion, we will argue that
limn→∞ Sn converges a.e. More generally, it follows that
limn→∞

∑n
i=0Hi (S)(Si+1 − Si ) converges a.e.
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Robust Market Modeling

Key Property

The following operator generalizes V to account for unbounded time.

Definition

W (Z ) = W (Z ,M) = inf
H∈H

[
sup
S∈S

(
Z (S)− lim inf

n→∞

n−1∑
i=0

Hi (S) ∆iS

)]
. (9)

Define ||Z || ≡W (|Z |) and W (Z ) = −W (−Z ).

If W (0) = 0 then ||1S || = 1 (this will imply that the set of
convergence of a trajectorial martingale is a full set.)

How can we guarantee W (0) = 0? We answer this question at the
end of the talk.
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Robust Market Modeling

Integration Theory Associated to S and W

Can we think the minmax operator W (Z ) as an integral over an
appropriate domain?

Daniell’s approach to integration (that, we recall, yields the usual
Lebesgue’s integration) requires: E , a vector lattice of functions and I
a linear and order preserving functional on I that satisfies hn(x)↘ 0
then I (hn)↘ 0 for hn ∈ E (continuity at 0). Daniell’s construction
then extends by continuity from E to a space L1 and the usual,
Lebesgue, properties of the integral are then obtained.

We will take I = W |E and E the set of “attainable” functions:

E ≡ {Z : S → R : ∃H Z (S) = V Z +
n−1∑
i=0

Hi (S)∆iS for constant n},

(10)
here H = {Hi}.
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Robust Market Modeling

Integration Theory Associated to S and W

E ,as above, is a vector space over R and if W (0) = 0 we have
W (Z ) = W (Z ) = V Z and so W is linear and monotone on E but
this space is not a lattice.

In such setting, Leinert (1980) defines an outer functional I , a
functional version of Caratheodory outer measure and obtains a
weaker theory of integration that generalizes Daniell’s construction.
Some limit theorems being valid (Beppo-Levi and monotone
convergence) but others do not hold with the same generality. The
integral is not classical, i.e. it is not necessarily associated to a
σ-algebra but it becomes so if some (weak) lattice type properties are
in effect.

We have to modify Leinert’s approach somehow, the 0-neutral
hypothesis on S (here taking the form W (0) = 0) is used to establish
a needed continuity property of I .
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Robust Market Modeling

Integration Theory Associated to S and W

In essence W (·) is extended by continuity from its natural domain
where it is linear to limits of such attainable functions (i.e. elements
of E) the final result is: such an outer functional is a super-replication
functional that upperbounds upcrossings. This shows that the set of
infinite upcrosses is a null set and so proving the convergence result.

Note: the use of super-replication ideas to construct a measure
appears in work of Vovk.
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Robust Market Modeling

Integration Theory Associated to S and W

Set P = {f : S → [0,∞]}
Result: || · || = W (·) is countable subadditive on P.

Definition

For g : S → [−∞,∞]: A function g is a null function if ‖g‖ = 0, a subset
E ⊂ S is a null set if ‖1E‖ = 0. A set E is full if ‖1E‖ = 1. A property
holds a.e. if it holds in the complement of a null set (actually this is to
keep with tradition but here one also needs to check that such
complement is full).

1) ||g || = 0 ⇐⇒ g = 0 a.e. 2) Countable unions of null sets are null
sets 3) f = g a.e. =⇒ ||f || = ||g ||.
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holds a.e. if it holds in the complement of a null set (actually this is to
keep with tradition but here one also needs to check that such
complement is full).

1) ||g || = 0 ⇐⇒ g = 0 a.e. 2) Countable unions of null sets are null
sets 3) f = g a.e. =⇒ ||f || = ||g ||.
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Robust Market Modeling

Integration Theory Associated to S and W

One can show that I = W |E is bounded on E . One obtains an
integral by continuity extension.

Let E ′ ≡ {f ∈ E : ||f || <∞} and let L1 be its norm closure (it ends
up being a complete space).

Let
∫
f , f ∈ L1 , be the continuous extension, from E ′ to L1, of I .

I will not show details of the construction but mention that there are
two such related integrals that differ on hypothesis on H and one of
them satisfying only a weak form of the monotone convergence
theorem. Both lead to complete L1 spaces.
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Robust Market Modeling

Theorem:
lim
n→∞

Sn converges a.e. on S, (11)

For simplicity take Si ≥ 0, define Ak
n ≡ {S ∈ S : Un(S) ≥ k} (Un are

upcrossings over [a, b]), Ak ≡ ∪n≥1Ak
n and A ≡ ∩k≥1Ak . By the

upcrossing inequality:

1A(S) ≤ 1Ak (S) ≤ a

k(b − a)
+ lim inf

n→∞

n−1∑
i=0

1

k(b − a)
Di (S) ∆iS , ∀S ∈ S.

(12)
Since a

k(b−a) +
∑n−1

i=0
1

k(b−a)Di (S)∆iS ≥ 0, ∀S ∈ S, by definition of

|| · ||, we have

0 ≤ ||1A|| ≤
a

k(b − a)
,

and so ||1A|| = 0.
It then follows that ||1∪i{U∞,ai ,bi

=∞}|| = 0 where [ai , bi ] is an arbitrary
countable collection of intervals.
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Robust Market Modeling

From ||1∪i{U∞,ai ,b
=∞}|| = 0 it follows that S∞ ≡ limn→∞ Sn exists in R

a.e. in S ∈ S (this holds by the usual/general arguments employed in the
martingale convergence theorem).

Let us now prove that ||1S∞=∞|| = 0,
notice that for a given ε > 0

A∞ ≡ {S ∈ S : S∞ =∞} ⊆ (13)

{S ∈ S : ∃ M = M(S), Sn ≥
1

ε
, if n ≥ M} ≡ Aε. (14)

If S ∈ Aε, then s0 + lim infn→∞
∑n−1

i=0 ∆iS ≥ 1
ε , consequently for all S ∈ S,

1A∞ ≤ 1Aε ≤ εs0 + lim inf
n→∞

n−1∑
i=0

ε∆iS . (15)

Since εs0 +
∑n−1

i=0 ε∆iS = εSn ≥ 0 it follows by definition of || · || that

||1A∞ || ≤ ||1Aε || ≤ εs0.

So ||1A∞ || = 0.
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Robust Market Modeling

Key Property

Recall

W (Z ) = W (Z ,M) = inf
H∈H

[
sup
S∈S

(
Z (S)− lim inf

n→∞

n−1∑
i=0

Hi (S) ∆iS

)]
.

(16)

If W (0) = 0 then ||1S || = 1, this implies that the set of convergence
of a trajectorial martingale is a full set.

How can we guarantee W (0) = 0? The notion needed is:
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Robust Market Modeling

Contrarian Trajectories

Definition

Let M = S ×H a market, F = (Fi )i≥0 a sequence of functions (not
necessarily in H) and ε > 0 given. Sε ∈ S is called an ε-contrarian
trajectory (CT) for F , if for any n ≥ 1

n−1∑
i=0

Fi (S
ε) ∆iS

ε <

n−1∑
i=0

ε

2i+1
< ε. (17)

We will say that M admits contrarian trajectories, if for any H ∈ H and
ε > 0, there exist an ε-contrarian trajectory for H.
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Robust Market Modeling

Contrarian Trajectories

The local up-down, or more generally local 0-neutral, conditions
guarantee finite (for any arbitrary length) contrarian trajectories.

Contrarian trajectories in the limit can be added to the trajectory set
but it is hard to control de size of the set of the added trajectories.
Stochastic processes seem to have them but they are not prominent
and hide behind continuity properties of a measure.

It will take me some quality time to describe general and natural
conditions on trajectory sets providing existence of CT but it can be
done.
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Robust Market Modeling

Extension to Trajectorial Transform and Stochastic
Integration

One can extend the result to a trajectorial tranform:∑n−1
i=0 Hi (S0, . . . ,Si )∆iS

One can do the construction of the integral to make it conditional on
S0, . . . ,Sk . This gives a conditional integral

∫
k f (S) which obeys the

tower property. Then one can define general trajectorial martingales
(i.e. not only of the transform type) fk by:

∫
k fk+1(S) = fk(S). Then

study optional stopping, convergence, etc.

Similarly to the construction of the integral, there is the possibility
that the analogue of stochastic integration can also be obtained.

Thank you!
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