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Abstract. Given a closed 3-manifold and an action of π1(M) on a tree
T , there is an equivariant weakly transverse map whose dual lamination
has all leaves incompressible.

1. Maps, laminations determined by maps, and dual laminations

Definition 1.1. r : [0, 1] → T is rectifiable if the total lenghts of all parti-
tions are uniformly bounded.

Definition 1.2. f : M̃ → T is weakly transverse if at each point there
is neighborhood U , homeomorphic to Dn−1 × [0, 1] on which f = r ◦ p,
r : [0, 1] → T rectifiable, p : U → [0, 1] projection.

Definition 1.3. Lamination: each flow box is homeomorphic to a product
U × I of an open set U ∈ R

n−1 and an open interval I. In each flow
box lamination is of the form U × X, where X is some closed subset of I.
Different flow boxes should be compatible.

Measured lamination: there exist integrals of transverse intervals, the
weights of the intervals.

Definition 1.4. The lamination L̃ determined by f is the lamination sup-
ported on the set C of points where f is not locally constant and the leaf of

L̃ through a point x ∈ C is the level set of f containing x.

Let f : M̃ → T be a weakly transverse map which is equivariant with

respect to an action of π1(M) on the tree T . Projecting L̃ to M , equivari-

ance implies that if the projections of two leaves of L̃ intersect then their
projections are identical. Since projection is a local homeomorphism on
the interior of a fundamental domain, each leaf projects to a surface in M .

Threfore L̃ induces a lamination L on M , the dual lamination to f̃ .
Throughout we are using the following dictionary:

3 − handles = vertices,

2 − handles = edges,

1 − handles = faces,

0 − handles = interior of tetraherda

or neighborhoods thereof.
We shall concentrate on weakly transverse maps with dual laminations

that meet a given handle decomposition in specific ways. This will allow
later for containing all such lamination in appropriate bundles.

Date: 1/26/04.
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Definition 1.5. Given a triangulation, a lamination is normal to it if:

(1) for every handle h each leaf of the lamination is transverse to the
boundary and the co-cores of h

(2) for 0- and 1-handles the intersection of any leaf is, if not empty, an
unfolded disc.

In terms of a triangulation, this restricts the lamination to intersect each
tetrahedron in one of the 7 ways, two of which are represented below.
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Theorem 1.6. Given a triangulation of M and an action of π1(M) on T ,

there is a weakly transverse equivariant map f̃ : M̃ → T whose dual lam-
ination is measured, normal with respect to the triangulation, and nowhere
dense.

Proof. f̃ on 3-handles: Choose a fundamental domain whose boundary
avoids all three handles. Define it to be an arbitrary constant on each 3-
handle of a fundamental domain, then extend equivariantly to all 3-handles.

f̃ on 2-handles: Extend linearly on all 2-handles. ωσ will denote the arc
image (parametrized by arc lenght) of the 2-handle σ.

The paths ωσ are clearly equivariant and they “match across 1-handles”
(the properties (2.4) of [MSIII]) simply by virtue of the fact that they are
paths joining three points on a tree. Redistribute the values on the edges in
a Cantor fashion, making sure that close to the pre-image of the vertex, on
all three edges, f̃ is constant .

f̃ on 1-handles (faces): For any two points on the edges with the same

value, extend f̃ to have the same value on the segment joining them.
f̃ on 0-handles: Observe that by construction the map is monotone

on 2-handles, therefore each leaf of the lamination intersects every edge at
most once therefore each leaf intersects the boundaries of 0-handles along
normal circles, see page 472 of [MSIII]. Therefore the lamination and the
map extend inside 0-handles by attaching disks.

Define the measure of this lamination by
∫

γ

µ := lengthf̃(γ).

�

2. The functional I

Fix a triangulation on M . Let (L, µ) be the normal measured lamination

dual to a weakly transverse map f̃ . If the weight of (L, µ) across an edge
σ is defined as

∫
σ

µ, denote by W (L, µ) the sum of all the weights of the
lamination across the edges of the triangulation.

Now define the Euler characteristic of a parallel family of leaves to be:

χ(leaf) ·

∫

γ

µ

for γ any tranverse path intersecting all leaves of the family. For non-parallel
familes work on flow boxes and add up alternatingly.

Now for constants C, K > 0 define

I(f̃) = C(W (L, µ) − Kχ(L, µ))

as a functional on the set F of weakly transverse maps. (Observe that I can
be defined on larger classes of laminations, such as transverse laminations.)

Also define a pre-oder “≤” on the set F :

f̃ ′ ≤ f̃ if d(ωσ(f̃), ωσ(f̃ ′) ≤ I(f̃) − I(f̃ ′).
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for all σ. An element f0 in F is called minimal if f ≤ f0 implies f0 ≤ f for
any f .

Theorem 2.1. For a given choice of C and K there is a minimal element.

Proof. Zorn’s lemma �

This gives a standard coercivity inequality for I: Either

d(ωσ(f̃), ωσ(f̃0)) ≤ I(f̃) − I(f̃0)

or

d(ωσ(f̃), ωσ(f̃0)) = I(f̃) − I(f̃0) = 0.

The main result in these notes is:

Theorem 2.2. There are constants C and K such that the dual lamination
of any minimal element of IC,K has all leaves incompressible.

The proof of this theorem occupies the rest of these notes.
First comes a model version of the final Theorem:

Definition 2.3. Given a triangulation, the multiplicity ν(D) of a disc D

trasverse to the edges is the number of times it intersects the edges of the
triangulation.

Key Proposition: Assume that C > K > 0. The minimal element of
any IC,K , has dual lamination L0 whith all leaves satisfying the following:
If the boundary circle of a disc is the disc’s intersection with the lamination
and ν(D) ≤ K

2
− 1, the boundary can always be filled in on the leaf without

increasing multiplicity.

Proof. If the boundary of D does not fill on the leaf l0, extend D to D0.
If arbitrarily close there are leaves l such that D0 ∩ l bounds a disc in l,

we could take the limit of such discs to get a disc on l0. Therefore all leaves
close to l0 are intersected in circles that don’t bound discs. Thicken up D0

and operate to get a new lamination L1 with the property that

χ(L1) = χ(L0) + 2T

where T is the total weight of the surgery, since no leaves on which we
operate bound discs.

Notation:

Ts = total weight of spheres,

V ′
s = weight of spheres across 2 − handles away from surgery,

W (Λ) = weight across all 2 − handles of leaves in balls

Now throw away sphere leaves and leaves in balls to get a new lamination

L′ for which, after using that ν(D) ≤
K

2
− 1,

I(L0) − I(L′) ≥ 2ν(D)(2T − 2Ts) + 2(V ′
s + W (Λ))
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Since the spheres constributing to the Ts can only come from tori Using
again that the leaves we operate on bound no discs this is bounded below
away form zero. On the other hand

2ν(D)(2T − 2Ts) + 2(V ′
s + W (Λ)) ≥ d(ωσ(L0), ωσ(L′).

by simple counting.
Therefore the final lamination has even smaller IC,K than the minimal

element, a contradiction. �

3. The branched I-bundle N

Definition 3.1. N is an I-branched bundle if it is a co-dimension 0 sub-
manifold of M which is locally homeomorphic to the “standard model” in R3

with it vertical intervals. Different homeomorphisms to the standard model
preserve verticality.

Figure 2

The boundary of N consists of horizontal and vertical boundary.

Definition 3.2. The horizontal boundary of N , ∂hN , is the boudary of N

which is transversal to the vertical intervals of N .

Definition 3.3. The vertical boundary of N , ∂vN is the boundary which is
parallel to the vertical intervals of N .

Throughout, fix a triangulation of M . A branched I-bundle is normal
if:

(1) N avoids all vertices.
(2) The vertical boundary ∂vN of N does not intersect the edges of the

triangulation, and the horizontal boundary ∂hN is transverse to the
edges.

(3) Both the vertical and horizontal boundaries are transverse to faces.
(4) The bundle meets each 2-handle as the following:
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Figure 3

and it meets each 1-handle as:

Figure 4

3.1. The master bundles:

(1) Draw the standard bundle on the faces.
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Figure 5

(2) Extend according to how the interior stays parallel to the faces.
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Figure 6

(3) By construction all normal bundles either homotopic to or subbun-
dles of one of these models.

3.2. Incompressible I-bundles:

Definition 3.4. (1) No discs of contact. (Discs with boundary on ∂v

and interior in the interior of N .)
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Figure 7

(2) No compressing discs. (Discs with boundary on ∂h, but not homo-
topic to any dic on ∂h while keeping the boundary fixed.) Given that
we can ussually make ∂h consist of leaves, this agrees with the defin-
tion of compressing discs for the leaves when the compressing discs
stay around the horizontal boundary - let’s call these N -compressing.

��������������������������

Figure 8

(3) No return discs. (Discs with boundary consisting of a vertical compo-
nent and a horizontal component, and the interior in the complement
of the bundle.
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Figure 9

(4) No trivial components.

4. Laminations in branched I-bundles

4.1. Cutting N along a lamination: A lamination L is carried by N with
positive weights if:

(1) L is contained in N .
(2) All leaves of L are transverse to vertical intervals.
(3) L intersects each vertical interval with positive weight. (I.e. vertical

intervals intersect sufficiently many leaves of L.)

To cut N along L, consider the disjoint union of two sets, N \ L and the
set of points on leaves with orientations (germs of components of N \ L).
Call the result NL. With a suitable topology, it is a (not branched) I-bundle:

First bring the ∂h onto leaves. This can be done since the weights are
positive: Every vertical interval starting from horizontal boundary intersects
a first leaf. Use the vertical intervals to homotope this leaf to the boundary.

Then use the standard model for the branched bundle and the fact that
the horizontal boundary is on leaves to cut N into five parallelepiped blocks.



10 STAMATIS DOSTOGLOU, VLAD YASKIN AND MARINA YASKINA

Figure 10

In each block, pick a point x in the complement of the leaves. Thought
this point there is a vertical interval and, since the lamination is closed, there
is a whole subinterval containing x that does not intersect the lamination.
The neighborhood of a maximal such subinterval gives the local I-bundle
structure.

(The I-bundle structure is obvious from the flow-boxes of the lamination.
The fussing in [MSII] happens to be able to tell which parts of the leaves
the different components of the I-bundle are over.)

4.2. Incompressible laminations from incompressible branched bun-
dles. N -compressing discs are taken care of since the bundle is incompress-
ible. This takes care of the l-compressing that are not N -compressing.

4.2.1. Step 1: π1(l) injects into π1(N). It is enough to show that in the
universal cover of N and show that leaf is simply connected.

(Indeed, we prove that the sequence π1(l̃) → π1(l) → π1(N) is exact,

i.e. δ1 : π1(l̃) → π1(l), δ2 : π1(l) → π1(N) and we want to prove that
Imδ1 = Kerδ2.
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Take γ̃ ∈ π1(l̃). γ̃ ⊂ Ñ is closed, therefore its projection is trivial in

π1(N) because nontrivial loops in π1(N) are not closed in Ñ . So, for any

γ̃ ∈ π1(l̃) δ2(δ1(γ̃)) = e or δ1(γ̃) ∈ Kerδ2, therefore Imδ1 ⊂ Kerδ2.
Take γ ∈ Kerδ2 ⊂ π1(l). γ is the image of γ̃ under the map from the

manifold to the universal cover. γ̃ is closed (because γ ∈ Kerδ2, so δ2(γ) is
trivial in N and trivial loops in N have closed images in the universal cover).

So, γ̃ ∈ π1(l̃) and we have that for any γ ∈ Kerδ2 we can find γ ∈ π1(l) i.e.
Kerδ2 ⊂ Imδ1.

Therefore, Imδ1 = Kerδ2 and the sequence is exact.
If we prove that π1(l̃) = {e}, then Imδ1 = {e} = Kerδ2 and this means

that δ2 is injection.)

A disc D in Ñ with boundary on a leaf l̃ intersects all leaves in circles by
transversality.

If there are circles that do not bound discs on their leaves, take an in-
nermost one of this kind. If there are no more circles inside it, deform to
the leaf using the I-bundle structure (see below). If there are more circles,
then by construction they bound discs. Change the outermost ones to be
on their leaves. Use again the I-bundles to deform.

How to deform using I-bundles: The only obstruction to deforming could
be coming from touching the horizontal boundary. When this happens, and
since N is incompressible, we are at the boundary of a hole. Fill in the holes
and use the I-bundles of X̃ to deform.

One more case to consider: When the boundary ∂D of the disc D is the
limit of circles that bound discs on their leaves, then ∂D itself bounds a disc
on the leaf (perhaps other than D).

The following shows that incompressible I-bundles as defined in 3.4 im-
plies that there are no compressing discs in N in the usual sense.

4.2.2. Step 2: There is a surface S in N carried with positive weights such
that any loop in l is homotopic in N to a loop is S.

4.2.3. Step 3: If N is incompressible, then S is incompressible. [FO].
Now start with γ on l, trivial in M . By Step 2 γ is homotopic to γ′ on S,

still trivial in M , therfore trivial on S since S is incompressible, therefore
trivial in N since S is a subset of N . Then Step 1 gives that γ is trivial on
l.

5. An incompressible branched I-bundle

Minimize the functional IC,K for the correct values of C and K to get a
weakly transverse map. Its dual lamination lives in at least one of the N ′

is.
Chose the one of minimum complexity, call it NI .

Theorem 5.1. N is incompressible.

Proof. No discs of contact: This is the opposite of the key proposition.
Using the vertical structure, we have a deformation of any such disc away
from leaves of the lamination. Then we have discs whose bounday is on
vertical boundary and have nothing to do with the leaves. This contradicts
the fact that the bundle has minimum complexity.
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No N-compressing discs: If it does, work on the one with minimum
multiplicity. Then the key proposition applies because of the choice of K.
Therefore the disc can be deformed to a disc D′ on the the leaf. If D′ ∩ ∂v

is empty the original disc is not an N -compressing disc, since it completely
lies on ∂h. Therefore D′ ∩ ∂v is nonempty, hence a circle. Then there is a
disc of contact whose boundary is homotopic to this circle. (Uses the choice
of C and K.)

No return discs: The idea is to show that a return disc forces the leaves
to intersect 2-handles. If there are return discs, the bundle had a boundary
component that consists of a horizontal annulus and a vertical annulus glued
together, otherwise there would be compressing discs. This means that the
leaves of L are flat rather than of positive curvature (they cannot fold inside
of the tetrahedron). This forces them to intersect 2-handles. Therefore,
pushing the lamination away minimizes the W -part of the functional while
keeping the χ-part the same. M-S also showe that this component of the
boundary is a torus, therefore there can be no leaves contained in its interior,
hence they can isotope away from the horizontal boundary of the return.

�

6. Choice of C and K

K = 2

(
max

i
{δi,∆i, di} + 1

)

where

di = minimum ν of discs of contact,

∆i = maximum ν of horizontal discs,

δi = minimum ν of compressing discs

where i keeps track of: the subbundles, up to isomorphism, of the master
bundle that support normal laminations, the subbundles resulting from re-
moving the disc of contact of minimal multiplicity, the subbundles of that,
the new bundles after removing discs of contact of minimal multiplicity, and
so on.
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