KRIVINE’S FUNCTION CALCULUS
AND BOCHNER INTEGRATION

V.G. TROITSKY AND M.S. TURER

ABSTRACT. We prove that Krivine’s Function Calculus is compatible with inte-
gration. Let (Q,%, 1) be a finite measure space, X a Banach lattice, x € X",
and f: R™ x Q@ — R a function such that f(-,w) is continuous and positively
homogeneous for every w € Q, and f(s,-) is integrable for every s € R™. Put
F(s) = [ f(s,w)du(w) and define F(x) and f(x,w) via Krivine’s Function Cal-
culus. We prove that under certain natural assumptions F(z) = [ f(z,w)du(w),

where the right hand side is a Bochner integral.

1. MOTIVATION

In [Kall2], the author defines a real-valued function of two real or complex variable
via F(s,t) = 0%‘3 + ewt‘de. This is a positively homogeneous continuous function.
Therefore, given two vectors u and v in a Banach lattice X, one may apply Krivine’s
Function Calculus to F' and consider F'(u,v) as an element of X. The author then
claims that

(1) F(u,v):/(]ﬂ‘quewv‘dH,

where the right hand side here is understood as a Bochner integral; this is used later
in [Kall2] to conclude that ||F(u,v)|| < Ozﬂ”u + eiedeH because Bochner integrals
have this property: || [ f|| < [|If]. A similar exposition is also found in [DGT.J84,
p. 146]. Unfortunately, neither [Kall2] nor [DGTJ84] includes a proof of (I)). In this
note, we prove a general theorem which implies as a special case.

2. PRELIMINARIES

We start by reviewing the construction of Krivine’s Function Calculus on Banach
lattices; see [LT79, Theorem 1.d.1] for details. For Banach lattice terminology, we
refer the reader to [AA02), [ABOG].
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Fix n € N. A function F': R" — R is said to be positively homogeneous if
F(Aty, ..., M) = AF(ty,...,t,) for all t1,...,t, € Rand A > 0.

Let H, be the set of all continuous positively homogeneous functions from R" to R.
Let S be the unit sphere of ¢2 , that is,

St = {(ts ) €RY 5 max 1 = 1},

It can be easily verified that the restriction map F' + Fign is a lattice isomorphism
from H, onto C(SZ). Hence, we can identify H,, with C'(S%). For each i =1,...,n,
the i-th coordinate projection 7;: R™ — R clearly belongs to H,.

Let X be a (real) Banach lattice and @ = (1,...,x,) € X™. Let e € X, be such
that x1,...,x, belong to I., the principal order ideal of e. For example, one could
take e = |z1|V+--V|x,|. By Kakutani’s representation theorem, the ideal I, equipped
with the norm

[zfle =inf{A >0 : |z| < Xe}
is lattice isometric to C'(K) for some compact Hausdorff K. Let F' € H,,. Interpreting
x1,..., %, as elements of C'(K), we can define F'(z1, ..., x,) in C(K) as a composition.
We may view it as an element of I, and, therefore, of X; we also denote it by F or
®(F). It may be shown that, as an element of X, it does not depend on the particular
choice of e. This results in a (unique) lattice homomorphism ®: H, — X such that

®(m;) = ;. The map ® will be referred to as Krivine’s function calculus. This
1

construction allows one to define expressions like <Z?:1\xi|p>; for 0 < p < oo in

every Banach lattice X; this expression is understood as ®(F') where F(tq,...,t,) =
1

(Z?:l |t |p> ” . Furthermore,

@) |F@) < 1Fless) - [ Ve

Let L, be the sublattice of H,, or, equivalently, of C(S”), generated by the coor-
dinate projections m; as i = 1,...,n. It follows from the Stone-Weierstrass Theorem
that L,, is dense in C'(S%). It follows from ®(m;) = z; that ®(L,,) is the sublattice
generated by zy,...,x, in X, hence Range ® is contained in the closed sublattice of
X generated by x1,...,x,. It follows from, e.g., Exercise 8 on [AB06l p.204] that this
sublattice is separable.

Let (€2,3, 1) be a finite measure space and X a Banach space. A function f: ) —
X is measurable if there is a sequence (f,) of simple functions from € to X such that
lim,,|| f(w)— f(w)]| = 0 almost everywhere. If, in addition, [||f,(w)—f(w)||dp(w) — 0
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then f is Bochner integrable with [, fdu = lim, [, f, du for every measurable
set A. In the following theorem, we collect a few standard facts about Bochner
integral for future reference; we refer the reader to [DUTT, Chapter II] for proofs and
further details.

Theorem 2.1. Let f: Q — X.

(1) If f is the almost everywhere limit of a sequence of measurable functions then
f is measurable.

(i) If f is separable-valued and there is a norming set I' C X* such that x*f is
measurable for every x* € I then f is measurable.

(iii) A measurable function f is Bochner integrable iff || f|| is integrable.

(iv) If f(w) = u(w)x for some fivzed x € X and v € Li(p) and for all w then f is
measurable and Bochner integrable.

(v) If f is Bochner integrable and T: X — 'Y is a bounded operator from X to a
Banach space Y then T(f fd,u) = [Tfdp.

3. MAIN THEOREM

Throughout the rest of the paper, we assume that (2, %, 4) is a finite measure
space, n € N, and f: R" x 2 — R is such that f(-,w) is in H, for every w € Q and
f(s,-) is integrable for every s € R". For every s € R", put F(s) = [ f(s,w)du(w).
It is clear that F'is positively homogeneous.

Suppose, in addition, that F' is continuous. Let X be a Banach lattice, x € X",
and ®: H, — X the corresponding function calculus. Since F' € H,, F = F(x) =
®(F') is defined as an element of X. On the other hand, for every w, the function
s € R" — f(s,w) is in H,, hence we may apply ® to it. We denote the resulting
vector by f(w) or f(x,w). This produces a function w € Q — f(z,w) € X.

Theorem 3.1. Suppose that F is continuous and the function M (w) = ||f(-,w) HC(S” )
is integrable. Then f(x,w) is Bochner integrable as a function of w and F(x) =
[ f(z,w)dp(w), where the right hand side is a Bochner integral.

Proof. Special case: X = C(K) for some compact Hausdorff K. By uniqueness of
function calculus, Krivine’s function calculus ® agrees with “point-wise” function

calculus. In particular,

F(k) = F(z1(k), ..., z,(k)) and (f(w))(k) = f(z1(k), ..., z.(k),w)

for all k € K and w € Q. We view f as a function from Q to C(K).



4 V.G. TROITSKY AND M.S. TURER

We are going to show that f is Bochner integrable. It follows from f(w) € Range ®
that f a separable-valued function. For every k € K, consider the point-evaluation
functional ¢, € C(K)* given by ¢r(z) = z(k). Then

or(f(@) = (FW) k) = f21 (k). ... (k). w).

for every k € K. By assumptions, this function is integrable; in particular, it is
measurable. Since the set {¢; : k € K} is norming in C(K)*, Theorem yields
that f is measurable.

Clearly, (f(w))(k;)| < M(w) for every k € K and w € Q, so that || f(w)|lcx) <
M(w) for every w. It follows that [||f(w)|lc(x)du(w) exists and, therefore, f is
Bochner integrable by Theorem .

Put h:= [ f(w) dp(w), where the right hand side is a Bochner integral. Applying

Theorem , we get

h(k) = gu(h) = / o0 (Fw)) dyu(w) = / F@i(k), .. k), w) du(w)
= F(z1(k),...,z0(k)) = F(k).

for every k € K. It follows that [ f(w) dw = F.

General case. Let e = |z1| V... |z,|. Then (I, |-|) is lattice isometric to C(K) for
some compact Hausdorff K. Note also that |z| < ||z||.e for every x € I.; this yields
||| < [|z|l|le]l, hence the inclusion map T': (I, ||-||) = X is bounded. Identifying
I. with C(K), we may view T as a bounded lattice embedding from C'(K) into X.

By the construction on Krivine’s Function Calculus, ® actually acts into I, i.e.,
¢ = TPy, where ®( is the C(K)-valued function calculus. By the special case, we
know that [ f(w)du(w) = F in C(K). Applying T, we obtain the same identity in
X by Theorem . U

Finally, we analyze whether any of the assumptions may be removed. Clearly, one
cannot remove the assumption that F' is continuous; otherwise, F' would make no

sense. The following example shows that, in general, I’ need not be continuous.

Example 3.2. Let n = 2, let p be a measure on N given by ,u({k}) = 27% For
each k, we define f, = f(-, k) as follows. Note that it suffices to define f;, on SZ.
Let I), be the straight line segment connecting (1,0) and (1,27%*!). Define fj, so that
it vanishes on S% \ Iy, fr(1,0) = fu(1,27%1) =0, fx(1,27%) = 2% and is linear on
each half of I;. Then f; € Hy and F(s) is defined for every s € R?. It follows from
F(s) =Y 72,27 fi(s) that F(1,0) =0 and F(1,27%) > 27%f.(1,27%) = 1, hence F
is discontinuous at (1,0).



KRIVINE’S FUNCTION CALCULUS AND BOCHNER INTEGRATION 5

The assumption that M is integrable cannot be removed as well. Indeed, consider
the special case when X = C(S™) and z; = m; as i = 1,...,n. In this case, ® is the
identity map and f (w) = f(-,w). It follows from Theorem that f is Bochner
integrable iff || f|| is integrable iff M is integrable.

Finally, the assumption that f(-,w) is in H, for every w may clearly be relaxed to

“for almost every w”.

4. DIRECT PROOF

In the previous section, we presented a proof of Theorem using representation
theory. In this section, we present a direct proof. However, we impose an additional
assumption: we assume that f(-,w) is continuous on S? uniformly on w, that is,

(3) for every € > 0 there exists d > 0 such that | f(s,w) — f(t,w)| <e
for all s, € S and all w € Q provided that ||s — t| < 9.

In Theorem we assumed that F' was continuous and M was integrable. Now
these two conditions are satisfied automatically. In order to see that F' to is continu-

ous, fix € > 0; let d be as in , then

(@) F(s) ~ Flt)] < [|£(6.0) = Fitw)ldu) < cul®)

whenever s,t € S with ||s — t||.c < 6. The proof of integrability of M will be
included in the proof of the theorem.

Theorem 4.1. Suppose that f(-,w) is continuous on S uniformly on w. Then
f(z,w) is Bochner integrable as a function of w and F(x) = [ f(z,w)du(w).

Proof. Without loss of generality, by scaling p and x, we may assume that p is a
probability measure and |[\/7_,|z;||| = 1; this will simplify computations. In particu-
lar, becomes ||H ()| < ||H||c(sn) for every H € C(SZ). Note also that z in the
theorem is a “fake” variable as @ is fixed. It may be more accurate to write F and
f(w) instead of F(x) and f(z,w), respectively. Hence, we need to prove that f as a

function from €2 to X is Bochner integrable and its Bochner integral is F.
Fix ¢ > 0. Let § be as in . It follows from that

(5) |F(s) — F(t)| < e whenever s,t € S% with ||s — ] < 4.

Each of the 2n faces of S is a translate of the (n — 1)-dimensional unit cube B!,
Partition each of these faces into (n — 1)-dimensional cubes of diameter less than ¢,
where the diameter is computed with respect to the ||-||.o-metric. Partition each
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of these cubes into simplices. Therefore, there exists a partition of the entire ST
into finitely many simplices of diameter less than 6. Denote the vertices of these
simplices by si,...,8,. Thus, we have produced a triangularization of ST with
nodes Si,...,Sm.

Let @ € R™. Define a function L: S? — R by setting L(s;) =a; as j=1,...,m
and then extending it to each of the simplices linearly; this can be done because
every point in a simplex can be written in a unique way as a convex combination of
the vertices of the simplex. We write L = T'a. This gives rise to a linear operator
T:R™ — C(S%). For each j = 1,...,m, let e; be the j-th unit vector in R™; put
d; = Te;. Clearly,

(6) Ta = Z a;d; for every a € R™.
j=1
Let H € C(S%). Let L = Ta where a; = H(s;). Then L agrees with H at
S1,...,8m. We write L = SH; this defines a linear operator S: C(S%) — C(SL).
Clearly, this is a linear contraction.
Suppose that H € C(S%) is such that |H(s) — H(t)| < ¢ whenever ||s — ¢ < 4.
Let L = SH. We claim that ||L — H”C(Sgo) < ¢. Indeed, fix s € S Let s;,,...,5;
be the vertices of a simplex in the triangularization of S7 that contains s. Then s

n

can be written as a convex combination s = > _; A8, Note that ||s — s, |l <0
forall j =1,...,n. It follows that

|L(s) — H(s)| = ‘Z NeL(s;) =3 A,ﬂ(@‘ <Y M| H(s,) — Hs)| <.

This proves the claim.
Let G = SF. It follows from (5)) and the preceding observation |G — F||¢(sn) < €,
so that

(7) |G(z) — F(z)]| <e.

Similarly, for every w € €2, apply S to f(-,w) and denote the resulting function g(-,w).
In particular, g(s;,w) = f(s;,w) for every w € Q and every j = 1,...,m. It follows
also that

(8) Hf('aw)_g<'>w)}|c(ggo) <ée

for every w, and, therefore

(9) 17 (@) = @) = If(@w) - g(z,w)| <e,
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where §(w) = g(x,w) is the image under ® of the function s € S — g(s,w). Note
that

(10 Glsy) = Flsy) = [ flsw)dn(e) = [ glsy.w)dnte)

for every j = 1,...,m. Since G = SF = Ta where a; = F(s;) = G(s;) as j =
1,...,m, it follows from @ that

(11) G=> G(s))d;.
j=1
Similarly, for every w € {2, we have
(12) g(',W) = Zg(8j7w)dj'
j=1

Applying @ to and (12), we obtain G =G(x) = > =1 G(8j)dj(x) and

g(w):g(w,w):Zg(sj, Zf S5, W

j=1
Together with Theorem , this yields that g is measurable and Bochner inte-
grable. It now follows from and that

= Y Gl = 3. [ atss i) st
/(ZQ 8j, W )du( ) = /g(:c,w)du(w).

We will show next that f is Bochner integrable. It follows from @ and the fact that
¢ is arbitrary that f can be approximated almost everywhere (actually, everywhere)
by measurable functions; hence f is measurable by Theorem . Next, we claim
that there exists A € Ry such that |f(s,w) — f(1,w)| < A for all s € S7 and all
we QN Herel=(1,...,1). Indeed, let s € SZ and w € Q. Find ji,...,j; such that
8j, = 1, sj, and s;,_, belong to the same simplex as k = 1,...,[ — 1, and s, is a

vertex of a simplex containing s. It follows that

‘f(&w)_f(lvw)‘ < |f(s,w f(sj,w ""Z‘f Sjpi1w) = f(8j,w )‘ < le <me.
This proves the claim with A = me. It follows that

5N < 176y = s [7Gs.0)] < 72 + A



8 V.G. TROITSKY AND M.S. TURER

Since |f(1,w)| + A is an integrable function of w, we conclude that | £l is integrable,
hence f is Bochner integrable by Theorem .. It now follows from @D that

1) | [ sewine) - [ sewdu)| < [5@w) - glw.w)due
Finally, combining , , and , we get
|P@) - [ s widnte)]| < 2=
Since € > 0 is arbitrary, this proves the theorem. O

Some of the work on this paper was done during a visit of the second author to the
University of Alberta. We would like to thank the referee whose helpful remarks and
suggestions considerably improved this paper.
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