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Abstract. A question of Barker and Larman asks whether convex bod-
ies that contain a sphere of radius t in their interiors are uniquely deter-
mined by the volumes of sections by hyperplanes tangent to the sphere.
We affirmatively solve this problem for convex polytopes.

1. Introduction

One of the central questions in geometric tomography is the unique de-
termination of convex bodies from the size of their sections, projections,
or other lower dimensional data. A classical result in this area states that
origin-symmetric convex bodies are uniquely determined by the volumes of
their central sections, see Funk [5], Lifshitz and Pogorelov [11], as well as
Gardner’s book [7, Sec. 7.2] for additional details. It is also known that
this theorem does not hold in the absence of symmetry. What kind of infor-
mation about sections of a convex body, not necessarily symmetric, would
allow to determine the body uniquely? It was proved independently by Fal-
coner [4] and Gardner [6] that any convex body is uniquely determined by
the volumes of hyperplane sections through any two points in the interior
of the body. A generalization of this result for fractional derivatives of the
section function was obtained by Koldobsky and Shane [10]. Böröczky and
Schneider [2] showed that a convex body is determined by the volumes and
centroids of its hyperplane sections through the origin. For other results in
this area, we refer the reader to the book [7].

In [1] Barker and Larman asked the following question. Let P and Q
be convex bodies in Rn containing a sphere of radius t in their interi-
ors. Suppose that for every hyperplane H tangent to the sphere we have
voln−1(P ∩ H) = voln−1(Q ∩ H). Does this mean that P = Q? In [1] the
authors obtained several partial results. They showed that in R2 the unique-
ness holds if one of the bodies is a Euclidean disk. In Rn they proved that
the answer to this conjecture is affirmative if hyperplanes are replaced by
planes of a larger codimension. However, the answer to the original question
is still unknown, even in dimension 2.

In this paper we show that the answer to the problem is affirmative if
both P and Q are convex polytopes in Rn. The case n = 2 of this result

The author was partially supported by a grant from NSERC.

1



2 V. YASKIN

was recently obtained by Xiong, Ma and Cheung [13], but for the sake of
completeness we include a proof here.

Before we proceed to proving the result, let us say a few words about
analytic aspects of the problem. If t = 0, which corresponds to the case of
hyperplane sections through the origin, the standard solution to the prob-
lem is based on the injectivity properties of the spherical Radon transform.
Alternatively, one can use Fourier transform techniques to prove this result,
see [9, p.55]. When t > 0, many people tried to find an analytic approach
to the problem, but so far all such attempts failed. That is why we take a
different path and try methods of discrete geometry. Finally, let us empha-
size once again that in our result the symmetry condition is not required,
unlike in the case of sections through the origin.

For standard notions in geometric tomography and convex geometry the
reader is referred to the books of Gardner [7], Gruber [8], Schneider [12].

2. Main result

Theorem 2.1. Let P and Q be convex polytopes in Rn containing a sphere
of radius t in their interiors. If

voln−1(P ∩H) = voln−1(Q ∩H)

for every hyperplane H tangent to the sphere, then

P = Q.

Proof. i) We first consider the planar case. To reach a contradiction, suppose
that the polygons P and Q are different. Since neither of them can be a
subset of the other, there is a point where their boundaries intersect. Let
u1 be a common point of the boundaries of P and Q such that their edges
meet transversally at u1. Let these edges be given correspondingly by the
lines

x = u1 + l1s1 and x = u1 +m1τ1, (1)
where l1,m1 ∈ S1 are the directions of the edges, and s1, τ1 are the pa-
rameters along the lines. Note that by our assumption l1 is not parallel to
m1.

Throughout the proof of part (i) we will be using the following notation
for a straight line orthogonal to ξ ∈ S1 and distance t from the origin.

L(ξ) = {x ∈ R2 : 〈x, ξ〉 = t}.

Let St denote the circle of radius t from the hypotheses of the theorem.
Consider a line L(ξ0) through u1 tangent to St. This line intersects the
boundaries of P and Q at another common point u2. If ξ ∈ S1 is close to
ξ0 and the line L(ξ) intersects the edges given by (1), then this line also
intersects another pair of edges adjacent to u2. Let these edges be given by
the equations

x = u2 + l2s2 and x = u2 +m2τ2, (2)
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where, as before, l2 and m2 are non-collinear unit vectors in the directions
of the edges, and s2 and τ2 are parameters.

Let Λ denote an open arc of the unit circle S1 comprising those vectors
ξ that are sufficiently close to ξ0 and such that the lines L(ξ) intersect the
edges of P and Q given by (1) and (2) and do not meet any vertices of P
and Q.

Denoting by p1 = p1(ξ), p2 = p2(ξ), q1 = q1(ξ), q2 = q2(ξ) the points of
intersection of L(ξ), ξ ∈ Λ, and the corresponding edges of P and Q, we get

pi = ui + li
t− 〈ui, ξ〉
〈li, ξ〉

, qi = ui +mi
t− 〈ui, ξ〉
〈mi, ξ〉

, i = 1, 2.

Note that P ∩ L(ξ) = [p1(ξ), p2(ξ)] and Q ∩ L(ξ) = [q1(ξ), q2(ξ)]. Now
we can write the equality between the sections of P and Q as the equality
between the vectors p1 − p2 and q1 − q2,

l1
t− 〈u1, ξ〉
〈l1, ξ〉

− l2
t− 〈u2, ξ〉
〈l2, ξ〉

= m1
t− 〈u1, ξ〉
〈m1, ξ〉

−m2
t− 〈u2, ξ〉
〈m2, ξ〉

. (3)

Without loss of generality we may assume that the latter equality holds
not only in Λ, but for all ξ ∈ S1 \ {l⊥1 , l⊥2 ,m⊥1 ,m⊥2 }. Indeed, clearing the
denominators and replacing ξ by (cosφ, sinφ), we get two polynomials of
cosφ and sinφ that are equal to each other in an open interval. Therefore,
they must be equal everywhere.

Let us multiply equation (3) by 〈l1, ξ〉 and consider ξ close to a unit vector
v ∈ l⊥1 . If none of the vectors l2,m1,m2 is equal to l1, then passing to the
limit ξ → v we see that l1(t−〈u1, v〉) = 0. The latter means that u1 belongs
to a line parallel to l1 and tangent to St. This is impossible.

Therefore l1 is parallel to one of the vectors l2,m1,m2. By our assumption
l1 is not parallel to m1. Suppose l1 is parallel to m2. By the same reasoning
l2 is parallel to m1. From (3) we get

l1
2t− 〈u1 + u2, ξ〉

〈l1, ξ〉
= l2

2t− 〈u1 + u2, ξ〉
〈l2, ξ〉

,

which means that l1 and l2 are parallel, and therefore l1 and m1 are parallel
as well. This contradicts our assumption that the edges of P and Q meet
transversally at u1. Similarly, if we suppose that l1 is parallel to l2, then
m1 has to be parallel to m2. As before, it is easy to see that all the vectors
l1, l2,m1,m2 have to be parallel. We again reach a contradiction.

Thus, we conclude that P and Q are equal to each other.
ii) We now consider the case of Rn, n ≥ 3. To prove that P and Q are

identical, we will show that P and Q have exactly the same vertices.
Suppose the contrary. Let u be a vertex of P that is not a vertex of

Q. Throughout the proof the hyperplanes tangent to the sphere of radius t
centered at the origin will be denoted by

H(ξ)
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Consider a hyperplane 〈x, ξ0〉 = t that contains u and is chosen in such a way
that there is a facet F of P adjacent to u that has no common points with
〈x, ξ0〉 = t, other than u. The existence of such a hyperplane can be seen
from the following argument. Consider a facet F containing u and consider
the hyperplane E that contains F . Since F is a convex polytope in E and
u is its vertex, there is a supporting (n − 2)-dimensional plane to F in E
that intersects F only at u. Define 〈x, ξ0〉 = t to be a hyperplane in Rn that
contains this supporting plane and is tangent to St, the sphere of radius t.
After a small perturbation of ξ0, if necessary, we can also assume that the
hyperplane 〈x, ξ0〉 = t does not contain any vertex of either P or Q, other
than u, and that the normal vector to the facet F is not perpendicular to
ξ0.

For simplicity we will assume that ξ0 = en. Let Λ be a spherical cap
of small radius centered at en such that, for all ξ ∈ Λ, the hyperplanes
〈x, ξ〉 = t do not contain any vertex of P or Q except possibly u.

Note that voln−1(P ∩ {〈x, ξ〉 = t}) = voln−1(Q ∩ {〈x, ξ〉 = t}), ξ ∈ Λ, if
and only if the projections of the sets P ∩ {〈x, ξ〉 = t} and Q ∩ {〈x, ξ〉 = t}
onto the hyperplane xn = 0 have the same (n− 1)-dimensional volume. We
will denote these projections by Pξ and Qξ and their volumes by VP (ξ) and
VQ(ξ) correspondingly. Let us compute the latter functions.

Denote the edges of P that intersect the hyperplane xn = t and do not
contain the vertex u by

x = ui + lisi, i = 1, ...,K,

where li is a unit vector in the direction of the corresponding edge, si is a
parameter, and ui is a vertex of P .

The edges of P adjacent to the vertex u will be denoted by

x = u+ lisi, i = K + 1, ...,M.

Since the hyperplane xn = t contains u and no other vertex of P , none of
the latter edges lies in the hyperplane xn = t and so some of these edges
lie above this hyperplane and some below the hyperplane. Let the former
edges be indexed by i = K + 1, ..., L and the latter ones by i = L+ 1, ...,M .

The edges of Q that intersect the hyperplane xn = t we denote by

x = vi +miτi, i = 1, ..., N.

Denote by Λ+ (correspondingly, Λ−) the subset of those vectors ξ ∈ Λ
for which the hyperplane 〈x, ξ〉 = t does not contain u and intersects all
the edges of P numbered i = K + 1, ..., L (correspondingly, numbered i =
L+1, ...,M). In other words, for any ξ ∈ Λ+, the hyperplane H(ξ) intersects
all the edges of P adjacent to u that are above the hyperplane xn = t and
none of the ones that are below. Similarly, for any ξ ∈ Λ−, the hyperplane
H(ξ) intersects all the edges of P adjacent to u that are below the hyperplane
xn = t and none of the ones that are above. Note that Λ can be written as



NON-CENTRAL SECTIONS OF CONVEX POLYTOPES 5

a union of mutually disjoint subsets

Λ = Λ+ ∪ Λ− ∪ {ξ ∈ Λ : u ∈ H(ξ)}.

Let ū, ūi, l̄i, v̄i, m̄i, considered as (n − 1)-dimensional vectors, be the
orthogonal projections of the vectors u, ui, li, vi, mi onto the hyperplane
e⊥n .

Consider ξ ∈ Λ+. Finding the points of intersection of 〈x, ξ〉 = t and the
edges of P , and projecting them onto the hyperplane e⊥n , we get the vertices
of the polytope Pξ,

pi = ūi + l̄i
t− 〈ui, ξ〉
〈li, ξ〉

, i = 1, ...,K,

pi = ū+ l̄i
t− 〈u, ξ〉
〈li, ξ〉

, i = K + 1, ..., L.

Similarly, for ξ ∈ Λ−, the vertices of Pξ are

pi = ūi + l̄i
t− 〈ui, ξ〉
〈li, ξ〉

, i = 1, ...,K,

pi = ū+ l̄i
t− 〈u, ξ〉
〈li, ξ〉

, i = L+ 1, ...,M.

For ξ ∈ Λ, the vertices of Qξ are given by

qi = v̄i + m̄i
t− 〈vi, ξ〉
〈mi, ξ〉

, i = 1, ..., N.

In order to compute VQ(ξ) we first fix a triangulation of Qξ0 . We will
split the (n− 1)-dimensional polytope Qξ0 into simplices in such a way that
each simplex has one vertex at the origin and the other vertices belonging to
the vertex set of the polytope Qξ0 . This can be done by first triangulating
the (n − 2)-skeleton of Qξ0 (see [8, p.257] for details) and then connecting
the origin with the vertices of this triangulation.

Two polytopes are said to be combinatorially equivalent if there is a
bijection between their vertex sets that maps (the sets of vertices of) faces
to (the sets of vertices of) faces. If ξ is close to ξ0, then Q ∩ {〈x, ξ〉 = t} is
combinatorially equivalent to Q∩{〈x, ξ0〉 = t}. The bijection between their
vertices is given by the incidence to the same edge of Q. Consequently, Qξ
and Qξ0 are also combinatorially equivalent, and therefore Qξ inherits the
triangulation from Qξ0 .

If a simplex ∆n−1 in the triangulation of Qξ has, for example, points q1,
q2,..., qn−1 and the origin as its vertices, then its volume is given by the
determinant

1
n− 1

|[q1, q2, . . . , qn−1]|.

The points qi are assumed to have n− 1 coordinates and be ordered in such
a way that the determinant is positive.
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Therefore,

VQ(ξ) =
1

n− 1

∑
I

|[qi1 , qi2 , . . . , qin−1 ]|,

where the summation runs over all (n − 1)-tuples of indices (i1, ..., in−1)
that correspond to the simplices of the chosen triangulation. Note that this
formula holds for all ξ ∈ Λ, since the combinations of indices that correspond
to the simplices of the triangulation of Qξ are the same for all ξ ∈ Λ.

In order to compute VP (ξ) we will need a triangulation of Pξ. We use the
idea from [8, p.257], which, as indicated there, originally belongs to Edmonds
[3]. Recall that we ordered the vertices of Pξ as follows: first we put the
vertices that are associated with the edges of P that do not contain u, and
then those that do contain. The triangulation is done by induction. If the
(k − 1)-skeleton is triangulated, then the triangulation of the k-skeleton is
performed as follows. In each k-dimensional face G take the vertex with the
lowest index, let us call this vertex p, and consider convex hulls of p and the
simplices of the triangulation of the (k− 1)-dimensional faces of G, disjoint
from p. The triangulation thus constructed agrees with the triangulation of
the (k− 1)-dimensional faces of G that contain p. Using this procedure, we
triangulate the (n − 2)-skeleton of Pξ. Finally, we connect the origin with
the simplices of the triangulation of the (n− 2)-skeleton of Pξ and obtain a
triangulation of Pξ.

One key feature of this triangulation is that each simplex has one vertex
at the origin and all other vertices belong to the vertex set of Pξ. Another
feature can be described as follows. Consider two polytopes Pξ1 , ξ1 ∈ Λ+,
and Pξ2 , ξ2 ∈ Λ−. There is a correspondence between those faces of Pξ1
and Pξ2 that contain only vertices with indices not exceeding K, i.e. not
adjacent to u. This correspondence is given by a one-to-one map between
their vertices, which sends vertices with the same index to each other, and
the triangulations of the faces agree under this map.

We now turn to VP (ξ). If ξ ∈ Λ+ (respectively, Λ−), then we will write
VP (ξ) = V+(ξ) + V (ξ), (respectively, VP (ξ) = V−(ξ) + V (ξ)) where V+

(respectively, V−) is the total volume of the simplices in the triangulation of
Pξ that have at least one vertex pi with index i larger that K, and V is the
total volume of all other simplices. Note that, because of the choice of the
triangulation, V (ξ) has the same formula for both Λ+ and Λ−.

Since VP (ξ) = VQ(ξ) for all ξ ∈ Λ, we have V+(ξ) + V (ξ) = VQ(ξ) for
ξ ∈ Λ+, and V−(ξ)+V (ξ) = VQ(ξ) for ξ ∈ Λ−. Moreover, we can assume that
these equalities hold for all ξ ∈ Sn−1 without a finite number of great sub-
spheres. Indeed, consider, for example, the equality V+(ξ) + V (ξ) = VQ(ξ).
Both sides are rational functions of ξ1, . . . , ξn. Clearing the denominators
and moving everything to one side, we get a polynomial in these variables
that is equal to zero in an open subset of the sphere. To reach a contra-
diction, suppose that this polynomial is not equal to zero at some point on
the sphere. Consider the intersection of the sphere and a two-dimensional
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plane that passes through this point and the interior of Λ+. The problem
reduces to a polynomial of two variables restricted to a circle. Since this
polynomial is equal to zero on an open arc, it is zero on the whole circle,
as we saw above in part (i). Contradiction. Thus, we conclude that the
equality V+(ξ) +V (ξ) = VQ(ξ) holds for all ξ on the sphere except for those
where the denominators vanish.

In view of these comments we get that V+(ξ) + V (ξ) = V−(ξ) + V (ξ), or
simply

V+(ξ) = V−(ξ)

for all ξ ∈ Sn−1 except finitely many great subspheres.
Recall that V+(ξ) and V−(ξ) are given by the sums of the determinants

of the form

|[ūi1 + l̄i1
t− 〈ui1 , ξ〉
〈li1 , ξ〉

, . . . , ūin−1 + l̄in−1

t− 〈uin−1 , ξ〉
〈lin−1 , ξ〉

]|

Let η be the normal vector to the facet F , fixed in the beginning. Consider
the following curve on the sphere:

ξ(ε) =
η + λε

|η + λε|
,

for small enough ε and a vector λ chosen in such a way that it is orthogonal
to η, transversal to the hyperplanes 〈li, ξ〉 = 0 for all li that are orthogonal
to η, and if the tail of λ is placed at u, then the tip of λ lies inside the facet
F .

Now put ξ(ε) into the equality

V+(ξ) = V−(ξ),

multiply both sides by εn−1, and send ε→ 0.
Clearly, we are interested only in those terms that have a product of n−1

factors in the denominator:

|[l̄i1 , . . . , l̄in−1 ]| · t− 〈ui1 , ξ〉
〈li1 , ξ〉

· · ·
t− 〈uin−1 , ξ〉
〈lin−1 , ξ〉

, (4)

all others will just vanish.
Among such terms those that survive must have all li1 ,..., lin−1 perpen-

dicular to η. The simplex with the vertices

ui1 + li1
t− 〈ui1 , ξ〉
〈li1 , ξ〉

, . . . , uin−1 + lin−1

t− 〈uin−1 , ξ〉
〈lin−1 , ξ〉

lies in some facet of P . This facet must also contain the edges with equations

ui1 + li1si1 , . . . , uin−1 + lin−1sin−1 . (5)

By the definition of V+ and V−, the vertex u belongs to at least one of these
edges. The only facet of P orthogonal to η and containing u is F . Therefore,
the vertex u belongs to all of the edges (5), and thus, ui1 = · · · = uin−1 = u.
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In the limit all terms of the form (4) give

|[l̄i1 , . . . , l̄in−1 ]| · (t− 〈u, η〉)n−1

〈li1 , λ〉 · · · 〈lin−1 , λ〉
,

Note that t− 〈u, η〉 6= 0, otherwise this would mean that the hyperplane
with normal η through u, which contains the facet F , is tangent to the
sphere of radius t. This is impossible since P is convex and the sphere is
contained in the interior of P .

Second of all, 〈lik , λ〉 > 0 for all k, due to the choice of λ.
Third, all the determinants |[l̄i1 , . . . , l̄in−1 ]| are non-zero and have the same

sign. To show this, recall that the vectors ū+ l̄ik
t−〈uik

,ξ〉
〈lik ,ξ〉

in the determinants

|[ū+ l̄i1
t− 〈ui1 , ξ〉
〈li1 , ξ〉

, . . . , ū+ l̄in−1

t− 〈uin−1 , ξ〉
〈lin−1 , ξ〉

]| (6)

were ordered in such a way that the determinants were positive. These vec-
tors connect the origin with the vertices of the triangulation of the projection
of F ∩ {〈x, ξ〉 = t} onto e⊥n . On the other hand, the vectors l̄ik connect the
point ū with the vertices of the same triangulation. Therefore, depending
on the parity of the dimension and on whether the (n−2)-dimensional plane
containing proje⊥n (F ∩{〈x, ξ〉 = t}) separates ū and the origin, all the deter-
minants |[l̄i1 , . . . , l̄in−1 ]| will either have the same sign as (6) or all will have
the opposite sign.

Since the face F contributes either to V+ or V−, but not both, one side
in the equality limε→0 V+(ξ(ε)) = limε→0 V−(ξ(ε)) is zero and the other is
not. Contradiction. Therefore, our assumption that P and Q have different
vertices is wrong, which means that these polytopes are identical.

�
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