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Introduction

Introduction

In this talk, we give some necessary and some sufficient conditions
on Banach lattices E and F for the following conditions to hold :

i) if T : E → F has a property ”P”, then T ′ : F ′ → E′ has also the
same property ”P” and

ii) if T ′ : F ′ → E′ has a property ”P”, then T : E → F has also the
same property ”P”.

where the property ”P” is AM-compact (resp. semi-compact, b-weakly
compact, Almost Dunford-Pettis, order weakly compact).
This problem is studied for the class of AM-compact operators and
the class of semi-compact operators by Zaanen in his book
[”RieszSpacesII]”.
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Introduction

In this talk I am interesting by the duality property of the following
classes of operators :

1 The class of AM-compact operators.
2 The class of semi-compact operators.
3 The class of b-weakly compact operators.
4 The class of Almost Dunford-Pettis operators.
5 The class of order weakly compact operators.

If T : E → F is an operator, i.e. continuous linear mapping, between
two Banach lattices, then its adjoint or dual T ′ : F ′ → E′ is defined by
T ′ (f) (x) = f (T (x)) for each f ∈ F ′ and for each x ∈ E.
For terminology concerning Banach lattice theory and positive
operators, we use the excellent book of ([Aliprantis-Burkinshaw],
Positive operators, 2006).
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The class of AM-compact operators.

The class of AM-compact operators is introduced by Fremlin in his
paper (Riesz spaces with the order continuity property I. Proc.
Cambr. Phil. Soc. 81 (1977)).
An operator T from a vector lattice E into a Banach space F is said to
be AM-compact if the image of each order bounded subset of E is
relatively compact in F .
It is easy to see that each compact operator from a Banach lattice
into a Banach space is AM-compact but the converse is false in
general. In fact, the identity operator of the Banach lattice `1 is
AM-compact but it is not compact.
However if E is an AM-space with unit, the class of AM-compact
operators on E coincides with that of compact operators on E.
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The class of AM-compact operators.

There exist AM-compact operators whose dual operators are not
AM-compact, and conversely, there exist operators which are not
AM-compact but their dual operators are AM-compact.
In fact, the identity operator of the Banach lattice `1 is AM-compact
but its dual operator, which is the identity operator of `∞, is not
AM-compact.
Conversely, the identity operator of the Banach lattice of all
convergent sequences c is not AM-compact but its dual operator,
which is the identity operator of the Banach lattice c′, is AM-compact
where c′ is the topological dual of c.
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The class of AM-compact operators.

In his book ([Zaanen], Riesz spaces II, 1983), Zaanen studied the
duality problem of AM-compact operators on Banach lattices. He
proved that

Théorème 1 (Zaanen)

Let E and F be two Banach lattices and T be a regular operator from
E into F ;

1 If E′ has an order continuous norm and T is AM-compact, then
the dual operator T ′ is AM-compact from F ′ into E′.

2 If F has an order continuous norm, then T is AM-compact
whenever its dual operator T ′ from F ′ into E′ is AM-compact.
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The class of AM-compact operators

The proofs of Zaanen are long and very difficult. By using some
results of ([Aliprantis-Burkinshaw], Positive compact operators
on Banach lattices (1980)) and ([Aliprantis-Burkinshaw-Duhoux],
Compactness properties of abstract kernel operators. Pacific J.
Math. (1982)). In the following, we give an easy and simple proof of
this Theorem. Our Proof uses arguments which are different from
those of Zaanen.
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The class of AM-compact operators.

Remarque 1

The sufficient conditions of Zaanen are not necessaries. In fact,
1 If we take E be a Banach lattice such that the norm of E′ is not

order continuous (for example `1) and F is a finite-dimensional
space, then it is clear that each operator T from E into F is
AM-compact and its dual operator T ′ from F ′ into E′ is also
AM-compact.

2 If we take F be a Banach lattice such that its norm is not order
continuous (for example `∞) and E is a finite-dimensional space,
then each regular operator T from E into F is AM-compact and
its dual operator T ′ from F ′ into E′ is also AM-compact.
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The class of AM-compact operators.

Now, we state the converse of Zaanen’s Theorem. For the converse
of the second result of Zaanen we obtain.

Théorème 2
Let E and F be two Banach lattices. If each positive operator
S : E → F is AM-compact whenever its adjoint S′ : F ′ → E′ is
AM-compact, then one of the following statements is valid :

1 the norm of F is order continuous.
2 E′ is discrete.

Proof : Assume by way of contradiction that the conditions 1) and 2)
fails.
-Since the norm of F is not order continuous, it follows from
Theorem 2.4.2 of ([Meyer-Nieberg], Banach lattices, 1991) the
existence of y ∈ F+ and a disjoint sequence (yn) in F such that
0 ≤ yn ≤ y and ‖yn‖ = 1 for all n.
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Hence, by a consequence of Theorem 39.3 of ([Zaanen], Riesz
spaces II, 1983) there exists a positive disjoint sequence (gn) of F ′

such that

‖gn‖ ≤ 1, gn(yn) = 1 for all n and gn(ym) = 0 for n 6= m. (*)

-As E′ is not discrete, Theorem 3.1 of ([Chen-Wickstead], Some
applications of Rademacher sequences in Banach lattices,
Positivity (1998)) implies the existence of a sequence (fn) ⊂ E′ such
that fn → 0 for σ(E′, E) and |fn| = f > 0 for all n and some f ∈ E′.
-We consider the positive operator S : E → F defined by

S(x) = (
∑∞
n=1 fn(x)yn) + f(x)y for all x ∈ E.

in Theorem 1 of ([Wickstead], Converses for the Dodds-Fremlin
and Kalton-Saab Theorems, (1996)).
4- We have to prove that the positive operator S : E → F is not
AM-compact and its adjoint S′ : F ′ → E′ is AM-compact.
This gives a contradition
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The class of AM-compact operators.

Question. Is the second necessary condition of Theorem 1.2
sufficient. The answer is no.
In fact, if we take E = F = c, the Banach lattice of all convergent
sequences, it is clear that the identity operator of E is not
AM-compact but its dual operator, which is the identity of the dual
topological c′, is AM-compact. However the Banach lattice c′ is
discrete.
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The class of AM-compact operators.
Now, we establish the converse of the first result of Zaanen.

Théorème 3
Let E and F be two Banach lattices. Then the following statements
are equivalent :

1 Each regular AM-compact operator T : E → F has an
AM-compact adjoint T ′ : F ′ −→ E′.

2 One of the following conditions is valid :
a) the norm of E′ is order continuous.
b) F ′ is discrete and its norm is order continuous.

Proof. 2.a)⇒ (1) It is just Theorem 125.6 (i) of ([Zaanen], Riesz
spaces II, 1983).
2.b)⇒ (1) Assume that F ′ is discrete and its norm is order
continuous. By Theorem 6.1 of ([Wnuk], Banach lattices with order
continuous norms, 1999), each order interval of F ′ is norm
compact. Then in this case each operator from F ′ into E′ is
AM-compact.

Belmesnaoui AQZZOUZ Positivity IX, University of Alberta, Edmonton



Introduction

The class of AM-compact operators.
Now, we establish the converse of the first result of Zaanen.

Théorème 3
Let E and F be two Banach lattices. Then the following statements
are equivalent :

1 Each regular AM-compact operator T : E → F has an
AM-compact adjoint T ′ : F ′ −→ E′.

2 One of the following conditions is valid :
a) the norm of E′ is order continuous.
b) F ′ is discrete and its norm is order continuous.

Proof. 2.a)⇒ (1) It is just Theorem 125.6 (i) of ([Zaanen], Riesz
spaces II, 1983).
2.b)⇒ (1) Assume that F ′ is discrete and its norm is order
continuous. By Theorem 6.1 of ([Wnuk], Banach lattices with order
continuous norms, 1999), each order interval of F ′ is norm
compact. Then in this case each operator from F ′ into E′ is
AM-compact.

Belmesnaoui AQZZOUZ Positivity IX, University of Alberta, Edmonton



(1)⇒ (2) We have just to prove that if E′ does not have an order
continuous norm, then F ′ is discrete and its norm is order continuous.
A- Indeed, suppose that E′ does not have an order continuous norm,
by Theorem 2.4.2 of ([Meyer-Nieberg], Banach lattices, 1991),
there is a positive order bounded disjoint sequence (fn) of E′

satisfying ‖fn‖ = 1 for all n.
B- Let f = ∨∞

n=1fn in E′, and define a positive operator S1 : E → l1 by

S1(x) = (fn(x))∞
n=1 for all x ∈ E.

which is AM-compact.
C- To finish the proof, we have to show that F ′ is discrete and its
norm is order continuous. Otherwise,
1- by Theorem 6.1 of ([Wnuk], Banach lattices with order
continuous norms, Warsaw 1999), F ′ has an order interval [0, g]
which is not norm compact. Thus for some ε > 0 we may choose a
sequence (gn) in [0, g] such that ‖gn − gm‖ ≥ ε > 0 for all n 6= m.



2- Let φ : N ×N \ {(n, n) : n ∈ N} → N be a bijection and choose a
sequence of elements yn ∈ F with ‖yn‖ = 1 and∣∣(gn − gm)

(
yφ(n,m)

)∣∣ ≥ 1
2 ‖gn − gm‖ ≥

ε
2 for all n 6= m.

(see proof of Theorem 2.2 of ([Wickstead], Positive compact
operators on Banach lattices : some loose ends ; Positivity
(2000))).
3- Now consider the regular operator S2 : l1 → F defined by

S2 ((an)) =
∑∞
n=1 anyn

for all (an) ∈ `1.
4- Since S1 is AM-compact, the composed operator
S = S2 ◦ S1 : E → F defined by

S(x) =
∑∞
n=1 fn(x)yn for all x ∈ E,

is regular and AM-compact.
But its adjoint operator S′ : F ′ −→ E′ defined by

S′ (h) =
∑∞
n=1 h(yn)fn for all h ∈ F ′,

is not AM-compact.
This is a contradiction and completes the proof of 1)⇒ 2).
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The class of semi-compact operators.

Zaanen (Riesz spaces II, 1983), section 126, p. 543) defined
semi-compact operators for order bounded operators, but
Aliprantis-Burkinshaw (Positive operators, 2006) gave a more
general definition (see also ([ Meyer-Nieberg], Banach lattices,
1991), Definition 3.6.9, p. 213).

Définition 1
An operator T from a Banach space E into a Banach lattice F is said
to be semi-compact if for each ε > 0, there exists some u ∈ F+ such
that T (BE) ⊂ [−u, u] + εBF where BH is the closed unit ball of
H = E,F .

Note that every compact operator T from a Banach space E into a
Banach lattice F is semi-compact, but the converse is false in
general. In fact, since the Banach lattice `∞ is an AM-space with unit,
its identity operator Id`∞ : `∞ −→ `∞ is semi-compact but it is not
compact.
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The class of semi-compact operators.
This class of operators does not satisfy the duality problem. For
examples,

the identity operator Idc : c −→ c of the Banach lattice of all
convergent sequences c is semi-compact but its adjoint
Idc′ : c′ −→ c′ is not semi-compact.
the identity operator Id`1 : `1 −→ `1 is not semi-compact but its
adjoint Id`∞ : `∞ −→ `∞ is semi-compact.

Without any hypotheses on Banach lattices E and F , Meyer-Nieberg
(Banach lattices, 1991), Proposition 3.6.18) established the
following properties :

Théorème 4 (Meyer-Nieberg)

Let E and F be two Banach lattices.
1 If an operator T : E −→ F is semi-compact, then its adjoint
T ′ : F ′ −→ E′ is order weakly compact.

2 If an operator T : E −→ F is such that its adjoint T ′ : F ′ −→ E′ is
semi-compact, then T is order weakly compact.
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The class of semi-compact operators.

But before the results of Meyer-Nieberg, Zaanen (Riesz spaces II,
1983) started a study on the duality problem for the class of
semi-compact operators on Banach lattices. He proved that

Théorème 5 ( ZaanenII)

Let E and F be two Banach lattices.
1 If the norm of F is order continuous, then each order bounded

semi-compact operator T : E −→ F has a semi-compact adjoint
operator T ′ : F ′ −→ E′ (Theorem 127.1 of ([ Zaanen], Riesz
spaces II, 1983) ).

2 If the norm of E′ is order continuous and F is Dedekind
complete, then each order bounded operator T : E −→ F , with a
semi-compact adjoint operator T ′ : F ′ −→ E′, is semi-compact.
(Theorem 127.3 of ([Zaanen], Riesz spaces II, 1983) ).
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The class of semi-compact operators.

As a consequence, Zaanen obtained

Théorème 6 (Theorem 127.4 of [ ZaanenII)

]. Let E and F be two Banach lattices.
If the norms of E′ and F are order continuous, then each regular
operator T : E −→ F is semi-compact if and only if its adjoint
T ′ : F ′ −→ E′ is semi-compact.

As for AM-compact operators, The proofs of Theorem 5 are long and
very difficult.
By using the class of L-weakly compact operators and the class of
M-weakly compact operators introduced by Meyer-Nieberg (Banach
lattices, 1991), and Theorem 3.6.2, Proposition 3.6.11 and Corollary
3.6.14 of [Meyer-Nieberg], Banach lattices, 1991), we give a simple
proof to these results of Zaanen.
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The class of semi-compact operators.
Recall that a semi-compact (resp. order bounded) operator is not
necessary order weakly compact. In fact, the identity operator
Id`∞ : `∞ −→ `∞ is semi-compact (resp. order bounded) but it is not
order weakly compact.
To prove our first result on the converse of Zaanen, we need the
following result.

Théorème 7

Let E and F be two Banach lattices such that F is Dedekind
σ-complete. Then the following assertions are equivalent :

1 Each semi-compact operator T from E into F is order weakly
compact.

2 Each positive semi-compact operator T from E into F is order
weakly compact.

3 One of the following conditions is valid :
a) the norm of E is order continuous.
b) the norm of F is order continuous.
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The class of semi-compact operators.

Remarque 2

The assumption ”F is Dedekind σ-complete” is essential for Theorem
7.
In fact, if we take E = l∞ and F = c. It follows from the proof of
Proposition 1 of Wnuk ([Wnuk], Remarks on J. R. Holubs paper
concerning Dunford-Pettis operators. Math. Japon., (1993)) that
each operator T : l∞ → c is weakly compact (and hence is order
weakly compact). Then the assertions 1), 2) and 3) of Theorem 7
hold, but the assertion 4) of Theorem 7 is false.

Now, we use Theorem 7 to give a converse of Theorem 127.1 of
([Zaanen], Riesz spaces II, 1983) about the duality problem of
semi-compact operators.
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The class of semi-compact operators.

Théorème 8

Let E and F be two Banach lattices such that F is Dedekind
σ-complete. If each positive semi-compact operator T : E −→ F
admits a semi-compact adjoint T ′ : F ′ −→ E′, then one of the
following properties is valid :

1 E is a KB-space.
2 The norm of F is order continuous.

Proof. In fact, it suffices to establish that if the norm of F is not order
continuous, then E is a KB-space.
Indeed, suppose that F does not have an order continuous norm.
Step 1. The norm of E is order continuous. Otherwise, by Theorem 7
there is a positive semi-compact operator T : E −→ F which is not
order weakly compact. And Proposition 3.6.18 (i) of
([Meyer-Nieberg], Banach lattices, 1991) implies that the adjoint
T ′ : F ′ −→ E′ is not semi-compact, which is in contradiction with our
hypothesis. Therefore the norm of E is order continuous.
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Step 2. E is a KB-space. Otherwise, it follows from
([Aqzzouz − Elbour −Hmichane]. The duality problem for the
class of b-weakly compact operators. Positivity (2009)) that there
exists a positive disjoint sequence (xn) of E+ such that ‖xn‖ = 1 for
all n and 0 ≤ xn ≤ x′′ for all n and some 0 ≤ x′′ ∈ E′′.
Thus, Theorem 39.3 of ([Zaanen], Riesz spaces II, 1983) implies
that there exists a positive disjoint sequence (gn) of E′ with ‖gn‖ ≤ 1
such that

gn(xn) = 1 for all n and gn(xm) = 0 for n 6= m (∗).

A- Since E has an order continuous norm, it follows from Corollary
2.4.3 of ([Meyer-Nieberg], Banach lattices, 1991) that gn → 0 for
σ (E′, E).
Hence the positive operator R : E → c0 defined by

R (x) = (gn (x))∞
n=1 for each x ∈ E,

is well defined and R (BE) ⊂ Bc0 .



B- Since the norm of F is not order continuous, Theorem 4.14 of
([Aliprantis-Burkinshaw], Positive operators, 2006) implies the
existence of some u ∈ F+ and a disjoint sequence (un) ⊂ [0, u] which
does not converge to zero in norm. We may assume that 0 ≤ un ≤ u
and ‖un‖ = 1 for all n. It follows from the proof of Theorem 117.1 of
([Zaanen], Riesz spaces II, 1983) that the positive operator

S : c0 −→ F , (α1, α2, ...) 7−→
∑∞
i=1 αiui

defines a lattice isomorphism from c0 into F . From the disjointness of
the sequence (un) and 0 ≤ un ≤ u for all n, we see that
S (Bc0) ⊂ [−u, u].
C- Next, we consider the positive operator

T = S ◦R : E −→ F , x 7−→
∑∞
i=1 gi(x)ui.

D- T is semi-compact. But, its adjoint T ′ : F ′ → E′ is not
semi-compact. So, E is a KB-space.



Introduction

The class of semi-compact operators.

If in Theorem 8, we replace F is Dedekind σ-complete by the norm of
E is order continuous, we obtain

Théorème 9

Let E and F be two Banach lattices such that the norm of E is order
continuous. If each positive semi-compact operator T : E −→ F
admits a semi-compact adjoint T ′ : F ′ −→ E′, then one of the
following properties is valid :

1 E is a KB-space.
2 The norm of F is order continuous.

Proof. It is exactly Step 2 of Theorem 8.
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The class of semi-compact operators.

Remarque 3

i- The first necessary condition of Theorem 8 (resp. Theorem 9) is not
sufficient.
In fact, if we take E = `2 and F = `∞. Since `∞ is an AM-space with
unit, the inclusion mapping i : `2 −→ `∞ is semi-compact. But its
adjoint i′ : (`∞)′ −→ `2 is not semi-compact (if not, its adjoint i′ would
be compact, since `2 is discrete and its norm is order continuous).
However, the Banach lattice E = `2 is a KB-space.
ii- The assumption ”F is Dedekind σ-complete” (resp. the norm of E
is order continuous) is essential for Theorem 8 (resp. Theorem 9).
In fact, we have just to take the example of the Remark after Theorem
12 or Remark after Theorem 7, let T : `∞ −→ c be an arbitrary
operator. Clearly T is semi-compact.

Belmesnaoui AQZZOUZ Positivity IX, University of Alberta, Edmonton



Introduction

...........

We claim that its adjoint T ′ is semi-compact. In fact, it follows from the
proof of Proposition 1 of ([Wnuk], Remarks on J. R. Holubs paper
concerning Dunford-Pettis operators. Math. Japon., (1993)) that
the operator T is weakly compact. Hence, its adjoint T ′ : c′ −→ (`∞)′

is also weakly compact. Since (`∞)′ has the positive Schur property,
it follows from Theorem 3.4 of ([Chen-Wickstead], L-weakly and
M-weakly compact operators. Indag. Math. (1999)) that T ′ is
L-weakly compact . So T ′ is semi-compact. (See also Theorem 2.5.4
of ([Meyer-Nieberg], Banach lattices, 1991)). But the conditions 1)
and 2) of Theorem 8 (resp. Theorem 9) are not satisfy.
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The class of semi-compact operators.
Now, we give our second characterization

Théorème 10
Let E and F be two Banach lattices. Then the following assertions
are equivalent :

1 Each positive operator from F ′ into E′ is order weakly compact.
2 The adjoint of each positive operator from E into F is order

weakly compact.
3 Each semi-compact operator from F ′ into E′ is order weakly

compact.
4 Each positive semi-compact operator from F ′ into E′ is order

weakly compact.
5 If T : E −→ F is a positive operator such that T ′ is

semi-compact, then T ′ is order weakly compact.
6 One of the following conditions is valid :

a) the norm of E′ is order continuous.
b) the norm of F ′ is order continuous.
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Proof. 1) =⇒ 2) =⇒ 5) and 3) =⇒ 4) =⇒ 5) are clear.
5) =⇒ 6) Assume by way of contradiction that neither E′ nor F ′ has
an order continuous norm, we have to construct a positive operator
T : E −→ F such that T ′ is semi-compact but T ′ is not order weakly
compact.
For this, we have just to take the same operator constructed in the
implication 2) =⇒ 3) of Theorem 8.
In fact, if we consider the operator product T = T2 ◦ T1 : E → l1 → F
defined in the proof of the implication 2) =⇒ 3) of Theorem 2.5.
Since `∞ is an AM-space with unit, the positive operator
T ′

1 : l∞ −→ E′ is semi-compact. Hence
T ′ = T ′

1 ◦ T ′
2 : F ′ −→ `∞ −→ E′ is also semi-compact. But T ′ is not

order weakly compact (see the proof of (2) =⇒ (3) of Theorem 2.5).
So 5) =⇒ 6).
6) =⇒ 1), 6) =⇒ 3) By the same proof as the implication 4) =⇒ 1),
4) =⇒ 2) of Theorem 7 respectively.



Introduction

The class of b-weakly compact operators

The class of b-weakly compact operator is introduced in
([Alpay-Altin-Tonyali] , On property (b) of vector lattices.
Positivity, (2003)).
Recall that
A subset A of a Banach lattice E is called b-order bounded in E if it is
order bounded in the topological bidual E′′.
Every order bounded subset of E is b-order bounded. The converse
is not true in general. In fact, the subset A = {en : n ∈ N} is b-order
bounded in the Banach lattice c0 but A is not order bounded in c0,
where en is the sequence of reals numbers with all terms zero except
for the n’th which is 1.

Définition 2
An operator T from a Banach lattice E into a Banach space X is said
to be b-weakly compact if it maps each b-order bounded subset of E
into a relatively weakly compact subset in X.
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The class of b-weakly compact operators

Each weakly compact operator is b-weakly compact and each
b-weakly compact operator is order weakly compact.
But, the identity operator IdL1[0,1] : L1[0, 1]→ L1[0, 1] is b-weakly
compact but it is not weakly compact and the identity operator
Idc0 : c0 → c0 is order weakly compact but it is not b-weakly compact.
There is a b-weakly compact operator whose adjoint is not b-weakly
compact. In fact, the identity operator Id`1 : `1 −→ `1 is b-weakly
compact but its adjoint Id`∞ : `∞ −→ `∞ is not one.
And conversely, there is an operator which is not b-weakly compact
while its adjoint is one. In fact, the identity operator Idc0 : c0 −→ c0 is
not b-weakly compact but its adjoint Id`1 : l1 −→ `1 is b-weakly
compact.
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The class of b-weakly compact operators

A Banach lattice E is said to be a KB-space, whenever every
increasing norm bounded sequence of E+ is norm convergent.
For example, each reflexive Banach lattice (resp. AL-space) is a
KB-space.
Each KB-space has an order continuous norm, but a Banach lattice
with an order continuous norm is not necessary a KB-space.
In fact, the Banach lattice c0 has an order continuous norm but it is
not a KB-space. However, if E is a Banach lattice, the topological
dual E′ is a KB-space if and only if its norm is order continuous.
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The class of b-weakly compact operators

We need the following result, which is a consequence of Theorem
4.60 of ([Aliprantis-Burkinshaw], Positive operators, 2006) and
Corollary of ([Alpay-Altin], A note on b-weakly compact
operators, Positivity (2007), p. 577)

Proposition 1

Let T : E → X be an operator from a Banach lattice E into a Banach
space X. If T factors through a KB-space, then T is b-weakly
compact.
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The class of b-weakly compact operators

Our first result, on the duality of b-weakly compact operators, gives a
sufficient and necessary condition for which the b-weak compactness
of an operator implies the b-weak compactness of its adjoint.

Théorème 11

Let E and F be two Banach lattices. Then the following conditions are
equivalent :

1 Each operator from F ′ into E′ is b-weakly compact.
2 If T : E → F is a b-weakly compact operator, then its adjoint T ′

is b-weakly compact.
3 One of the following assertions is valid :

a) E′ is a KB-space.
b) F ′ is a KB-space.
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The class of b-weakly compact operators

Proof. (1)⇒ (2) Obvious.
(2)⇒ (3) If neither E′ nor F ′ is a KB-space, we have to construct an
operator T : E → F such that T is b-weakly compact and its adjoint
T ′ is not b-weakly compact.
A- Since E′ is not a KB-space (i.e. the norm of E′ is not order
continuous) then, by Theorem 2.4.2 of ([Meyer-Nieberg], Banach
lattices, 1991), there is a positive order bounded disjoint sequence
(fn) of E′ satisfying ‖fn‖ = 1 for all n. Let f = ∨∞

n=1fn in E′.
We use this sequence (fn) to define the positive operator T1 : E → `1

by

T1(x) = (fn(x))∞
n=1 for all x ∈ E.

Belmesnaoui AQZZOUZ Positivity IX, University of Alberta, Edmonton



Introduction

The class of b-weakly compact operators
B- Since F ′ is not a KB-space, there is a positive order bounded
disjoint sequence (gn) of F ′ satisfying ‖gn‖ = 1 for all n. Since
‖gn‖ = sup {gn (y) : 0 ≤ y ∈ F and ‖y‖ = 1} holds for all n, then for
each n we choose yn ∈ F+ with ‖yn‖ = 1 and gn (yn) ≥ 1

2 ‖gn‖ = 1
2 .

We use this sequence (yn) to define the positive operator T2 : `1 → F
defined by

T2 ((an)) =
∑∞
n=1 an.yn for all (an) ∈ `1.

C- We consider the operator product T = T2 ◦ T1 : E → `1 → F
defined by

T (x) =
∑∞
n=1 fn(x).yn for all x ∈ E.

Since `1 is a KB-space, it follows from Proposition 1 that T is
b-weakly compact. But its adjoint T ′ : F ′ −→ E′ defined by

T ′ (h) =
∑∞
n=1 h(yn)fn for all h ∈ F ′,

is not b-weakly compact.
(3)⇒ (1) Follows immediately from Proposition 1.
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The class of b-weakly compact operators

Now, we give a sufficient and necessary condition for which an
operator becomes b-weakly compact whenever its adjoint is b-weakly
compact.

Théorème 12

Let E and F be two Banach lattices such that the norm of E is order
continuous. Then the following conditions are equivalent :

1 Each operator from E into F is b-weakly compact.
2 Each operator T : E → F is b-weakly compact whenever its

adjoint T ′ is b-weakly compact.
3 One of the following assertions is valid :

a) E is a KB-space.
a) F is a KB-space.
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The class of b-weakly compact operators

Proof (1)⇒ (2) Obvious.
(2)⇒ (3) If neither E nor F is a KB-space, we have to construct an
operator T : E → F such that T is not b-weakly compact but its
adjoint T ′ is b-weakly compact.
A- Since E is not a KB-space, the identity operator IdE is not
b-weakly compact by Proposition 2.10 of ([ Alpay-Altin-Tonyali]), On
property (b) of vector lattices. Positivity (2003)).
Hence it follows from Proposition 2.8 of ([ Alpay-Altin-Tonyali]), that
E+ contains a b-order bounded disjoint sequence (xn) satisfying
‖xn‖ = 1 for all n.
So, by Proposition 2.8 and Proposition 2.10 of ([ Alpay-Altin-Tonyali]),
there exists a positive disjoint sequence (gn) of E′ with ‖gn‖ ≤ 1 such
that

gn(xn) = 1 for all n and gn(xm) = 0 for n 6= m. (*)
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The class of b-weakly compact operators

B- Since the norm of E is order continuous, it follows from Corollary
2.4.3 of ([Meyer-Nieberg], Banach lattices, 1991) that gn → 0 for
σ (E′, E). Hence the positive operator T1 : E → c0 defined by

T1 (x) = (gn (x))∞
n=1 for each x ∈ E,

is well defined.
C- Since F is not a KB-space, it follows from Theorem 4.61 of
([Aliprantis-Burkinshaw], Positive operators, 2006) that c0 is
lattice embeddable in F .
If T2 : c0 → F is a lattice embedding, then the sequence (yn) defined
by yn = T2 (en) for all n, is bounded away from zero, i.e., there exists
some K > 0 satisfying ‖yn‖ ≥ K for all n.
D- Consider the positive operator T = T2 ◦ T1 : E −→ c0 −→ F .
It’s adjoint T ′ : F ′ −→ l1 −→ E′ is b-weakly compact. But T is not
b-weakly compact.
(3)⇒ (1) Follows from Proposition 2.1 of ([Altin] , Some properties
of b-weakly compact operators. G. U. J. Sci. (2005)).
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The class of b-weakly compact operators

Remarque 4

The assumption ”the norm of E is order continuous” is essential in
Theorem 12.
For instance, each operator T : `∞ → c0 is weakly compact (because
`∞ is a Grothendieck space (i.e. if x′

n
w∗→ 0 in (`∞)′ then x′

n
w→ 0 in

(`∞)′)) and hence each operator from `∞ into c0 is b-weakly compact,
but neither `∞ nor c0 is a KB-space.
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The class of almost Dunford-Pettis operators

A linear operator from a Banach lattice E into a Banach space F is
almost Dunford-Pettis if ‖T (xn)‖ → 0 for every weakly null sequence
(xn) consisting of pairwise disjoint elements in E.
There is no automatic duality result for the class of almost
Dunford-Pettis operators.
In fact, the identity operator IdL1[0,1] : L1[0, 1]→ L1[0, 1] is almost
Dunford-Pettis but its adjoint IdL∞[0,1] : L∞[0, 1]→ L∞[0, 1] is not
almost Dunford-Pettis.
Conversely, the identity operator Idc0 : c0 → c0, is not almost
Dunford-Pettis but its adjoint, which is the identity operator
Id`1 : `1 → `1, is almost Dunford-Pettis.
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The class of almost Dunford-Pettis operators

To establish a necessary and sufficient condition on the pair of
Banach lattices E and F which guarantees that if T : E → F is
almost Dunford-Pettis then so is T ′ : F ′ → E′, we need to recall
positive Schur property.
A Banach space E is said to have the Schur property if every weakly
convergent sequence to 0 in E is norm convergent to zero. For
example, the Banach space `1 has the Schur property.
The Banach lattice E has the positive Schur property if each weakly
null sequence with positive terms in E converges to zero in norm. For
example, the Banach lattice L1 ([0, 1]) has the positive Schur property
but does not have the Schur property.
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The class of almost Dunford-Pettis operators

Proposition 2

A Banach lattice E does not have the positive Schur property if and
only if there exists a disjoint weakly null sequence (xn) in E+ with
‖xn‖ = 1 for all n.

Proof. If E does not have the positive Schur property we know that
there exists a disjoint weakly null sequence (yn) of E+ such that (yn)
is not norm convergent to 0. By passing to a subsequence if
necessarily, we may assume that there exists some α > 0 with
‖yn‖ ≥ α for all n. Put xn = yn/‖yn‖ for all n and it is easy to see that
our requirements are satisfied. The converse is easy.
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The class of almost Dunford-Pettis operators

Our first result is the following

Théorème 13

Let E and F be two Banach lattices. The following conditions are
equivalent :

1 The adjoint of each positive almost Dunford-Pettis operator
T : E −→ F is almost Dunford-Pettis.

2 At least one of the following assertions is valid :
a) E′ has an order continuous norm.
b) F ′ has the positive Schur property.

Proof.
(2)(a)=⇒(1)
A- Let T : E → F be a positive and almost Dunford-Pettis. Let (fn) be
a disjoint sequence in F ′

+ such that fn → 0 for σ(F ′, F ′′). We have to
prove that ‖T ′(fn)‖ → 0.
It is clear that 0 ≤ T ′(fn)→ 0 for σ(E′, E).
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By Corollary 2.7 of ([Dodds-Fremlin], Compact operators in
Banach lattices. Israel J. Math. (1979)), it suffices to show that
T ′(fn)(xn)→ 0 for each disjoint norm bounded sequence (xn) in E+.
B- As the norm of E′ is order continuous, it follows from Corollary
2.4.14 of ([Meyer-Nieberg], Banach lattices, 1991), that for such a
sequence we have xn → 0 for σ(E,E′).
Since T is almost Dunford-Pettis, ‖T (xn)‖ → 0. As fn → 0 for
σ(F ′, F ′′), (fn) is norm bounded. Hence T ′(fn)(xn) = fn (T (xn))→ 0
and we are done.
(2)(b)=⇒(1),
we will prove that in fact the adjoint of every operator T : E → F is
almost Dunford-Pettis.
To see this, let (fn) be a disjoint sequence in F ′

+ such that fn → 0 for
σ(F ′, F ′′). Since F ′ has the positive Schur property, ‖fn‖ → 0 and
hence ‖T ′(fn)‖ → 0 from which the result follows.



(1) =⇒ (2)
If (2) fails, then the norm of E′ is not order continuous and F ′ does
not has the positive Schur property.
Since the norm of E′ is not order continuous, it follows from Theorem
2.4.2 of ([Meyer-Nieberg], Banach lattices, 1991) that there exists a
positive order bounded disjoint sequence (ϕn) of E′

+ with ‖ϕn‖ = 1
for all n. Let 0 ≤ ϕ ∈ E′ be such that 0 ≤ ϕn ≤ ϕ for all n.
Define the operator U : E → `1 by U(x) = (ϕn(x))∞

n=1 for x ∈ E.
Since

∑∞
n=1 |ϕn(x)| ≤

∑∞
n=1 ϕn(|x|) ≤ ϕ(|x|) for each x ∈ E, the

operator U does indeed take values in `1 and it is clearly positive.
Since F ′ does not have the positive Schur property, it follows from
Proposition 4.1 that there exists a disjoint weakly null sequence (fn)
in F ′

+ with ‖fn‖ = 1 for all n.



As ‖fn‖ = sup{fn(y) : y ∈ F+, ‖y‖ = 1}, for each n there exists
yn ∈ F+ with ‖yn‖ = 1 and fn(yn) ≥ 1

2 . Define a positive operator
V : `1 → F by V ((λn)) =

∑∞
n=1 λnyn, which series is certainly norm

convergent.
Let T = V ◦ U : E → `1 → F so that T (x) =

∑∞
n=1 ϕn(x)yn for x ∈ E.

It is clear that T is Dunford-Pettis as if xn → 0 weakly in E then
V (xn)→ 0 weakly in `1 and therefore, as `1 has the Schur property,
‖V (xn)‖ → 0 and hence ‖T (xn)‖ = ‖U (V (xn))‖ → 0. So certainly T
is almost Dunford-Pettis.
But its adjoint T ′ : F ′ → E′ is not almost Dunford-Pettis.
To see this, note that if h ∈ F ′ then T ′(h) =

∑∞
n=1 h(yn)ϕn.

In particular, for every k we have
T ′(fk) =

∑∞
n=1 fk(yn)ϕn ≥ fk(yk)ϕk ≥ 0 and hence

‖T ′(fk)‖ ≥ ‖fk(yk)ϕk‖ = fk(yk) ≥ 1
2 . As (fk) is disjoint and weakly

null, T ′ is not almost Dunford-Pettis.
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The class of almost Dunford-Pettis operators

We say that a Banach lattice E has the bi-sequence property if for
each weak null disjoint sequence (xn) in E and each weak* null
sequence (fn) in E′

+, we have fn(xn)→ 0.
In the very important special case that E has an order continuous
norm, then this reduces to a condition that has been previously
studied.

Proposition 3

A Banach lattice E, which has an order continuous norm, has the
bi-sequence property if and only if it has the positive Schur property.

The bi-sequence property may similarly be simplified if we assume
that E′ has an order continuous norm.
A Banach lattice E has the dual positive Schur property if every weak
null sequence in E′

+ is norm null.
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The class of almost Dunford-Pettis operators

Proposition 4

A Banach lattice E, for which E′ has an order continuous norm, has
the bi-sequence property if and only if it has the dual positive Schur
property.

Now, we study the converse situation. We begin by giving sufficient
conditions.

Théorème 14

Let E and F be two Banach lattices. If at least one of the following
three conditions holds then each positive operator T : E → F , such
that T ′ : F ′ → E′ is almost Dunford-Pettis, must itself be almost
Dunford-Pettis :

1 E has the positive Schur property.
2 E has the bi-sequence property and F has an order continuous

norm.
3 F may be written as an order direct sum F = G

⊕
H where the

bidual G′′ is a KB-space and H has the positive Schur property.Belmesnaoui AQZZOUZ Positivity IX, University of Alberta, Edmonton
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Proof.
In case (1), very weakly null sequence in E is norm null, so that every
bounded operator T : E → F is almost Dunford-Pettis.
In case (2), again every positive operator T : E → F is almost
Dunford-Pettis.
In fact, let (xn) be a weakly null disjoint sequence in E+. It is clear
that 0 ≤ T (xn)→ 0 for σ(F, F ′). Thus by Theorem 2.6 of
([Dodds-Fremlin]), it suffices to show that fn (T (xn))→ 0 for each
disjoint norm bounded sequence (fn) in F ′

+. Since the norm in F is
order continuous, it follows from Theorem 2.4.3 of ([Meyer-Nieberg],
Banach lattices, 1991) that (fn) is weak* null, and hence (T ′(fn)) is
weak* null in E′

+. Finally, by (2)(b), we have
fn (T (xn)) = T ′(fn)(xn)→ 0 and we are done.



In case (3), consider first operators into G where we know that G′′ is
a KB-space and therefore has an order continuous norm. Let
T : E → G be a positive operator such that T ′ : G′ → E′ is almost
Dunford-Pettis. Let (xn) be a weakly null disjoint sequence in E+ and
note that 0 ≤ T (xn)→ 0 for σ(G,G′). Let (fn) be a disjoint norm
bounded sequence in G′

+. Since the norm of G′′ is order continuous,
it follows from Theorem 2.4.14 of ([Meyer-Nieberg], Banach lattices,
1991) that (fn) is a weakly null sequence in G′. Now, as the adjoint
T ′ : G′ → E′ is almost Dunford-Pettis, we conclude that
‖T ′(fn)‖ → 0. Hence fn (T (xn)) = T ′(fn)(xn)→ 0 and we are done.
Again, we use Corollary 2.4 of ([Dodds-Fremlin], Compact
operators in Banach lattices. Israel J. Math. (1979)) to conclude
that ‖T (xn)‖ → 0 showing that T is almost Dunford-Pettis.
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The class of almost Dunford-Pettis operators

If H has the positive Schur property then every positive operator
T : E → H is almost Dunford-Pettis. For if (xn) is a weakly null
disjoint sequence in E+, note that 0 ≤ T (xn)→ 0 for σ(H,H ′) so that
‖T (xn)‖ → 0 and T is almost Dunford-Pettis.
To prove (3) in general, suppose that T : E → G⊕H is positive and
such that T ′ : G′ ⊕H ′ → E′ is almost Dunford-Pettis. We will let PB
denote the band projection onto a band B. It is clear that both T ′

|G′

and T ′
|H′ are almost Dunford-Pettis from which our previous work

shows that both PG ◦ T and PH ◦ T are almost Dunford-Pettis hence
so is T itself.
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The class of almost Dunford-Pettis operators

If we assume that the Banach lattice F is Dedekind σ-complete, we
obtain the following necessary conditions.

Théorème 15

Let E and F be two Banach lattices such that F is Dedekind
σ-complete. If every positive operator T from E into F is almost
Dunford-Pettis whenever its adjoint T ′ from F ′ into E′ is almost
Dunford-Pettis, then one of the following assertions is valid :

1 E has the positive Schur property.
2 E has the bi-sequence property and F has an order continuous.
3 F is a KB-space.
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Proof.
It suffices to establish the following two separate claims.
(α) If the norm of F is not order continuous, then E has the positive
Schur property.
(β) If F is not a KB-space, then fn(xn)→ 0 for each weakly null
disjoint sequence (xn) in E and each weak* null sequence (fn) in E′

+.
Assume that E does not have the positive Schur property and that
the norm of F is not order continuous. Since E does not have the
positive Schur property, it follows from Proposition 2 that there is
disjoint weakly null sequence (xn) in E+ with ‖xn‖ = 1 for all n.
Hence, by Theorem 116.3 of ([Zaanen], Riesz spaces II, 1983),
there exists a positive disjoint sequence (gn) in E′ with
‖gn‖ = gn(xn) = 1 for all n and gn(xm) = 0 if n 6= m. Consider the
operator U : E → `∞ defined by U(x) = (gn(x))∞

n=1 for each x ∈ E
which is clearly a positive operator taking values in `∞.



On the other hand, since the norm of F is not order continuous, it
follows from Theorem 2.4.2 of ([Meyer-Nieberg], Banach lattices,
1991) that there exists an order bounded disjoint sequence (yn) in F+
which is not norm convergent to zero. We can assume, without loss of
generality, that ‖yn‖ = 1 and that there is y ∈ F+ with 0 ≤ yn ≤ y for
all n. Thus, since F is Dedekind σ-complete, it results from the proof
of Theorem 117.3 of ([Zaanen], Riesz spaces II, 1983)), that the
positive operator V : `∞ → F defined by the order convergent series
V ((λn)) =

∑∞
n=1 λnyn, for (λn) ∈ `∞, is a lattice isomorphism of `∞

into F .



Now, we consider the positive operator T = V ◦ U : E → `∞ → F
defined by the order convergent series T (x) =

∑∞
n=1 gn(x)yn for

x ∈ E. Its adjoint T ′ : F ′ → `′
∞ → E′ is almost Dunford-Pettis. In fact,

if (fn) is a weakly null disjoint sequence in F ′
+, then 0 ≤ V ′(fn)→ 0

for σ(`′
∞, `

′′
∞). Since `′

∞ has the positive Schur property, it follows that
‖V ′(fn)‖ → 0. Hence ‖T ′(fn)‖ = ‖U ′ (V ′(fn))‖ → 0 and T ′ is almost
Dunford-Pettis.
However, note that (xn) is a disjoint weakly null sequence in E+ and
that U(xn) = en, where en is the n’th standard basis vector in `∞.
Thus ‖T (xn)‖ = ‖V (U(xn))‖ = ‖V (en)‖ = ‖yn‖ = 1
for each n so that T is not almost Dunford-Pettis. We have now
established claim (α).



To prove claim (β), let us suppose that F is not a KB-space. Then it
follows from, for example, Theorem 4.61 of
([Aliprantis-Burkinshaw], Positive operators, 2006) that c0 is
lattice embeddable in F i.e. there exists a lattice homomorphism
S : c0 → F and two strictly positive constants K and M such that
K‖(αn)‖∞ ≤ ‖S ((αn))‖ ≤M‖(αn)‖∞ for all (αn) ∈ c0.
Let (xn) be a weakly null disjoint sequence in E and (fn) a weak* null
sequence in E′

+. We need only prove that fn(xn)→ 0. It is clear that
the operator R : E → c0, defined by R(x) = (fk(x))∞

k=1 is positive and
does indeed map E linearly into c0.
Let T = S ◦R : E → c0 → F . It is clear that T ′ : F ′ → c′

0 = `1 → E′ is
Dunford-Pettis and hence almost Dunford-Pettis. By our assumption
T is almost Dunford-Pettis. Thus, since (xn) is a weakly null disjoint
sequence in E, we have ‖T (xn)‖ → 0. But, for all n,
‖T (xn)‖ = ‖S ◦R(xn)‖ = ‖S ((fk(xn))∞

k=1)‖ ≥ K ‖(fk(xn))∞
k=1‖∞ ≥

K|fn(xn)|
so that fn(xn)→ 0.
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The class of almost Dunford-Pettis operators

Remarque 5

The assumption that F is Dedekind σ-complete is essential for
Theorem 4.4 to hold. For instance, if we take E = `∞ and F = c, the
Banach lattice of all convergent sequences then it is clear that every
operator T : `∞ → c is weakly compact, see the proof of Proposition 1
in ([Wnuk], Remarks on J. R. Holubs paper concerning
Dunford-Pettis operators. Math. Japon., (1993)), hence is
Dunford-Pettis, as `∞ has the Dunford-Pettis property and therefore is
almost Dunford-Pettis. Yet none of the three possible conditions listed
in Theorem 4.4 holds.
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The class of almost Dunford-Pettis operators

How do Theorems 4.4 and 4.3 match up to each other ? Apart from
the assumption of Dedekind σ-completeness in the latter case, the
gap between the two results is that one of the necessary conditions is
that F be a KB-space whilst a sufficient condition is that F be the
sum G⊕H where G′′ is a KB-space and H has the positive Schur
property. We have no example of a KB-space which cannot be written
as such a sum.
Now, if in Theorem 4.4, instead of assuming that the Banach lattice F
is Dedekind σ-complete, we assume that the Banach lattice E has an
order continuous norm, we obtain a slightly different set of necessary
conditions.
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Théorème 16

Let E and Fbe Banach lattices such that E has an order continuous
norm. If each positive operator T : E → F , such that T ′ : F ′ → E′ is
almost Dunford-Pettis, must itself be almost Dunford-Pettis then one
of the following assertions is valid :

1 E has the positive Schur property.
2 F is a KB-space.

Proof. Suppose that E does not have the positive Schur property and
F is not a KB-space. Since E does not have the positive Schur
property, it follows from Proposition 4.1 that there exists a disjoint
weakly null sequence (xn) in E+ with ‖xn‖ = 1 for all n. Hence, by
Theorem 116.3 of ([Zaanen], Riesz spaces II, 1983)) there exists a
positive disjoint sequence (gn) in E′ with ‖gn‖ = gn(xn) = 1 for all n
and gn(xm) = 0 for n 6= m.
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As the norm in E is order continuous, it follows from Corollary 2.4.3 of
([Meyer-Nieberg], Banach lattices, 1991) that gn → 0 for σ(E′, E).
Hence we may define a positive operator U : E → c0 by
U(x) = (gn(x))∞

n=1 for x ∈ E. On the other hand, since F is not a
KB-space, it follows from Theorem 4.61 of ([Aliprantis-Burkinshaw],
Positive operators, 2006) that c0 is lattice embeddable in F so there
exists a lattice embedding V : c0 → F and strictly positive constants
K and M such that
K‖(αn)‖∞ ≤ ‖V ((αn))‖ ≤M‖(αn)‖∞ for all (αn) ∈ c0.
Now consider the positive operator T = V ◦ U : E → c0 → F . It is
clear that its adjoint T ′ : F ′ → c′

0 = `1 → E′ is Dunford-Pettis and
hence almost Dunford-Pettis. But T is not almost Dunford-Pettis. To
see this, note that (xn) is a disjoint weakly null sequence in E+, that
as above we have U(xn) = en and that
‖T (xn)‖ = ‖V (U(xn))‖ = ‖V (en)‖ ≥ K‖en‖∞ = K > 0
for each n. Thus ‖T (xn)‖9 0.
The example given after Theorem 4.4 shows also that the hypothesis
of order continuity of the norm may not be omitted from the statement
of Theorem 4.5.
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Introduction

The class of order weakly compact operators

The class of order weakly compact operators was introduced in the
paper ([Dodds], o-weakly compact mappings of Riesz spaces.
Trans. Amer. Math. Soc. (1975)). It contains the subspace of weakly
compact operators and the subspace of AM-compact operators.
An operator T from a Banach lattice E into a Banach space F is said
to be order weakly compact if for each x ∈ E+ , the subset T ([0, x]) is
a relatively weakly compact subset of F.
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The class of order weakly compact operators

The class of order weakly compact operators does not satisfy the
duality property. In fact,

1 the identity operator Idl1 : l1 → l1 is order weakly compact but its
adjoint operator, which is the identity operator Idl∞ : l∞ → l∞, is
not order weakly compact.

2 the identity operator Idl∞ : l∞ → l∞, is not order weakly
compact but its dual operator, which is the identity operator
Id(l∞)′ : (l∞)′ → (l∞)′, is order weakly compact.
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The class of order weakly compact operators

Our first result gives a sufficient and necessary conditions under
which an order weakly compact operator has an adjoint which is
order weakly compact :

Théorème 17

Let E and F be two Banach lattices. Then the following conditions are
equivalent :

1 Each regular order weakly compact operator T : E → F has an
order weakly compact adjoint T ′ : F ′ −→ E′.

2 One of the following assertions is valid :
a) the norm of E′ is order continuous.
b) the norm of F ′ is order continuous.
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Proof. 2 =⇒ 1. It is just a consequence of Theorem 22.1 of
([Aliprantis-Burkinshaw], Locally solid Riesz spaces. Pure and
Applied Mathematics, 1978.)
1 =⇒ 2. Assume that the norm of E′ (resp. F ′) is not order
continuous. Then Theorem 2.4.14 and Proposition 2.3.11 of
([Meyer-Nieberg], Banach lattices, 1991) imply that E (resp. F )
contains a sublattice isomorphic to l1 and there exists a positive
projection P1 : E −→ l1 (resp. P2 : F −→ l1).
Since F ′ is Dedekind σ-complete, it follows from Corollary 2.4.3 of
([Meyer-Nieberg], Banach lattices, 1991) that F ′ contains a
sublattice isomorphic to l∞.



We denote by i1 : l1 −→ E (resp. i2 : l1 −→ F ) the canonical injection
of l1 into E (resp. l1 into F ). We consider the operator product

i2 ◦ P1 : E −→ l1 −→ F .

It is an order weakly compact operator because i2 ◦ P1 = i2 ◦ Idl1 ◦ P1
and the identity operator Idl1 is order weakly compact. But the
operator P ′

1 ◦ i′2 is not order weakly compact. If not, i.e. if

P ′
1 ◦ i′2 : F ′ −→ l∞ −→ E′

is order weakly compact, then the operator product

i′1 ◦ P ′
1 ◦ i′2 :F −→ l∞

would be order weakly compact and hence its restriction to l∞, which
is just the identity operator Idl∞ , would be order weakly compact. But
this is impossible.



Introduction

The class of order weakly compact operators

Conversely, whenever F is a Dedekind σ-complete Banach lattice,
the following result gives a sufficient and necessary conditions under
which an operator is order weakly compact if its adjoint is order
weakly compact :

Théorème 18

Let E and F be two Banach lattices such that F is Dedekind
σ-complete. Then the following conditions are equivalent :

1 Each order bounded operator T from E into F is order weakly
compact.

2 Each order bounded operator T from E into F is order weakly
compact whenever its dual operator T ′from F ′ into E′ is order
weakly compact.

3 One of the following assertions is valid :
a) the norm of E is order continuous.
b) the norm of F is order continuous.
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Proof.1) =⇒ 2). Obvious.
2) =⇒ 3). Assume that the norms of E and F are not order
continuous.
As the norm of E is not order continuous, it follows from Theorem
2.4.2 of ([Meyer-Nieberg], Banach lattices, 1991) and Lemma 2.2
the existence of a positive order bounded disjoint sequence (xn) in
E+ with ‖xn‖ = 1 for all n and there exists a positive disjoint
sequence (gn) of E′ with ‖gn‖ ≤ 1 for each n, such that

gn(xn) = 1 for all n and gn(xm) = 0 for n 6= m (∗).

We consider the operator S defined by the following :

S : E −→ l∞, x 7−→ S(x) = (gn(x))∞
n=1 .

It is clear that S is positive.



On the other hand, since the norm of F is not order continuous, there
exists y ∈ F+ and an order bounded disjoint sequence (yn) in F such
that 0 ≤ yn ≤ y and ‖yn‖ = 1 for all n.
Now, as F is Dedekind σ-complete, it follows from the proof of
Theorem 117.3 of ([Zaanen], Riesz spaces II, 1983)) that the
operator

ϕ : l∞ −→ F ,

(λ1, λ2, .......) 7−→ ϕ ((λ1, λ2, .......)) = (o)−
∞

i = 1
∑

λiyi

defines a positive operator from l∞ into F where the convergence is
in the sens of the order.



We consider the operator product T = ϕ ◦ S : E −→ F defined by

T (x) = (o)−
∞

i = 1
∑

gi(x)yi for each x ∈ E

It is well defined and positive, and its adjoint T ′ = S′ ◦ ϕ′ is order
weakly compact. But, the operator T is not order weakly compact.
In fact, since (l∞)′ has an order continuous norm, the positive
operator ϕ′ : F ′ −→ (l∞)′ is order weakly compact by Theorem 22.1
of ([Aliprantis-Burkinshaw], Locally solid Riesz spaces. Pure and
Applied Mathematics, 1978.) and hence T ′ = S′ ◦ ϕ′ is order weakly
compact.



But, the operator T is not order weakly compact. To see this, note that
T (xn) = yn for all n (by (∗)) and hence ‖T (xn)‖ = ‖yn‖ = 1 for all n.
Now since (xn) is an order bounded disjoint sequence in E+, it
follows from Dodds’s Theorem 5.57 of ([Aliprantis-Burkinshaw],
Positive operators, 2006) that T is not order weakly compact. This
completes the proof of 2) =⇒ 3).
3) =⇒ 1). It is just a consequence of Theorem 22.1 of
([Aliprantis-Burkinshaw], Locally solid Riesz spaces. Pure and
Applied Mathematics, 1978).
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Remarque 6

The condition ”F is Dedekind σ-complete” is essential. In fact, each
operator T from l∞ into c (which is not Dedekind σ-complete) is
weakly compact (see the proof of Proposition 1 of ([Wnuk], Remarks
on J. R. Holub’s paper concerning Dunford-Pettis operators.
Math. Japon. (1993)). Hence T is order weakly compact and its dual
operator is also order weakly compact. But, the norm of the Banach
lattice l∞ and the norm of the Banach lattice c are not order
continuous.

Belmesnaoui AQZZOUZ Positivity IX, University of Alberta, Edmonton
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