NONSTANDARD DISCRETIZATION AND THE LOEB
EXTENSION OF A FAMILY OF MEASURES

V. G. TROITSKII

ABSTRACT. The present article consists of two parts. The first concerns a discretiza-
tion of an integral operator and uses the discretization of the integral discovered by
E. I. Gordon. The main result reads that we can approximate any integral operator
to within an infinitesimal by a matrix of infinite size by replacing functions by vectors
composed of their values at a finite (but unlimited) number of points. In the sec-
ond part, we implement the Loeb construction for a random measure. We prove that
the same object appears as a result if we consider the random measure as a vector one
and construct the corresponding Loeb measure from the vector measure.

We use the language of the Kawai theory NST but all our reasoning remains correct
within the classical Robinson nonstandard analysis. The objects under consideration
are presumed to be internal until otherwise stated. For a standard set A, we denote by
° A its standard core, i.e. the totality of all standard elements of A.

1. DISCRETIZATION OF AN INTEGRAL OPERATOR

In [1] the following theorem was proved:

Theorem 1. Let (X, A, ) be a standard o-finite measure space. Then there exists a fi-

nite sequence X = (x1,...,xn) of elements in X and a positive number A such that

/fdu=°(A;f)

N
for every standard integrable function f : X — R, where Y_ f stands for > f(z;).
X i=1

However, we need a stronger result:

Theorem 2. Let (X, A, ) be a standard o-finite measure space. Then, for every positive
infinitesimal €, there exists a finite sequence X = (x1,...,xy) of elements in X and

a positive number A such that
[rau-ay g
g X

for every standard integrable function f : X — R, wn which case we shall say that

the couple (X, A) approximates the measure p to within .
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In the case of a finite measure Theorem 2 was obtained by E. I. Gordon in [1] in
the process of proving Theorem 1. The proof of Theorem 2 in the case of a o-finite
measure is obtainable on a slight modification of that proof. We need some definitions
and results of [2]. An arbitrary element 7 is called admissible if it is a member of
a standard set. An element ¢ is called standard relative to an admissible element T (T-
standard) if there exists a standard function f such that the set f(b) is finite for each
bedomf, 7€ domf, and & € f(r). It was shown in [2] that the transfer principle
and the idealization principle remain valid if we replace each occurrence of the predicate
“X is standard” by the predicate “X is 7-standard” for any fixed admissible 7. A real
number r is called T-infinitesimal (r % 0) if |r| < ¢ for every positive 7-standard ¢; r is
called T-infinite if r—1 2 0.

It follows that if a sequence (r,)nen is standard relative to 7, then lim 7, = r if and
n—oo

only if ry ~ r for every 7-infinite N.

To prove Theorem 2, we also need the following result:

Theorem 3 ([1]). Let 7 be an admissible set and let (X, A, u) be a T-standard probability

space. Then there exists a sequence (§,)nen of elements in X such that

n—1
[ an=tim 3" 56
k% =0

for every T-standard integrable function f: X — R.

Proof of Theorem 2. Let (X,)nen be a standard sequence of measurable subsets of X

such that X, C X4, , p(&,) < oo for all n, and X = |J A,. The equality
neN

/fdu: lim/fd,u
n—oo
X Xn

and the fact that the sequence ( Wi d,u) is standard (and, consequently, e-standard)
X’n. neN

;!fduéx/fdu

for every e-infinite number N. Since the number £/2 is e-standard, we have

L{fdu—!fdu‘ <t

imply
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Consider the space (X, An, in), where Ay = {ANXy|A € A} and puy = m“‘AN
is a probability measure. The space is obviously N-standard; thus, according to The-
orem 3, there exists an internal sequence (&,)nen Of elements in X’ such that, for all

N-standard functions g € £1(Xy, An, tin), we have

1.e.

n—1
The sequence (@ > g(fi)> is (&, N)-standard. Therefore, if K is a (¢, N)-
i=0

X X neN
infinite number, then

Jim K0S g(6)
=0
Assign X = (&,...,&) and A = "(f"). Then, [ gdp (.5,% A ;g. Since the function
Xn

f is standard and, consequently, N-standard and the number 1/N is (&, N)-standard,

we conclude that .
dp — A < =
‘ [ fan ;f‘ =
Xn
The number N is e-infinite; in consequence, 1/N < £/2. Finally, we deduce

X/fdu—AXX:f <‘A/fdu—)([fdu‘JrL[fdu—AzX:f‘<g+§:s

O

During the proof of Theorem 2 we have only used the transfer and idealization prin-

ciples; thus, we have

Corollary 4. Let 7 be an admissible set and let (X, A, p)be a T-standard o-finite mea-
sure space. Then, for every positive €, there exists a finite sequence X = (x1,... ,xn) of

elements in X and a positive number A such that
[rau-ay <
e X

for every T-standard integrable function f: X — R.

Later we shall use the following lemma:
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Lemma 5. LetY and L be standard sets, let F : °Y — P™(L), where P™(L) stands for

the set of all internal subsets of (L), and let °L C [ F,. Then there ezists an internal
yeey
set F with the property °L C F C [ Fy.
ye°y
Proof. The function F' has an internal extension F : Y — P™(L£). (Within the Kawai
theory the extension is provided by the idealization principle; within Robinson’s analysis
we need a'-saturation, where « is the cardinality of °) ). By assumption, we have

l € F, for every y € °Y and | € °L, i.e. for all couples (y,l) € °(Y x L). Let n € °N,
(Wi, 0) oo, (Yo ln) € °(Y x L), If we set F = (| F,, then [; € F C F,, for every

=1

i = 1,...,n and by idealization (or saturation), there exists an internal F such that
le F C F,foreach (y,l) €°(Y x L),ie. ’LCFC () E,. O
yeey

From now on we assume (X, A, \,),cy to be a standard family of o-finite measure
spaces; i.e., X and ) are standard sets, A is a standard o-algebra of subsets of X', and
A: A x Y — Ris astandard function such that, the function A\, = A(-,y) : A = R is
a o-finite measure on X for every y € ).

Introduce the notations F(Y) = RY and £1(X) = {f: X — R : f is \,-integrable for
ally € Y}

Given a finite sequence X = (z1,...,zy) of elements in X, denote by mx the “pro-
jection” from L£;(X) onto RY, which associates with a function f € £;(X) the vector
(f(z1),..., f(zy)). Analogously, given a finite sequence Y = (y1,...,yn) of elements
in Y, define my : F(Y) = RM by 7y (F) = (F(y1),- .., F(ym))-

Denote by 7" the pseudointegral operator that acts from £;(X’) into F(Y) upon the rule
THW =] fd,

Theorem 6 (Discretization of a pseudointegral operator). There exist finite sequences
X = (z1,...,zn) andY = (y1,... ,yu) of elements in X and Y respectively and an N X
M-matriz A such that °Y C Y and ny(Tf) ~ Anx(f) for every standard function

N
feLy(X); e, [fdr, =3 flxi)Ai; (j=1,...,M). In other words,
i=1

Li(X) —— F(¥)

= | |
RV 25 RM

15 commutative to within an infinitesimal.
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Proof. Fix a positive infinitesimal €. For every standard y € ), the o-finite measure A,

is standard; consequently, from Theorem 2 it follows that there exists a finite sequence

X, of elements in & and a positive number A, € R such that ‘ffd)\y Ay fl<e
X?!

for every standard function f € L£;(X).

The functions X : °Y — |J &A™ and A : °Y — R have internal extensions X :
neN
Y —- X" and A : Y — R respectively. Denote by &(y, f) the internal formula
neN

[ fd\, — A, ;f < ¢ and let Fy, denote the internal set {f € £;(&X)|®(y, f)}. Then

°L1(X) C F, for every standard y € Y. By Lemma 5, there exists an internal F such
that °L,(X) C F C () F,, in particular, V¥'y € Y Vf € F &(y, f).

Assign Y, = {y € §7€|ny € F &(y, f)}. The set is internal and, moreover, °Y C Y,. As
is known, there exists an internal finite set jiv such that °)Y C ? CY. Let Y1 =Y, N j)v
Then Y is a finite internal set and Vy € Yy Vf € F &(y, f). Since °L4(X) C F, it follows
that Vy € Y1 V*'f € L1(X) d(y, f).

Take as Y any sequence (y1,...,¥yn) composed of all elements of Y} and take as X
the concatenation X, ® X,, ®...® X,,,, of the sequences X, X,,, ..., X,,,, i.e. the se-

quence composed of consecutive elements of the sequences Xy, X,,,...,X,,,. Assume

X = (z1,... ,zn) and set

m—1 m
AV ifZNj<n<ZNj,
Anm = Jj=1 Jj=1

0 otherwise,

where N; stands for the length of the sequence X,.. Then, for every standard function
f € L1(X), we have

N
‘ / Fan, =3 Ay
=1

<e (J=1,..., M),

| fran,-Ssos,
Xy,

N
X =1

We now consider a particular instance of a pseudointegral operator given by an in-
tegral operator. Suppose that under the hypotheses of Theorem 6 we have a o-finite
measure y on the o-algebra A; such that, for every y € Y, the measure )\, is absolutely
continuous with respect to p with the Radon-Nikodym derivative K : X x Y — R and
the function K, = K(-,y) belongs to L,(X, A, i) for every y € Y. In this situation
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the pseudointegral operator turns out to be the one integral:

T LX) S F) DW= [ fdy = [ FKde

Fix a positive infinitesimal €. Theorem 2 ensures existence for a finite sequence X =

(x1,...,xy) of elements in X’ and a positive A € R such that
[ran-ayi|<e
g X

for every standard function f € £(X, A, u).

Theorem 7 (Discretization of an integral operator). There ezists a finite sequence Y =
(Y1, ... ,ym) of elements in Y such that °Y C Y and 7y (Tf) ~ Anx(f) for every
standard function f € L1(X), where Ajj = A - K(z;,y;).

Proof. The reasoning is mainly the same as in the proof of Theorem 6. Let y € °).
Denote by ¥(y, f) the internal formula U fdh,—A> f-Ky| < €. Since K, is standard,
X

it follows that
‘/fd)‘y_AZf'Ky
v X

for every standard function f € £;(X).

Assign F,, = {f € L1(X) | ¥(y, f)}. By Lemma 5, there is an internal set F such that
Vty € YVf e F Yy, f) and °L1(X) C F. In this case there exists a finite internal
Y: C Y such that °Y C Y7 and Vy € Y7 Vf € F ¥(y, f). Since °L1(X) C F, it follows
Yy e Yy Vof € L1(X) U(y, f). If weset Y = (y1,...,yum), where (y1,...,yn) are all

elements of Y7, then

N
/fdxyj zAZf-Kyj :Zf(xi)Aij (G=1,...,M).
X X =1

=‘/f-Kydu—AZf-Ky <e
X X

The following remarks clarify Theorems 6 and 7.

Remark 8. The proofs of Theorems 6 and 7 provide a stronger result: for every positive
infinitesimal ¢, there exist X, Y, and A, described in the statements of the theorems,
such that

N
‘/fd)\yj—Zf(xi)Aij <e (j=1,...,M)
Y =1

for every standard f € £;(X).
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Remark 9. The proofs also ensure that the internal finite sequence Y constructed there
contains the standard core of ) and, therefore, inherits a number of its properties. For

example, we have sup F'(y) = °sup F(y;) = °maxmy(F) for every standard bounded
yey j=l,..,M
function F' : Y — R.

Remark 10. The projection mx in Theorem 7 preserves the L;-norm of a standard
integrable function f: X — R:

!fdu:D<A§f> = (A-i(m((f»i).

=1

Remark 11. By requiring absolute continuity with respect to p for each A, we obtain
a more “explicit” construction for X and A than that of Theorem 6, namely: X approx-
imates the measure p and A is the matrix of values of the function A - K on the finite
grid X x Y.

If we define the norm in RM by || v ||= max |vj|, then the result obtained in Theo-
-7: A ]

rem 7 can be rewritten as follows: for every couple (X, A) approximate to the measure

i to within €, there exists a finite sequence Y = (yi,...,yn) such that °Y C Y and
| 7y (Tf) — Amx (f) I< &

Theorem 12. For every finite sequence Y = (y1,... ,yn) of elements in Y, there exists
a couple (X, A) approzimate to p such that || 7y (Tf) — Anx(f) ||< € for every f €
°L1(X). (The matriz A is the same as in Theorem 7.)

Proof. For every y € Y, the function K, belongs to the set {K,,,... , K, } and, conse-
quently, is Y-standard. The space (X, A, ) is standard and thus Y-standard. Corollary 4

provides existence for a finite sequence X and a positive A such that
‘ / gdu—A> g
¥ X

for every Y-standard integrable function g.
If fe°Li(X), then f- K, is a Y-standard integrable function; consequently,

‘/fd/\y—AZf-Ky :‘/f-Kydu—AZf-Ky <e,
X X x X

which proves the theorem. O

<e€
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2. A LoEB RANDOM MEASURE

Definition 13. Let (X,.A) be a space X with algebra A of its subsets and let (), BB, v)
be a measure space Y with algebra B and finitely-additive measure v. A function A\ :
A x Y — Ris called a (finitely-additive) random measure if

1) the function Ay = A(4,-) : Y — R is B-measurable for each A € A;

2) there exists a subset JJ C ) such that v () \ ) and, for every y € ), the function
Ay = A(+,y) is a (finitely-additive) measure on A.

To emphasize that ) is equipped with the algebra B, we shall write A : A X Vg — R.

Throughout the section, the spaces (X, .4) and (), B, v) and a finitely-additive random
measure A are assumed to be internal. For the measure v, we construct the Loeb measure
vy : L(B,v) — °R. We shall write L(B) rather than L(B,v) henceforth.

For each y € Y, from the measure \, we also construct the Loeb measure (\,)r, :
L(A,),) — °R. Denote by o(A) the smallest external o-algebra that contains A. Obvi-
ously, o(A) C L(A, ),) for every y € .

Define a function AL : o(A) x Y — °R as follows: for every y € Y and A € o(A), put
N(A,y) = (\)r(A), and define A* on Y \ Y arbitrarily.

Theorem 14 (A Loeb random measure). The function \* constructed above is an ex-

ternal random measure A : 0(A) x Vi — °R.

Proof. First, observe that A\l = ()\,); and v (¥ \ V). Therefore, A} is a measure for
vi-almost all y € Y. Denote by 90 the set of those A € o(A) for which the function \§
is L(B)-integrable.

Take A € A; then Xj(y) = AL(A4) = °Ay(A) = °Aa(y) for all y € Y. Therefore, Ay is
a lifting of \4. Since A4 is B-measurable, it follows that A% is L(B)-measurable by the
Lifting Theorem of [3]; i.e., A C 9. (The Lifting Theorem was formulated in [3] only for
a finite measure; however, the proof given there works in the desired direction as well.)

Let (A;)neon be a monotone sequence of sets in 9 and let A = lim A,. Then
n—oo

A € o(A). Since we have \[(A) = lim Al (Ay) for every y € Y, the function A is L(B)-
measurable as a limit of the sequence of L(B)-measurable functions (A} )ncon. Thus, 9
is a monotone class containing A. By [4, p. 27], any monotone class containing an algebra
contains the o-algebra generated by the algebra; therefore, o(A) C M. But M C o(A)
by definition, which completes the proof. O
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We have deliberately examined A only on o(A). Suppose that the algebras L(A, \,)
coincide for all y € Y and denote the common algebra by L(A). Even in this situation

the function A\* : L(A) x Y15 — °R can not be a random measure:

Ezample 15. Fix an infinite n € N, put At = 57! and Y = {0,At,2A¢,...,
n- At = 1}, and let B be the algebra P™()) of all internal subsets of J. Let v be
the counting measure on Y: v(A) = |A|/|Y| for every internal A C ), where |A| stands
for the cardinality of A. It was shown in [3] that the Loeb algebra L(B,v) differs from
P(Y). Fix a vp-nonmeasurable set N. Assign X = Y and A = B = P™()) and, for
yeYand A € A, set

1 ifye A
AMA,y) = = ’
(4,y) = xal) {0 otherwise.
The function A is a random measure, A : A X Vg — R.
It is readily verified that L(A, \,) = P(Y) for every y € Y; therefore, N € L(A) =
P(Y). But the function My = xy is not L(B)-measurable; i.e., A\’ : L(A) x Y — °R is

not a random measure.

Let M (Y, B,v) be the space of cosets of almost everywhere equal measurable functions
from Y into R; and let M (Y, L(B), v) denote the space of cosets of v7-almost everywhere
equal vz-almost everywhere bounded L(B)-measurable functions from ) into °R. In the
sequel we consider the measure v finite. As usually, we shall sometimes identify cosets
and functions.

Let Ny be the order ideal in M (), B, v) consisting of all functions nearly equal to zero

everywhere except a vp-null set:
Ny ={F e M(¥,B,v) | (YF € F)3N)((vz(N) = 0)&((Vy ¢ N)F(y) ~ 0))}.

Denote by F /N the element, of the quotient space M (Y, B, v) /N, which corresponds
to F € M(Y,B,v). By the Lifting Theorem of [3], we have

Lemma 16. Let ¢(F/Ny) = °F for F/Nx € M(Y,B,v)/Nx. Then ¢ is a linear
isomorphism between M (Y, B,v)/Nxy and M (Y, L(B),vz).

The quotient space of M (Y, B,v) by the subspace N, where M (Y, B,v) is regarded
as a vector space over °R; is an analog of the nonstandard hull of a normed space (cf.,
for instance [5]), where the collection of all elements with infinitesimal norm is taken
as a subspace. If we had taken, instead of M(),B,v)/Ny, the nonstandard hull of
fin M (), B,v) with respect to the seminorm ||F|| = ess, sup|F|, then the mapping ¢
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would have been only an ephimorphism. For example, if we take the unit segment [0,1]
endowed with the Lebesgue measure, then the functions F; = 0 and F, = xjo ], where ¢
is a positive infinitesimal, have the respective cosets in the hull distinct; nevertheless, ¢
carries both the functions into zero.

Let V be an internal vector space and let N/ C V™ be its external subspaces. We shall
call the quotient space V~/N the nonstandard hull of V and denote it by the symbol V.
For v € V®  we denote the corresponding coset in v by 9.

Let A be an internal algebra of subsets of X and let F' : A — V be an internal finitely-
additive vector measure such that im ' C V~. Define °F : A — V by °F(A) = F/(Z)
It is natural to define the Loeb vector measure L(F) : L(A, F) — V as the comple-
tion of an extension of the measure °F onto o(A), in case such an extension exists.
Unfortunately, the question of existence of the extension is complicated.

Observe that the space M (Y, B,v)/Ny considered above is the nonstandard hull of
M (Y, B,v) with respect to the ideal Ny; moreover, the space M (Y, B, v) itself is taken
as (M (Y, B,v))~.

In addition to the two random measures X : A X Vg — R and A : 6(A) X Yy — °R
considered above, we introduce two vector measures A : A — M(Y,B,v) and AX :
o(A) = M (Y, L(B),vy) which are defined by A(4) = A4 and AL(A) = AL

Theorem 17. For the vector measure X, there exists a Loeb measure L(X) Furthermore,

L(X) agrees with X on o(A) up to the isomorphism ¢ described in Lemma 16.
Proof. Let A € A, then p(°A(4)) = o(A(4)) = °(M(A)) = °Is = Ak = AL(A); e,
the measures (o °)) and XX agree on .A. Hence, A gives an extension of ° onto o(.A)

up to the isomorphism ¢. O

The author is grateful to A. G. Kusraev for acquainting with the problems dealt with

here and to A. E. Gutman and E. I. Gordon for their helpful advice and valuable remarks.
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