UNBOUNDED NORM CONVERGENCE
IN BANACH LATTICES

Y. DENG, M. O'BRIEN, AND V.G. TROITSKY

ABSTRACT. A net (z,) in a vector lattice X is unbounded order
convergent to x € X if |z, — | A u converges to 0 in order for
all v € X;. This convergence has been investigated and applied
in several recent papers by Gao et al. It may be viewed as a
generalization of almost everywhere convergence to general vector
lattices. In this paper, we study a variation of this convergence for
Banach lattices. A net (z,) in a Banach lattice X is unbounded
norm convergent to x if H|xa — x| A uH — 0 for all w € X;. We
show that this convergence may be viewed as a generalization of
convergence in measure. We also investigate its relationship with
other convergences.

1. INTRODUCTION

We begin by recalling a few definitions. A net (z,)aca in a vector
lattice X is said to be order convergent to x € X if there is a net
(28)sep in X such that zg | 0 and for every 5 € B, there exists ag € A
such that |z, — z| < z3 whenever a > «y. For short, we will denote
this convergence by x, — = and write that z, is o-convergent to z. A
net (r,)aca in a vector lattice X is unbounded order convergent
toxr € X if |z, — 2| Au > 0 for all u € X,. We denote this convergence
by zo — x and write that z, uo-converges to . We refer the reader
to [GTX] for a detailed exposition on uo-convergence and further ref-
erences. In particular, for sequences in L,(u) spaces, uo-convergence
agrees with almost everywhere (a.e.) convergence. Furthermore, if X
can be represented as an ideal (or, more generally, a regular sublattice)
in Li(u), then the uo-convergence of sequences in X agrees with the
a.e. convergence in Li(u). Thus, uo-convergence may be viewed as a
generalization of a.e. convergence to general vector lattices.
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Throughout this paper, X will stand for a Banach lattice. For a
net (x4) in X we write z, — z if (z,) converges to x in norm, i.e.,
|ta — || = 0. A net (z,) in X is unbounded norm convergent or
un-convergent to x if |z, — x| Au — 0 for all u € X, ; we then write
T — 2. Un-convergence was introduced in [Tro04] as a tool to study
measures of non-compactness. In this paper, we study properties of un-
convergence and its relationship to other convergences. In particular,
we show that un-convergence may be viewed as a generalization of
convergence in measure to general Banach lattices.

2. BASIC PROPERTIES OF UN-CONVERGENCE

Unless stated otherwise, we will assume that X is a Banach lattice
and all nets and vectors lie in X. We routinely use the following in-
equality: (z+y) Au <z Au+yAuforall z,y,u € X;; see, e.g.,
[ABOG, Lemma 1.4].

Lemma 2.1. (1) 2o = z iff (14 — 7) = 0;
(ii) If 2o —> x, then ys — x for any subnet (yg) of (o).
(iii) Suppose x, — x and yo — y. Then axy + by, — ax+ by for
any a,b € R.
(iv) If 1o > x and x4 > y, then v = y.
(v) If 1o = x, then |z4| > |2|.

Proof. (), (@), and () are straightforward. To prove ([v), observe
that |z —y| < |z —xa| + |y — 24| for every a. Put u = |z —y|; it follows
that

lt—yl=|z—ylAu<|z—z| ANu+|y— 2o Au— 0.
Finally, @) follows from ||z,| — ||| < |za — 2. O

Remark 2.2. In particular, z, — x iff |z, —2| = 0. This often allows
one to reduce general un-convergence to un-convergence of positive nets
to zero.

Example 2.3. It was observed in Examples 21 and 22 in [Tro04] that
on ¢y un-convergence agrees with coordinate-wise convergence and on
Co(R2) un-convergence agrees with uniform convergence on compacta.

The proofs of the following two facts are straightforward.

Proposition 2.4. If z, — 0 then z, — 0. For order bounded nets,
un-convergence and norm convergence agree.

This justifies the name unbounded norm convergence.
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Proposition 2.5. In an order continuous Banach lattice, uo-convergence
implies un-convergence.

Example 2.6. Let (e,,) be the standard unit sequence in £. It follows
immediately from Proposition 2.4l that it is not un-null. This serves as
a counterexample to several “natural” statements. First, while [GTX|
Corollary 3.6] asserts that every disjoint sequence is uo-null (see also
[Gaol4, Lemma 1.1]), this example shows that a disjoint sequence need
not be un-null. Second, since (e,) is uo-null, this example shows that
the order continuity assumption in Proposition cannot be dropped.

Third, it was observed in [GTX| Theorem 3.2] that for a net (z,) in
a regular sublattice F' of a vector lattice E, z, — 0 in F iff z, — 0
in E. This fails for un-convergence: indeed, (e,,) is un-null as a sequence
in ¢y, but not in ¢o. However, it is easy to see that if z, — 0 in X
then z, — 0 in every sublattice of X.

Example 2.7. The next example shows that un-convergence in a sub-
lattice does not imply un-convergence in the entire space even when
the sublattice is a lattice copy of ¢;. Let X = £} @ loo; let (f,) be the
standard unit basis of ¢; and (g,) the standard unit sequence in /.
Put z,, = f,, ® gn. Let Y be the closed span of (x,) in X. Since (z,,) is
a disjoint sequence in X, Y is exactly the closed sublattice generated
by (x,). Observe that

Hg CYk.TkH = Hgakfk”\/))gﬁkgk” = (g|0zk|)\/<k\2|ak|> = ;‘akl'

for any n and any scalars aq, ..., a,. It follows that the basic sequence
() in X is 1-equivalent to (f,,) in ¢; and, therefore, Y is an isometric
lattice copy of ¢, in X. It is easy to see that f, — 0 in ¢;; hence
Tn —0in Y.

However, we claim that z, 2> 0 in X. Indeed, let v = 0 B 1 =
Ve, gk Then z, Au = g, for every n, hence (x, Au) does not converge
to zero in X.

The following three results are similar to Lemmas 3.6 and 3.7, and
Proposition 3.9 of [GX14]; we replace uo-convergence with un-convergence,
and we do not require the space be order continuous in this case. The
proofs are similar.

Lemma 2.8. If v, — x then |z, A|x| — |z| and ||z|| < liminf,||z4]|.

Recall that a subset A of X is almost order bounded if for every
e > 0 there exists u € X, such that A C [—u,u] + ¢Bx. Equivalently,
| (Jz| = w)*|| < e for all z € A.
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Lemma 2.9. If 2, = 2 and (z4) is almost order bounded then x, —
T.

Proposition 2.10. If (z,) is relatively weakly compact and x — x
then (x,) converges to x in |o|(X, X™).

Proof. Without loss of generality, x = 0. Let f € X}. Fix ¢ > 0. By
[ABOG, Theorem 4.37], there exists u € X, such that f((|xa| —u)+) <

e for every . It follows from |z,| Au — 0 that f(|za| Au) — 0, so
that

f(|zal) = F(Jzal Au) + f<(]xa] — u)+> < 2
for all sufficiently large cv. It follows that f(|za|) — 0. O

If (x,) is a net in a vector lattice with a weak unit e then z, — 0 iff
lzo4| Ae 2 0; see, e.g., [GTX, Lemma 3.5]. Analogously, the next result
limits the task of checking un-convergence to a single quasi-interior
point, if one exists; cf [Tro04, Lemma 24].

Lemma 2.11. Let X be a Banach lattice with a quasi-interior point e.
Then v, — 0 iff || Ae — 0.

Proof. The forward implication is immediate. For the reverse implica-
tion, let u € X, be arbitrary and fix € > 0. Note that

|Za| Au < |zo| Alu—uAme)+|zo| A(uAme) < (u—uAme)+m(|za|Ae)
and, therefore,
lza] Aul| < [lu—uAmel| +ml[|za] Acell

for all @ and all m € N. Since e is quasi-interior, we can find m such
that [[u — u A me|| < e. Furthermore, it follows from |z,| A e — 0 that
there exists aq such that H|xa| A eH < = whenever a > ag. It follows
that |||za] Aul| < &+ m= = 2. Therefore, |z4| Au — 0. O

Corollary 2.12. Let X be an order continuous Banach lattice with a
weak unit e. Then x4 — 0 iff |x4| Ae — 0.

Proof. If X is order continuous, then e is a weak unit iff e is a quasi-
interior point. O

Recall that norm convergence is sequential in nature. In particular,
given a net (x,) in a normed space, if x, — x then there exists an in-
creasing sequence of indices () such that x,, — . This often allows
one to reduce nets to sequences when dealing with norm convergence.
In view of Lemma .11l we can do the same with the un-convergence
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as long as the space has a quasi-interior point (in particular, when X
is separable):

Corollary 2.13. Suppose that X has a quasi-interior point and x, —»
0 for some net (x,) in X. Then there exists an increasing sequence of

indices (o) such that x,, — 0.

Question 2.14. Does Corollary 2.I3] remain valid without a quasi-
interior point?

We will show in Corollary 3.5 that the answer is affirmative for order
continuous spaces.

3. DISJOINT SUBSEQUENCES

The following lemma is standard; we provide the proof for the con-
venience of the reader.

Lemma 3.1. Let |x| = u + v for some vector x and some positive
vectors u and v in a vector lattice. Then there exist y and z such that
r=y+z |y =u, and |z| = v.

Proof. Applying the Riesz Decomposition Property [AB06, Theorem 1.20]
to the equality z™ +2~ = u+ v, we find four positive vectors vectors a,
b, ¢, and d such that u =a+b,v=c+d, 2t =a+c,and z~ =b+d.
Puty=a—band 2 =c—d. Theny+z2=at -2~ = 2. It fol-
lows from 0 < a < 27 and 0 < b < z~ that a L b and, therefore,
ly| = |a — b| = a+ b = w. Similarly, ¢ L d, and, therefore, |z| =v. O

Theorem 3.2. Let (x,) be a net in X such that o —» 0. Then there
exists an increasing sequence of indices (coy) and a disjoint sequence
(dg) such that z,, — di — 0.

Proof. Assume first that xz, > 0 for every a. Pick any aq. Suppose

that o, ..., a;—1 have been constructed. Note that z, A z,, — 0 for
everyi=1,...,k—1. Choose aj > «4_1 so that H:cak NZq, || < %% for
every i = 1,...,k — 1. This produces an increasing sequence of indices

(ag) such that ||z|| < 577 where 2y, = Ta, A2y, 1 < i < k.

For every k, put v, = Z;:ll Zik + Z;’ik +12kj- Clearly, vy is defined
and [Jvg| < 55. Put dp = (2q, —vp)". It is casy to see that 0 <
T, — di < vy, so that ||z,, — di|| — 0 as k — oo. It is left to show
that the sequence (dj) is disjoint. Let k < m. Then

d, = (7o, —ve)t < (20, — 2km)t = Ty, — Ta, A Za,,, and
dm = (Z'am - Um)Jr < (xam - ka)Jr = Ta,, — Lay N Za,, -

It follows that d L d,,.
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For the general case, we first apply the first part of the proof to the
net (|z4]) and produce an increasing sequence of indices () and two
positive sequences (wy) and (hy) such that |z,,| = wr + hg, (wg) is
disjoint, and hy — 0. By Lemma Bl we can find sequences (dy) and
(gr) in X with |dg| = wg, |gx| = hx and z,, = di + gi. It follows that
(dg) is a disjoint sequence and g — 0. Thus, z,, — di — 0. O

Remark 3.3. Theorem is a variant of the Kadec-Pelczynski di-
chotomy theorem; cf [LT79) p.38]. Theorem clearly implies [GTX]|
Lemma 6.7]; unlike in [GTX| Lemma 6.7], we do not require the space
to be order continuous or the net be norm bounded. Also, we start
with a net instead of a sequence.

Recall the following standard fact; see, e.g., Exercise 13 in [AAQ2,
p. 25].

Proposition 3.4. Fvery norm convergent sequence in a Banach lattice
has a subsequence which converges in order to the same limit.

Corollary 3.5. Let (z,) be a net in an order continuous Banach lattice
X such that x, ~— 0. Then there exists an increasing sequence of
indices (ay) such that x,, — 0 and T, — 0.

Proof. Let (ay) and (dj) be as in Theorem 3.2l Since (dy) is disjoint, we
have d;, — 0 and, therefore, d, — 0. It now follows from To, —di, — 0

that z,, — di % 0 and, therefore, Ty, % 0. Furthermore, since
To, — dr, — 0, passing to a further subsequence, we may assume that

Toy, — di 2 0 and, therefore, To,, — di 22 0. This yields Ty, 20 O

Note that Corollary provides a partial answer to Question 2.14]

4. UO-CONVERGENT SUBSEQUENCES AND CONVERGENCE IN
MEASURE

We now have an analogue of Proposition [3.4] for un- and uo-convergences.

Proposition 4.1. If x, — 0 then there is a subsequence (x,,) of (z,)
such that z,, 0.

Proof. Define e := > 7 el et B, be the band generated by e

n=1 2"
in X. It follows from x, — 0 that |z,| Ae — 0 in X and, therefore,
in B,. There exists a subsequence (,,) of (z,) such that |z, |Ae 2 0

in B.. Since e is a weak unit in B., we have z,, 2 01in B.. Finally,
since B, is an ideal in X, it follows from [GTX| Corollary 3.8] that

T, — 0in X. u
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It was observed in [Tro04, Example 23] that for sequences in L, (),
where g is a finite measure, un-convergence agrees with convergence in
measure. We now provide an alternative proof of this fact.

Corollary 4.2. ([Tro04]) Let (f,) be a sequence in L,(p) where 1 <
p < 0o and 1 is a finite measure. Then f, — 0 iff f, & 0.

Proof. Without loss of generality, f, > 0 for all n. Suppose f, & 0. It
is easy to see that f, A1l — 0 in the norm of L,(u). It follows from
Lemma [ZI1 that f, — 0.

Conversely, suppose that f, — 0. Then every subsequence (f,,)
is still un-null and, therefore, by Proposition d.1] has a further subse-
quence fp, such that fp, 2 0 and, therefore, fr, 2% 0. This yields

1. 5 0. n

Remark 4.3. In the last step of the preceding proof, we used the fact
that given a sequence of measurable functions over a measure space
with a finite measure, the sequence converges in measure iff every sub-
sequence has a further subsequence which converges a.e. (to the same
limit); see, e.g., Corollary 19 in [Roy88 p. 96]. Note that Proposi-
tion [l may be viewed as an extension of one of the directions of this
equivalence to general Banach lattices. The next result shows that for
order continuous Banach lattices the other direction extends as well.

Theorem 4.4. A sequence in an order continuous Banach lattice X is
un-null iff every subsequence has a further subsequence which is uo-null.

Proof. The forward implication is Proposition A1l To show the con-
verse, assume that x, 2> 0. Then there exist § > 0, u € X, and a
subsequence (,,,) such that |||2,,| A u|| > & for all k. By assumption,

there is a subsequence (z,,, ) of (r,,) such that z,, —» 0, and, there-

fore, x,, ~— 0 by Proposition 25l This yields |z, | Au — 0, which is
a contradiction. ]

Remark 4.5. Again, Example shows that the order continuity
assumption cannot be removed.

Suppose that X is an order continuous Banach lattice with a weak
unit e. It is known that X can be represented as an order and norm
dense ideal in L;(p) for some finite measure p. That is, there is a
vector lattice isomorphism 7: X — L;(u) such that RangeT is an
order and norm dense ideal of L;(u). Note that 7" need not be a norm
isomorphism, though 7" may be chosen to be continuous and Te = 1.
Moreover, Range T contains L., (u) as a norm and order dense ideal.
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It is common to identify X with RangeT and just view X as an ideal
of Ly(u); we also identify e with 1. We call such an inclusion of X into
an Ly(u) space an AL-representation of X. We refer the reader
to [LT79, Theorem 1.b.14] or [GTXl Section 4] for more details on
AL-representations.

It was observed in [GTX| Remark 4.6] that for a sequence (z,,) in X,
T, > 0in X iff z, == 0 in Ly(u). We prove an analogous result for
un-convergence.

Theorem 4.6. Let X be an order continuous Banach lattice with a
weak unit; let Ly(p) be an AL-representation for X. For a sequence

(2,) in X, we have z, > 0 in X iff 2, & 0 in Ly ().

Proof. By Theorem 4], z,, — 0 in X iff for every subsequence (z,, )
there is a further subsequence (z,, ) such that z,, =% 0. The latter is

equivalent to z, 2% 0. Now apply Remark €3 O

5. WHEN DO UN- AND UO-CONVERGENCES AGREE?

Our next goal is to prove that uo- and un-convergences for sequences
agree iff X is order continuous and atomic. Recall that a non-zero el-
ement a € X, is an atom iff the ideal I, consists only of the scalar
multiples of a. In this case, I, is a projection band. Let P, be the
corresponding band projection. We say that X is atomsic or discrete
if it equals the band generated by all the atoms in it. Suppose that X
is atomic, and fix a maximal disjoint collection A of atoms in X. For
every r € X, we have x = \/aeA Tqa, where x,a = P,x. One can also
write this as © = ) _, x,a, where the sum is understood as the order
limit (or the supremum) of sums over finite subsets of A. This sum
may be viewed as a coordinate expansion of x over A. Furthermore, if
we are also given a positive vector y = >, yqa, then x < yiff z, < y,
for every a € A. Suppose now that, in addition, X is order continuous.
Then it can be shown that only countably many of coefficients z, are
non-zero. Enumerating them, we get © = Y .o, 24,a;, where the series
converges in order and, therefore, in norm. For details, see [ABO3], Ex-
ercise 7 in [Sch74l, p. 143], and the proof of Proposition 1.a.9 in [LT79).
We will need two standard lemmas.

Lemma 5.1. Suppose that X is atomic and order continuous, and (z,)
is an order bounded sequence in X. If x,, — 0 then z, — 0.

Proof. Without loss of generality, x,, > 0 for all n. Let v € X, such
that x,, < u for every n. There is a sequence of distinct atoms (a;) in A
such that v = "7, u;a; for some coefficients (u;); the series converges
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in norm and in order. Given n € N, it follows from 0 < z,, < u that we

can write x, = > .| ¥p;a; for some sequence of coefficients (z,;). Note

that 0 < x,;a; < z, for every n and ¢; it follows that lim,, x,,; = 0 for

every i; that is, the sequence (z,) converges to zero “coordinate-wise”.
For each k € N, define

k

Up = Z(% A ug)a; + i u;a;.

=1 i=k+1

It is easy to see that vy | 0. On the other hand, since z, < u and (z,)
converges to zero coordinate-wise, for every k we can find ny such that
z, < v, whenever n > ng. It follows that z,, — 0. ]

Lemma 5.2. If p is a finite non-atomic measure then there exists a
sequence (f) in Lo (1) which converges to zero in measure but not a.e..

Proof. In the special case when p is the Lebesgue measure on the unit
interval, we take (f,,) to be the “typewriter” sequence

fn = X(u=zh neshir) where k > 0 such that 2% < n < 2L,

2k 0 ok

In the general case, we produce a similar sequence using the fact that
a non-atomic finite measure space can be partitioned into measurable
pieces of arbitrarily small measure; this follows easily from Exercise 2
in [Hal70, p. 174]. O

Theorem 5.3. The following are equivalent:

(i) 2, —> 0 <= x, — 0 for every sequence (z,) in X;
(ii) X is order continuous and atomic.

Proof. ()= (@) Suppose X is order continuous and atomic. The im-
plication z, — 0 = x, — 0 is trivial, and the reverse implication
follows immediately from Lemma 5.1

[{)= (@) Let (x,) be a disjoint order bounded sequence in X. Then
r, — 0 by [GTX|, Corollary 3.6]. By assumption, x, — 0. Since
the sequence is order bounded, this yields z,, — 0. Hence, X is order
continuous. It follows that every closed ideal in X is a projection band.

It remains to show that X is atomic. Suppose not; then the band X;
generated by all the atoms in X is a proper subset of X. Let X5 be the
complementary band. Fix a non-zero w € X, and let Y = B, the
band generated by w in X. Clearly, Y C X, Y is order continuous,
w is a weak unit in Y, and Y has no atoms. We can find an AL-
representation for Y such that Lo.(¢) €Y C Ly(p). Since Y has no
atoms, it is easy to see that p is a non-atomic measure.
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By Lemma [5.2] there is a sequence () in Lo (1) such that 2, £ 0

but z, £ 0. It follows that z,, — 0 but z,, £ 0 in Y and, therefore,
in X; a contradiction. 0

6. UN-CONVERGENCE AND WEAK CONVERGENCE

In this section, we consider the relationship between un- and weak
convergences. For a mononote net, weak convergence implies norm con-
vergence, and, therefore, un-convergence; however, weak convergence
does not imply un-convergence in general. For example, the following
fact was observed in [CW98, Theorem 2.2]:

Lemma 6.1. ([CW9g]) If X is non-atomic and order continuous, and

r € X, then there exists a sequence (x,,) such that x,, — 0 yet |z,| = x
for all n.

Clearly, (z,) is not un-null.

Proposition 6.2. The following are equivalent:

(i) z, = 0 implies z,, — 0 for every sequence (x,) in X;
(ii) X s order continuous and atomic.

Proof. ([l)=-(i) The proof is similar to that of Theorem 5.3l Let (z,,) be
a disjoint order bounded sequence in X. Then z,, — 0. By assumption,
T, = 0. Since (z,,) is order bounded, this yields x,, — 0. Therefore,
X is order continuous.

Now suppose that X is not atomic. Then X = X; & X5 where X is
the band generated by the atoms, and X5 is the complementary band.
Since X is not atomic, we have Xy # {0}. Now apply Lemma
to X2.

[{@)= (@) Lemma 6.14 in [GTX] asserts that if X is atomic and z,, ~
0 then z, — 0. If, in addition, X is order continuous, this yields
T, —> 0. O

In the previous result, the conditions for a weakly-null sequence to
be un-null are quite strong. On the other hand, in an arbitrary Banach
lattice, this fact is true for monotone nets. If we remove the constraint
that X is atomic, then we obtain the following result. Recall that for an
order bounded positive net (z,) in an order continuous Banach lattice,

T — 0 implies z, — 0 by [AB06, Theorem 4.17].

Proposition 6.3. Let (z,) be a positive net in an order continuous
Banach lattice X. If £, — 0 then x4 — 0.
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Proof. For every u € X, we have 0 < x, A u < x, for every a.. This

yields o, A v — 0. Since this net is positive and order bounded,
un

o N u — 0. Hence, z, — 0. ]

We have now seen several conditions on X that yield z,, — 0 implies
T, — 0. For the converse, we have the following.

Theorem 6.4. If X* is order continuous then x, 20 implies xy — 0
for every norm bounded net (x,) in X, .

Proof. Suppose that X* is order continuous and (z,,) is a norm bounded
net in X, with z, — 0. Without loss of generality, ||z, < 1 for
every «. Since X* is order continuous, it follows from [AB0G, Theorem
4.19] that for every ¢ > 0 and every f € X7 there exists u € X, such
that f(|z| — |z| Au) < e whenever ||z|| < 1. In particular, f(z4 —za A
u) < ¢ for every a. It follows from z, A u — 0 that f(z,) < ¢ for all
sufficiently large . Hence, f(x,) — 0 and, therefore, 2, ~ 0. O

We do not know whether the converse is true. If X* is not order con-
tinuous then ¢, is lattice embeddable in X; see, e.g., [AB06L Theorem
4.69]. Let (e,) be the standard basis of ¢, viewed as a sequence in X.
It is easy to see that e, £ 0 in ¢; and, therefore, in X. It is also easy
to see that e, —» 0 in ¢;. However, this does not imply that e, — 0
in X; see Example 271

7. UN-CONVERGENCE IS TOPOLOGICAL

It is well known that a.e. convergence is not topological; see, e.g.,
[Ord66]. That is, this convergence is not given by a topology. It fol-
lows that uo-convergence need not be topological in general. We show
that un-convergence is topological. Moreover, we explicitly define the
neighborhoods of this topology.

Given an € > 0 and a non-zero u € X, we put

Vie={z e X : |||z] Au|| <}

Let NV, be the collection of all the sets of this form. We claim that N
is a base of neighborhoods of zero for some Hausdorff linear topology.
Once we establish this, we will be able to define arbitrary neighbor-
hoods as follows: a subset U of X is a neighbourhood of y if y4+V C U
for some V € Nj. It follows immediately from the definition of un-
convergence that =, — 0 iff every set in Aj contains a tail of this
net, hence the un-convergence is exactly the convergence given by this

topology.
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We have to verify that N is indeed a base of neighborhoods of zero;
cf. [KN76, Theorem 5.1] or [Run05, Theorem 3.1.10].

First, every set in N trivially contains zero.

Second, we need to show that the intersection of any two sets in N
contains another set in Ny. Take V,,, ., and Vi, ., in NVy. Put e = e Aeg
and u = u; V up. We claim that V,,. CV,, ., NV,,,. Indeed, take any
x € V.. Then H|x| A u|| < e. It follows from |z| A uy < |z| A u that

el A < [[ls] Auf| <e <er,

so that x € V,,, o,. Similarly, x € V,, ,.

It is easy to see that V,,. +V,, . C V, 9.. This immediately implies
that for every U in N there exists V' € Ny such that V +V C U. It is
also easy to see that for every U € Nj and every scalar A with |A] <1
we have A\ U C U.

Next, we need to show that for every U € Ny and every y € U,
there exists V' € Ny such that y + V C U. Let y € V,. for some
e > 0 and a non-zero u € X,;. We need to find 6 > 0 and a non-
zero v € Xy such that y + V,5 C V, .. Put v := u. It follows from
y € Vi that |||yl Aul| < & take § := & — |||y A u|. We claim that
y+Vys € Ve Let x € V4 it suffices show that y + 2 € V,, .. Indeed,
ly + x| Au < |y| Au+ |z] Au, so that

Iy Al < il A ] + el Al < [l A + 6=

Finally, in order to show that the topology is Hausdorff, we need
to verify that (YANy = {0}. Indeed, suppose that 0 # = € V, . for
all non-zero v € X, and € > 0. In particular, x € V|, ., so that
|z]| = [||z| A |z|| < € for every & > 0; a contradiction.

Note that we could also conclude that the topology is linear and
Hausdorff from Lemma 2.1
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