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Abstract. We use the method of minimal vectors to prove that certain classes of
positive quasinilpotent operators on Banach lattices have invariant subspaces. We
say that a collection of operators F on a Banach lattice X satisfies condition (∗)
if there exists a closed ball B(x0, r) in X such that x0 > 0 and ‖x0‖ > r, and
for every sequence (xn) in B(x0, r) ∩ [0, x0] there exists a subsequence (xni

) and a
sequence Ki ∈ F such that Kixni converges to a non-zero vector. Let Q be a positive
quasinilpotent operator on X, one-to-one, with dense range. Denote 〈Q] = {T >
0 : TQ 6 QT}. If either the set of all operators dominated by Q or the set of all
contractions in 〈Q] satisfies (∗), then 〈Q] has a common invariant subspace. We also
show that if Q is a one-to-one quasinilpotent interval preserving operator on C0(Ω),
then 〈Q] has a common invariant subspace.

Lomonosov proved in [Lom73] that if T is not a multiple of the identity and com-

mutes with a non-zero compact operator K, then T has a hyperinvariant subspace,

that is, a proper closed nontrivial subspace invariant under every operator S in the

commutant {T}′ = {S ∈ L(X) : ST = TS}. There has been numerous extensions

and generalizations of the result of Lomonosov. In particular, Abramovich, Aliprantis,

and Burkinshaw produced several generalizations of Lomonosov’s theorem for Banach

lattice setting [AAB93, AAB94, AAB98], see also [AA02]. In these generalizations

commutation relations are substituted by a super-commutation relation ST 6 TS or

ST > TS and domination 0 6 K 6 T . They proved a series of results of the fol-

lowing type: if S is related to a compact operator via a certain rather loose chain of

super-commutations and dominations, then S has an invariant subspace.

Ansari and Enflo [AE98] have recently introduced the so-called technique of minimal

vectors in order to prove the existence of invariant subspaces for certain classes of

operators on a Hilbert space. The method was later modified so that it could be used

in arbitrary Banach spaces in [JKP03, And03, CPS04, Tr04]. In particular, the method

of minimal vectors allows to prove Lomonosov-type results where a compact operator

is replaced with a family of operators that “mimic” a compact operator.
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Theorem 1 ([Tr04]). Suppose that Q is a quasinilpotent operator on a Banach space,

and there exists a closed ball B 63 0 such that for every sequence (xi) in B there is

a subsequence (xni
) and a uniformly bounded sequence Ki in {Q}′ such that Kixni

converges to a non-zero vector. Then Q has a hyperinvariant subspace.

In the present paper we adapt the technique of minimal vectors to positive operators

on Banach lattices in the spirit of [AAB93, AAB94, AAB98].

In the following, X is a Banach lattice with positive cone X+. For simplicity we

assume that X is a real Banach lattice, however the arguments remain valid in the

complex case after straightforward adjustments. By an operator we always mean a

continuous linear operator from X to X. The symbol B(x, r) stands for the closed ball

of radius r centered at x. Let Q be a positive operator on X. We will be interested

in the existence of (non-trivial proper) subspaces invariant under Q and operators

commuting with Q. Therefore, we will usually assume that Q is one-to-one and has

dense range, as otherwise ker Q or Range Q are Q-hyperinvariant. Following [AA02]

we define the super left-commutant 〈Q] and the super right-commutant of [Q〉
of Q as follows:

〈Q] = {T > 0 : TQ 6 QT} [Q〉 = {T > 0 : TQ > QT}

If a < b in X, we write [a, b] = {x ∈ X : a 6 x 6 b}. A subspace Y ⊆ X is an

(order) ideal if |y| 6 |x| and x ∈ Y imply y ∈ Y . For K ∈ L(X) we say that K

is dominated by Q if |Kx| 6 Q|x| for every x ∈ X. Obviously, every operator in

[0, Q] =
{
K ∈ L(X) : 0 6 K 6 Q

}
is dominated by Q.

Definition 2. We say that a collection of operators F satisfies condition (∗) if there

exists a closed ball B(x0, r) in X such that x0 > 0 and ‖x0‖ > r, and for every sequence

(xn) in B(x0, r) ∩ [0, x0] there exists a subsequence (xni
) and a sequence Ki ∈ F such

that Kixni
converges to a non-zero vector.

Let x0 ∈ X+ with ‖x0‖ > 1, put B = B(x0, 1). Let B + X+ be the algebraic sum of

the two sets, i.e.,

B + X+ = {x + h : x ∈ B, h > 0}.

Lemma 3. For z ∈ X, the following are equivalent.

(i) z ∈ B + X+;

(ii) z > x for some x ∈ B;

(iii) x0 ∧ z ∈ B;

(iv) ‖(x0 − z)+‖ 6 1.
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Proof. The equivalence (i)⇔(ii) is trivial, (iii)⇔(iv) follows from the identity a−a∧b =

(a− b)+, and (iii)⇒(ii) because z > x0 ∧ z. To show (ii)⇒(iii), suppose that z > x for

some x ∈ B. Then x0 ∧ x 6 x0 ∧ z 6 x0, so that

0 6 x0 − x0 ∧ z 6 x0 − x0 ∧ x 6 |x0 − x|,

hence ‖x0 − x0 ∧ z‖ 6 ‖x0 − x‖ 6 1. �

Corollary 4. The set B + X+ is closed, convex, and does not contain the origin.

Proof. The set B + X+ is clearly convex. By Lemma 3, 0 /∈ B + X+. Since the map

z 7→ ‖(x0 − z)+‖ is continuous, B + X+ is closed. �

Put D = Q−1(B + X+). Then D is convex, closed, and doesn’t contain the origin.

Notice that D is non-empty because Range Q is dense.

Lemma 5. If z ∈ D then |z| ∈ D.

Proof. Let z ∈ D, then Qz ∈ B + X+. It follows from z 6 |z| that Qz 6 Q|z|, so that

Q|z| ∈ B + X+. �

Let d be the distance from D to the origin. Fix positive real number ε, there exists

y ∈ D such that ‖y‖ 6 (1 + ε)d. Since
∥∥|y|∥∥ = ‖y‖, by Lemma 5 we can assume

without loss of generality that y > 0. We will say that y is a (1 + ε)-minimal vector

for Q and B + X+. Note that when X is reflexive, one can actually find a 1-minimal

vector, or, simply, a minimal vector.

Note that if z ∈ D ∩ B(0, d) then λz /∈ D whenever 0 6 λ < 1. It follows that

λQz /∈ B + X+ for every 0 6 λ < 1, so that Qz belongs to the boundary ∂(B + X+)

of B + X+. Then

Q
(
B(0, d)

)
∩ (B + X+) = Q

(
B(0, d) ∩D

)
⊆ ∂(B + X+).

In particular, Q
(
B(0, d)

)
and the interior (B+X+)◦ are two disjoint convex sets. Since

the former of the two has non-empty interior, they can be separated by a continuous

linear functional (see, e.g., [AB99, Theorem 5.5]). That is, there exists a functional f

with ‖f‖ = 1 and a positive real number c such that f|Q(B(0,d)) 6 c and f|(B+X+)◦ > c.

By continuity, f|(B+X+) > c. We say that f is a minimal functional for Q and B.

Lemma 6. If y is a (1 + ε)-minimal vector and f is a minimal functional for Q and

B + X+, then the following are true.

(i) f is positive;

(ii) f(x0) > 1;



4 R. ANISCA AND V. G. TROITSKY

(iii) 1
1+ε

f(Qy) 6 f(x0 ∧Qy) 6 f(Qy);

(iv) 1
1+ε

‖Q∗f‖‖y‖ 6 (Q∗f)(y) 6 ‖Q∗f‖‖y‖.

Proof. (i) Let z ∈ X+ then x0 + λz ∈ B + X+ for every positive real number λ. It

follows that f(x0 + λz) > c, so that f(z) >
(
c− f(x0)

)
/λ → 0 as λ → +∞.

(ii) For every x with ‖x‖ 6 1 we have x0 − x ∈ B. It follows that f(x0 − x) > c, so

that f(x0) > c+ f(x). Taking sup over all x with ‖x‖ 6 1 we get f(x0) > c+‖f‖ > 1.

(iii) Since f is positive, it follows from x0 ∧ Qy 6 Qy that f(x0 ∧ Qy) 6 f(Qy).

Notice that y/(1 + ε) ∈ B(0, d), so that f(Qy)/(1 + ε) 6 c. On the other hand, by

Lemma 3 we have x0 ∧Qy ∈ B ⊆ B + X+, so that f(x0 ∧Qy) > c > 1
1+ε

f(Qy).

(iv) We trivially have (Q∗f)(y) 6 ‖Q∗f‖‖y‖. Observe that the hyperplane Q∗f = c

separates D and B(0, d). Indeed, if z ∈ B(0, d), then (Q∗f)(z) = f(Qz) 6 c, and

if z ∈ D then Qz ∈ B + X+ so that (Q∗f)(z) = f(Qz) > c. For every z with

‖z‖ 6 1 we have dz ∈ B(0, d), so that (Q∗f)(dz) 6 c, it follows that
∥∥Q∗f

∥∥ 6 c
d
.

On the other hand, for every δ > 0 there exists z ∈ D with ‖z‖ 6 d + δ, then

(Q∗f)(z) > c > c
d+δ

‖z‖, whence
∥∥Q∗f

∥∥ > c
d+δ

. It follows that
∥∥Q∗f

∥∥ = c
d
. For

every z ∈ D we have (Q∗f)(z) > c = d
∥∥Q∗f

∥∥. It follows from ‖y‖ 6 (1 + ε)d that

(Q∗f)(y) > 1
1+ε

∥∥Q∗f
∥∥‖y‖. �

For each n > 1 choose a (1 + ε)-minimal vector yn for Qn and B + X+. We say that

(yn) is a (1 + ε)-minimal sequence for Q and B + X+.

Lemma 7. If Q is quasinilpotent, then (yn) has a subsequence (yni
) such that

‖yni−1‖
‖yni‖

→
0.

Proof. Otherwise there would exist δ > 0 such that ‖yn−1‖
‖yn‖ > δ for all n, so that

‖y1‖ > δ‖y2‖ > . . . > δn‖yn+1‖. Since Qnyn+1 ∈ Q−1(B + X+) then∥∥Qnyn+1

∥∥ > d >
‖y1‖
1 + ε

>
δn

1 + ε
‖yn+1‖.

It follows that ‖Qn‖ > δn/(1 + ε), which contradicts the quasinilpotence of Q. �

Theorem 8. Suppose that Q is a positive quasinilpotent operator, one-to-one, with

dense range. If the set of all operators dominated by Q satisfies (∗), then there exists

a common nontrivial invariant subspace for 〈Q]. Moreover, if [0, Q] satisfies (∗), then

there exists a common nontrivial invariant closed ideal for 〈Q].

Proof. Suppose that that the set of all operators dominated by Q satisfies (∗), show

that there exists a common nontrivial invariant subspace for 〈Q]. Let B(x0, r) be the

ball given by (∗), without loss of generality r = 1. Fix ε > 0, for every n > 1 choose
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a (1 + ε)-minimal vector yn and a minimal functional fn for Qn and B + X+. By

Lemma 7 there is a subsequence (yni
) such that

‖yni−1‖
‖yni‖

→ 0. Since ‖fni
‖ = 1 for all

i, we can assume (by passing to a further subsequence), that (fni
) weak*-converges to

some g ∈ X∗. By Lemma 6(ii) we have fn(x0) > 1 for all n, it follows that g(x0) > 1.

In particular, g 6= 0.

Consider the sequence (x0∧Qni−1yni−1)
∞
i=1. The terms of this sequence are positive,

and by Lemma 3 they are contained in B, so that, by passing to yet a further subse-

quence, if necessary, we find a sequence (Ki) such that Ki is dominated by Q for all i

and Ki(x0 ∧Qni−1yni−1) converges to some vector w 6= 0.

Show that g(Tw) = 0 for every T ∈ 〈Q]. Suppose T ∈ 〈Q]. It follows from

Lemma 6(iv) that
(
Q∗nifni

)
(yni

) 6= 0 for every i, so that X = span{yni
}⊕ker

(
Q∗nifni

)
.

Then one can write Tyni−1 = αiyni
+ ri, where αi is a scalar and ri ∈ ker

(
Q∗nifni

)
.

We claim that αi → 0. Indeed,

(1)
(
Q∗nifni

)(
Tyni−1

)
= αi

(
Q∗nifni

)
(yni

),

so that αi > 0. Now by Lemma 6(iv) we have

(2)
(
Q∗nifni

)(
Tyni−1

)
>

αi

1 + ε

∥∥Q∗nifni

∥∥‖yni
‖.

On the other hand,

(3)
(
Q∗nifni

)(
Tyni−1

)
6

∥∥Q∗nifni

∥∥ · ‖T‖ · ‖yni−1‖.

It follows from (2) and (3) that αi 6 (1 + ε)‖T‖‖yni−1‖
‖yni‖

, so that αi → 0. Since Ki is

dominated by Q and TQ 6 QT , we have∣∣∣fni

(
TKi(x0 ∧Qni−1yni−1)

)∣∣∣ 6 fni

(
T

∣∣Ki(x0 ∧Qni−1yni−1)
∣∣) 6

fni

(
TQ(x0 ∧Qni−1yni−1)

)
6 fni

(
TQ(Qni−1yni−1)

)
6 fni

(
QniTyni−1

)
.

It follows from (1) that fni

(
QniTyni−1

)
= αifni

(
Qniyni

)
. Further, Lemma 6(iii) yields

αifni

(
Qniyni

)
6 αi(1 + ε)fni

(
x0 ∧Qniyni

)
6 αi(1 + ε)

(
‖x0‖+ 1

)
because ‖fni

‖ = 1 and x0 ∧Qniyni
∈ B. Thus,

fni

(
TKi(x0 ∧Qni−1yni−1)

)
→ 0.

On the other hand,

TKi(x0 ∧Qni−1yni−1) → Tw

in norm. Since fni

w∗
−→ g, we conclude that g(Tw) = 0.

Let Y be the linear span of 〈Q]w, that is, Y = lin{Tw : T ∈ 〈Q]}. Since 〈Q]

is a multiplicative semigroup, Y is invariant under every T ∈ 〈Q]. It follows from
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0 6= Qw ∈ Y that Y is non-zero. Finally, Y 6= X because g(Tw) = 0 for all T ∈ 〈Q],

so that Y ⊆ ker g.

Suppose now that [0, Q] satisfies (∗). Then the vector w constructed in the previous

argument is positive. Let E be the ideal generated by 〈Q]w, that is

E =
{
y ∈ X : |y| 6 Tw for some T ∈ 〈Q]

}
.

Then E is non-trivial since w ∈ E, it is easy to see that E is invariant under 〈Q]. Since

g is a positive functional, then g vanishes on E, hence E 6= X. �

Remark 9. Notice that in the proof we don’t really need (∗) to hold for every sequence

in B(x0, 1) ∩ [0, x0], but only for a certain subsequence of (x0 ∧Qnyn), where (yn) is a

(1 + ε)-minimal sequence.

Corollary 10. If Q is a quasinilpotent positive operator, one-to-one, with dense range,

and there exists x0 ∈ X such that [0, x0] is compact, then 〈Q] has a common invariant

non-trivial closed ideal.

Proof. The statement follows immediately from Theorem 8 because [0, Q] satisfies (∗)
with Ki = Q. �

We say that x0 ∈ X+ is an atom if every element of [0, x0] is a scalar multiple of x0.

It was shown in [Drn00] that if Q is a positive quasinilpotent operator on a Banach

lattice with an atom, and S ∈ [Q〉, then Q and S have a common non-trivial invariant

closed ideal. From Corollary 10 we deduce a similar statement for 〈Q].

Corollary 11. If Q is a one-to-one quasinilpotent positive operator with dense range

on a Banach lattice with an atom, then 〈Q] has a non-trivial common invariant closed

ideal.

Theorem 12. Suppose that

(i) Q is a positive and quasinilpotent operator, one-to-one, with dense range;

(ii) F is a collection of positive contractive operators satisfying (∗), and

(iii) S is a semigroup of operators such that TK ∈ 〈Q] for every T ∈ S and K ∈ F .

Then S has a common non-trivial invariant subspace. Moreover, if S consists of posi-

tive operators then it has a common non-trivial invariant closed ideal.

Proof. Let B = B(x0, r) be the ball mentioned in (∗), without loss of generality r = 1.

Fix ε > 0, for every n > 1 choose a (1+ε)-minimal vector yn and a minimal functional

fn for Qn and B+X+. By Lemma 7 there is a subsequence (yni
) such that

‖yni−1‖
‖yni‖

→ 0.
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Since ‖fni
‖ = 1 for all i, we can assume (by passing to a further subsequence), that

(fni
) weak*-converges to some g ∈ X∗. By Lemma 6(ii) we havefn(x0) > 1 for all n,

it follows that g(x0) > 1. In particular, g 6= 0.

Consider the sequence (x0 ∧ Qni−1yni−1)
∞
i=1. The terms of this sequence are posi-

tive, and by Lemma 3 they are contained in B, so that, by passing to yet a further

subsequence, if necessary, we find a sequence (Ki) in F such that Ki(x0 ∧Qni−1yni−1)

converges to some vector w > 0.

Suppose that T ∈ S. It follows from Lemma 6(iv) that
(
Q∗nifni

)
(yni

) 6= 0 for every

i, so that X = span{yni
} ⊕ ker

(
Q∗nifni

)
. Then one can write TKiyni−1 = αiyni

+ ri,

where αi is a scalar and ri ∈ ker
(
Q∗nifni

)
. We claim that αi → 0. Indeed,

(4)
(
Q∗nifni

)(
TKiyni−1

)
= αi

(
Q∗nifni

)
(yni

),

so that αi > 0. Now by Lemma 6(iv) we have

(5)
(
Q∗nifni

)(
TKiyni−1

)
>

αi

1 + ε

∥∥Q∗nifni

∥∥‖yni
‖.

On the other hand,

(6)
(
Q∗nifni

)(
TKiyni−1

)
6

∥∥Q∗nifni

∥∥ · ‖T‖ · ‖yni−1‖.

It follows from (5) and (6) that αi 6 (1 + ε)‖T‖‖yni−1‖
‖yni‖

, so that αi → 0. Notice that

0 6 fni

(
QTKi(x0 ∧Qni−1yni−1)

)
6 fni

(
QTKiQ

ni−1yni−1

)
6 fni

(
QniTKiyni−1

)
because TK ∈ 〈Q]. It follows from (4) that

fni

(
QniTKiyni−1

)
= αifni

(
Qniyni

)
.

Further, Lemma 6(iii) yields

αifni

(
Qniyni

)
6 αi(1 + ε)fni

(
x0 ∧Qniyni

)
6 αi(1 + ε)

(
‖x0‖+ 1

)
because ‖fni

‖ = 1 and x0 ∧Qniyni
∈ B. Thus,

fni

(
QTKi(x0 ∧Qni−1yni−1)

)
→ 0.

On the other hand,

QTKi(x0 ∧Qni−1yni−1) → QTw

in norm. Since fni

w∗
−→ g, we conclude that g(QTw) = 0.

Let Y be the linear span of Sw, that is, Y = lin{Tw : T ∈ S}. Then Y is invariant

for all operators in S. Since Q has dense range, Q∗ is one-to-one, so that Q∗g 6= 0. We

have Y 6= X because (Q∗g)(Tw) = 0 for all T ∈ S. Finally, if Y = {0}, then Tw = 0

for all T ∈ S, then the span of w is invariant under every operator in S.
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Suppose now that all the operators in S are positive. Let E be the ideal generated

by Sw, that is

E =
{
y ∈ X : |y| 6 Tw for some T ∈ S

}
.

It is easy to see that E is invariant under S. Since Q∗g is a positive functional, then g

vanishes on E, hence E 6= X. If E is non-trivial, we are done. Suppose that E = {0}.
Then, in particular, Tw = 0 for every T ∈ S. But then every operator on S vanishes

on the ideal F generated by w:

F =
{
y ∈ X : |y| 6 λw for some real numberλ > 0

}
,

hence F is S-invariant. Further, w ∈ F so that F is non-zero. Finally, F 6= X as

otherwise every operator in S is zero. �

Corollary 13. Suppose that Q is a positive quasinilpotent operator, one-to-one, with

dense range. Suppose that the set of all contractions in 〈Q] satisfies (∗). Then 〈Q] has

a common non-trivial invariant closed ideal.

Proof. Notice that 〈Q] is a semigroup and apply Theorem 12 with F =
{
K ∈ 〈Q] :

‖K‖ 6 1
}

and S = 〈Q]. �

Next, we are going to discuss some applications. Recall that a positive operator T

on a vector lattice is said to be interval preserving if T [0, x] = [0, Tx] for every

x > 0.

Lemma 14. An operator T on a Banach lattice is one-to-one and interval preserving

if and only if

(i) Range T is an ideal and

(ii) x > 0 ⇔ Tx > 0.

Proof. Suppose that T is one-to-one and interval preserving. In particular, T is pos-

itive, hence x > 0 implies Tx > 0. If Tx > 0 then Tx = |Tx| 6 T |x| ∈ T
[
0, |x|

]
, so

that x ∈
[
0, |x|

]
, hence x > 0. To see that Range T is an ideal, suppose that |y| 6 Tx

for some x, y ∈ X. Then y ∈ [−Tx, Tx] = T [−x, x], so that y ∈ Range T .

Conversely, suppose that T satisfies (i) and (ii). Fix x > 0, let z ∈ [0, Tx]. It follows

from (i) that z = Ty for some y ∈ X. Further, 0 6 y 6 x by (ii), so that z ∈ T [0, x],

hence [0, Tx] ⊆ T [0, x]. The inclusion T [0, x] ⊆ [0, Tx] is trivial. Finally, it follows

immediately from (ii) that T is one-to-one. �
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Theorem 15. Suppose that X is a Banach lattice, and there exists x0 ∈ X+ with

‖x0‖ > 1 such that the set B(x0, 1) ∩ [0, x0] has a least element. If Q is a one-to-

one interval preserving quasinilpotent operator on X then 〈Q] has a common invariant

closed ideal.

Proof. Let h be the least element of B(x0, 1) ∩ [0, x0]. Clearly, h > 0. By Lemma 14,

Range Q is an ideal in X. Since Range Q is a common invariant ideal for 〈Q], we may

assume without loss of generality that Range Q is dense. Notice that Qn is one-to-one

and interval preserving for every n > 0. Again, by Lemma 14, Range Qn is an ideal

and x > 0 ⇔ Qnx > 0. Suppose that 0 < z ∈ Q−n(B + X+), then Qnz > h. It follows

that h ∈ Range Qn. Then 0 6 Q−nh 6 z. Therefore, yn = Q−nh is a minimal vector

for Qn. Then Qnyn = h for every n. Now Theorem 8 and Remark 9 complete the

proof. �

Corollary 16. Suppose that Ω is a locally compact topological space and Q is a one-

to-one interval preserving quasinilpotent operator on C0(Ω). Then 〈Q] has a common

invariant closed ideal.

Proof. Take any positive x0 ∈ C0(Ω) with ‖x0‖ > 1, then (x0−1)+ is the least element

of B(x0, 1) ∩ [0, x0]. Now apply Theorem 15. �

Let X be the space C0(Ω) for a locally compact topological space Ω, or the space

Lp(µ) for some measure space and 1 6 p 6 +∞. An operator T on X is called

a weighted composition operator if it is a product of a multiplication operator

and a composition operator. That is Tx = w · (x ◦ τ) for every x ∈ X, so that

(Tx)(t) = w(t)x
(
τ(t)

)
for every t ∈ Ω. We will denote this operator Cw,τ . In the

case X = C0(Ω) one usually assumes that w ∈ C(Ω) and τ : Ω → Ω is a continuous

map, while in the case X = Lp(µ) one would take w ∈ L∞(µ) and τ a measurable

transformation of the underlying measure space. In either case, if w > 0 then T is a

positive operator. Notice that if 0 6 v 6 w then 0 6 Cv,τ 6 Cw,τ .

Suppose that Ω is compact, then Krein’s Theorem asserts that every positive op-

erator on C(Ω) has an invariant subspace ([KR48], see also [AAB92, OT]). Further,

suppose Q = Cw,τ is positive and quasinilpotent1 operator on C(Ω). Then the weight

function w(t) has to vanish at some t0 ∈ Ω. Indeed, otherwise it would be bounded

1Kitover [Kit79] found a necessary and sufficient condition for a weighted composition operator on
C(Ω) to be quasinilpotent
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below by a constant m > 0, and then Q would dominate a multiple of a composition

operator x 7→ m(x ◦ τ), which would contradict the quasinilpotence of Q. Let

E =
{
y ∈ X : |y| 6 Qx for some x > 0

}
.

It is easy to see that E is an ideal, invariant under 〈Q]. But E is contained in the

closed ideal
{
x ∈ C(Ω) : x(t0) = 0

}
, hence E is not dense in C(Ω). Thus, if Ω

is compact and Q is a positive quasinilpotent weighted composition operator on C(Ω),

then 〈Q] has a common non-trivial closed ideal.

In general, when Ω is just locally compact but not compact, the previous arguments

does not apply. However, we have the following.

Theorem 17. Suppose that Q is positive quasinilpotent weighted composition operator

on C0(Ω). Then 〈Q] has a common closed invariant ideal.

Proof. Suppose that Q = Cw,τ , where w : Ω → R and τ : Ω → Ω are continuous.

Without loss of generality, w > 0 and ‖w‖ > 1. In view of Theorem 8 it suffices to

show that [0, Q] satisfies (∗). Find u ∈ C0(Ω) such that 0 6 u 6 w and ‖u‖ > 1.

There exists a compact set D ⊆ Ω such that u(t) < 1 whenever t ∈ DC . Since τ

is continuous, the set τ(D) is also compact. Choose x0 ∈ C0(Ω) so that x0(s) = 2

whenever s ∈ τ(D).

Pick any 0 6 x ∈ B(x0, 1). Let O =
{
t ∈ Ω : x ◦ τ(t) 6= 0

}
. Observe that O is open

and D ⊆ O. For each t ∈ Ω, put

v(t) =

{
(u(t)−1)+

x◦τ(t)
if t ∈ O;

0 otherwise.

Observe that v is continuous. Indeed, v is clearly continuous on O. Suppose that

t0 ∈ OC . Since D is a compact subset of O and v vanishes off D, it follows that

lim
t→t0, t∈O

v(t) = lim
t→t0, t∈O\D

v(t) = 0.

Observe also that if t ∈ D then x ◦ τ(t) > 1, so that v(t) 6
(
u(t) − 1

)+
. If t ∈ DC

then v(t) = 0. Thus, 0 6 v 6 (u − 1)+ 6 w. In particular, 0 6 Cv,τ 6 Q. For every

t ∈ O we have (Cv,τx)(t) = v(t)x(τ(t)) =
(
u(t) − 1

)+
. On the other hand, if t ∈ OC

then (Cv,τx)(t) = 0 =
(
u(t)− 1

)+
since t ∈ DC . Thus, Cv,τx = (u− 1)+ 6= 0.

Now, suppose that (xi) is a sequence in B(x0, 1)∩[0, x0]. By the preceding argument,

for each i we can find a continuous function vi such that 0 6 Cvi,τ 6 Q and Cvi,τxi =

(u − 1)+. Hence, we can take ni = i and Ki = Cvi,τ in (∗). Thus, [0, Q] satisfies (∗),
and then Theorem 8 finishes the proof. �
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A similar statement for Lp(µ) spaces fails, there is an example (see, e.g., [MN91]) of a

positive quasinilpotent weighted composition operator on Lp[0, 1] (actually, a weighted

translation) with no closed invariant ideals. It is worth pointing out why the methods

that we use in C0(Ω) spaces don’t work in Lp(µ) spaces. We cannot use Theorem 15

like we do in Corollary 16 because balls in Lp(µ) have no infimum. In order to use

Theorem 8 like we did in Theorem 17, we need to show that [0, Q] satisfies (∗). For

simplicity consider Q = Cω,τ on L1[0, 1] and assume that x0 = w = 1 (the general

case can be reduced to this). We would need to show that for every sequence (xn) in

B(1, 1− ε)∩ [0,1] there exists a subsequence (xni
) and a uniformly bounded sequence

of weights ki ∈ L∞[0, 1] with kixni
converging in norm to a non-zero function h. Let

(An) be a sequence of independent events in [0, 1], each of measure ε, and let xn be

the characteristic function of the complement of An. Since for every subsequence (ni)

and every i0 the set
⋃

i>i0
Ani

has measure one, and kixni
vanishes on Ani

, it follows

that h = 0 a.e.

The authors would like to thank G. Androulakis and N. Tomczak-Jaegermann for

enlightening discussions.
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