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Abstract. The Busemann-Petty problem asks whether convex ori-
gin-symmetric bodies in Rn with smaller central hyperplane sections
necessarily have smaller n-dimensional volume. It is known that the
answer is affirmative if n ≤ 4 and negative if n ≥ 5. In this article
we replace the assumptions of the original Busemann-Petty problem
by certain conditions on the volumes of central hyperplane sections
so that the answer becomes affirmative in all dimensions.

1. Introduction

The classical Minkowski’s uniqueness theorem states that an origin-
symmetric star body in Rn is uniquely determined by the volumes of its
central hyperplane sections in all directions, see for example [K5, Corollary
3.9]. This result provides a strong intuition towards an affirmative answer
in the following Busemann-Petty problem [BP]: given two convex origin-
symmetric bodies K and L in Rn such that

voln−1(K ∩H) ≤ voln−1(L ∩H)

for every central hyperplane H in Rn, does it follow that

voln(K) ≤ voln(L)?

The solution has been completed a few years ago and appeared as the
result of work of many mathematicians (see [GKS], [Zh] or [K5, Chapter
5] for the solution and historical details). Surprisingly, the answer is af-
firmative only if the dimension n ≤ 4, and it is negative if n ≥ 5. In view
of this answer, it is natural to ask what information about the volumes
of central hyperplane sections of two bodies does allow to compare the
volumes of these bodies in all dimensions. Our main result suggests an
answer to this question.

The first named author was supported in part by the NSF grant DMS-0136022 and
by a grant from the University of Missouri Research Board.
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For an origin-symmetric convex body K in Rn, consider the section
function

SK(ξ) = voln−1(K ∩ ξ⊥), ξ ∈ Sn−1,

where ξ⊥ is the central hyperplane in Rn orthogonal to ξ. We extend SK

from the sphere to the whole Rn as a homogeneous function of degree −1.
Our goal is to find a condition in terms of the section functions of two
bodies only that allows to compare the n-dimensional volumes of these
bodies. We prove in this paper that, for two origin-symmetric smooth
bodies K, L in Rn and α ∈ R, α ≥ n− 4, the inequalities

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ), ∀ξ ∈ Sn−1 (1)

imply that voln(K) ≤ voln(L), while for α < n− 4 this is not necessarily
true. Here ∆ is the Laplace operator on Rn, and the fractional powers of
the Laplacian are defined by

(−∆)α/2f =
1

(2π)n
(|x|α2 f̂(x))∧,

where the Fourier transform is considered in the sense of distributions,
and |x|2 stands for the Euclidean norm in Rn. Of course, if α is an even
integer and f is an even distribution we get the Laplacian applied α/2
times. The fact that both sides of (1) represent continuous functions of
the variable ξ follows from [K5, Lemma 3.16].

This result means that one has to differentiate the section functions at
least n−4 times in order to compare the n-dimensional volumes. The case
α = 0 corresponds to the original Busemann-Petty problem, so our result
can also be considered as a ”continuous” generalization of the problem.
Other generalizations of the Busemann-Petty problem and related open
questions can be found in [BZ], [K2], [K3], [K4], [MP], [RZ], [Y], [Zv].

Let us briefly outline the idea of the proof. As shown in [K1], the section
function can be expressed in terms of the Fourier transform, as follows:

SK(ξ) =
1

π(n− 1)
(‖x‖−n+1

K )∧(ξ), (2)

so the condition (1) can be written as

(|x|α2 ‖x‖−n+1
K )∧ ≤ (|x|α2 ‖x‖−n+1

K )∧. (3)

Now let us write the volume in polar coordinates and use a spherical
version of Parseval’s formula from [K2], which allows to remove the Fourier
transforms of homogeneous functions in the integrals over the sphere under
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the condition that the degrees of homogeneity of these functions add up
to −n :

n voln(K) =
∫

Sn−1

‖x‖−n
K dx =

∫
Sn−1

|x|−α
2 ‖x‖−1

K |x|α2 ‖x‖−n+1
K dx

=
1

(2π)n

∫
Sn−1

(
|x|−α

2 ‖x‖−1
K

)∧ (ξ)
(
|x|α2 ‖x‖−n+1

K

)∧ (ξ) dξ.

Suppose that the distribution |x|−α
2 ‖x‖−1

K is positive definite, so its Fourier
transform is non-negative. Then the latter equality combined with (3)
implies that

n voln(K) ≤
∫

Sn−1

‖x‖−1
K ‖x‖−n+1

L dx,

and applying Hölder’s inequality to the right-hand side we get that
voln(K) ≤ voln(L). On the other hand, if |x|−α

2 ‖x‖−1
K is not positive def-

inite one can construct a counterexample using a more or less standard
perturbation procedure.

Thus, the problem is essentially reduced to the question, for which α is
the distribution |x|−α

2 ‖x‖−1
K positive definite, for every origin-symmetric

convex body K in Rn. Note that for α = 0 this happens only if the
dimension n ≤ 4, as proved in [GKS]. We prove that this function is
positive definite for α ≥ n − 4 and any symmetric convex body K in Rn

by an argument modifying the proof from [GKS]. If α < n−4 we construct
examples of bodies for which this distribution is not positive definite. The
latter requires a substantial technical effort.

2. Positive definite distributions of the form |x|−r
2 ‖x‖−s

K

Let K be a convex origin-symmetric body in Rn. Our definition of a
convex body assumes that the origin is an interior point of K. The radial
function of K is given by

ρK(x) = max{a > 0 : ax ∈ K}, x ∈ Rn \ {0}

The Minkowski norm of K is defined as

‖x‖K = min{a ≥ 0 : x ∈ aK},

clearly ρK(x) = ‖x‖−1
K .

Writing the volume of K in polar coordinates, one can express the
volume in terms of the Minkowski norm:

voln(K) =
1
n

∫
Sn−1

‖θ‖−n
K dθ. (4)
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We say that a body K is infinitely smooth if its radial function ρK

restricted to the unit sphere Sn−1 belongs to the space C∞(Sn−1) of in-
finitely differentiable functions on the unit sphere. Note that a simple
approximation argument reduces the original Busemann-Petty problem
(as well as all generalizations mentioned in the introduction) to the case
where the bodies K and L are infinitely smooth.

Throughout the paper we use the Fourier transform of distributions.
The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉
for every test function φ from the Schwartz space S of rapidly decreasing
infinitely differentiable functions on Rn. For any even distribution f , we
have (f̂)∧ = (2π)nf .

A distribution is positive definite if its Fourier transform is a posi-
tive distribution in the sense that 〈f̂ , φ〉 ≥ 0 for every non-negative test
function φ; see, for example, [GV, p.152].

Let f be an integrable continuous function on R, m-times continuously
differentiable in some neighborhood of zero, m ∈ N. For a number q ∈
(m− 1,m) the fractional derivative of the order q of the function f at
zero is defined by

f (q)(0) =
1

Γ(−q)

∫ ∞

0
t−1−q

(
f (t)− f (0)− tf ′(0)− · · ·−

− tm−1

(m− 1)!
f (m−1)(0)

)
dt.

Note that without dividing by Γ(−q) the expression for the fractional
derivative represents an analytic function in the domain {q ∈ C,−1 <
Re q < m} not including integers and has simple poles at non-negative
integers. The function Γ(−q) is analytic in the same domain and also has
simple poles at non-negative integers. Therefore, after division we get an
analytic function in the whole domain {q ∈ C,−1 < Re q < m}, which
also defines fractional derivatives of integer orders. Moreover, computing
the limit as q → k, where k is a non-negative integer and k < m, we
see that the fractional derivatives of integer orders coincide with usual
derivatives up to a sign:

f (k)(0) = (−1)k dk

dtk
f(t)|t=0.

More details on fractional derivatives may be found in [K5, Section 2.6].
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For ξ ∈ Sn−1, consider a function AK,ξ,p on R

AK,ξ,p(t) =
∫

K∩〈x,ξ〉=t
|x|−p

2 dx,

where p < n− 1.
In this section we establish some regularity properties of the function

AK,ξ,p and express its fractional derivatives in terms of the Fourier trans-
form. We assume that K is an infinitely smooth body.

For a real number q define the ceiling function dqe, which gives the
smallest integer greater than or equal to q.

Lemma 2.1. Let ξ ∈ Sn−1, k ∈ N, 0 ≤ p < n− k− 1. Then the function
AK,ξ,p is k-times continuously differentiable (uniformly with respect to ξ)
in some neighborhood of zero.

For fixed q ∈ C, the fractional derivative A
(q)
K,ξ,p(0) is a continuous func-

tion of the variable ξ ∈ Sn−1, and, for fixed ξ ∈ Sn−1, it is an analytic
function of q in the domain {q ∈ C : − 1 < dRe qe < n − p − 1}, with
convergence in the derivatives by q being uniform with respect to ξ.

The proof is similar to that of [K5, Lemma 2.4]. The only difference is
that in our case the function is differentiable only up to a certain order.
To explain this, write the function in the form

AK,ξ,p(t) =
∫

Sn−2
t

(∫ ρK∩Ht (θ)

0
rn−2(r2 + t2)−p/2dr

)
dθ,

where ρK∩Ht(θ) is the radial function of the body K ∩ Ht and Sn−2
t is

the unit sphere in Ht = {x ∈ Rn : 〈x, ξ〉 = t}. If we differentiate by t too
many times the integral stops being convergent when t = 0, which is why
we have restrictions on k and q.

The following Lemma is a generalization of Theorem 2 from [GKS].

Lemma 2.2. Let K be an infinitely smooth origin-symmetric convex body
in Rn, q > −1, q 6= n − p − 1 and 0 ≤ p < n − dqe − 1. Then for every
ξ ∈ Sn−1,

A
(q)
K,ξ,p(0) =

cos πq
2

π(n− p− q − 1)
(‖x‖−n+p+q+1

K · |x|−p
2 )∧(ξ).

Proof. We simply write ‖ · ‖ for ‖ · ‖K . By [K5, Lemma 3.16],
(‖x‖−n+p+q+1 · |x|−p

2 )∧ is a continuous function on Rn \ {0}.
Suppose first that −1 < q < 0. The function

AK,ξ,p(t) =
∫

K∩〈x,ξ〉=t
|x|−p

2 dx =
∫
〈x,ξ〉=t

χ(‖x‖)|x|−p
2 dx
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is even. Applying Fubini’s theorem and passing to spherical coordinates,
we get

A
(q)
K,ξ,p(0) =

1
Γ(−q)

∫ ∞

0
t−q−1AK,ξ,p(t)dt

=
1

2Γ(−q)

∫ ∞

−∞
|t|−q−1AK,ξ,p(t)dt

=
1

2Γ(−q)

∫ ∞

−∞
|t|−q−1

∫
〈x,ξ〉=t

χ(‖x‖)|x|−p
2 dxdt

=
1

2Γ(−q)

∫
Rn

|〈x, ξ〉|−q−1χ(‖x‖)|x|−p
2 dx

=
1

2Γ(−q)

∫
Sn−1

|〈θ, ξ〉|−q−1

∫ ∞

0
r−q−1χ(r‖θ‖)r−prn−1drdθ

=
1

2Γ(−q)

∫
Sn−1

|〈θ, ξ〉|−q−1

∫ 1
‖θ‖

0
rn−p−q−2drdθ

=
1

2Γ(−q)(n− p− q − 1)

∫
Sn−1

|〈θ, ξ〉|−q−1‖θ‖−n+p+q+1dθ.

Now we extend A
(q)
K,ξ,p(0) to Rn as a homogeneous function of ξ of degree

−1− q. Then for every even test function φ ∈ S,

〈A(q)
K,ξ,p(0), φ(ξ)〉 =

1
2Γ(−q)(n− p− q − 1)

×

×
∫

Sn−1

‖θ‖−n+p+q+1
∫

Rn

|〈θ, ξ〉|−q−1φ(ξ)dξdθ.

Using Lemma 5 from [GKS]

=
−1

4Γ(−q)Γ(1 + q)(n− p− q − 1) sin qπ
2

×

×
∫

Sn−1

‖θ‖−n+p+q+1
∫ ∞

−∞
|t|qφ̂(tθ)dtdθ

=
− sin(−πq)

2π(n− p− q − 1) sin qπ
2

〈(‖x‖−n+p+q+1 · |x|−p
2 )∧(ξ), φ(ξ)〉.
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The latter follows from the fact that Γ(−q)Γ(q + 1) = −π/ sin(qπ) and
the calculation

〈(‖x‖−n+p+q+1 · |x|−p
2 )∧(ξ), φ(ξ)〉

=
∫

Rn

‖x‖−n+p+q+1 · |x|−p
2 φ̂(x)dx

=
∫

Sn−1

‖θ‖−n+p+q+1
∫ ∞

0
t−n+p+q+1t−ptn−1φ̂(tθ)dtdθ

=
∫

Sn−1

‖θ‖−n+p+q+1
∫ ∞

0
tqφ̂(tθ)dtdθ.

We have proved that

〈A(q)
K,ξ,p(0), φ(ξ)〉 =

cos πq
2

π(n + p− q − 1)
〈(‖x‖−n+p+q+1 · |x|−p

2 )∧(ξ), φ(ξ)〉

for −1 < q < 0. Since both A
(q)
K,ξ,p(0) and (‖x‖−n+p+q+1 · |x|−p

2 )∧(ξ) are
continuous functions of ξ ∈ Rn \ {0}, we get the statement of the Lemma
for −1 < q < 0.

To prove the Lemma for other values of q we use the fact that for every
even test function φ the functions

q 7→ 〈A(q)
K,ξ,p(0), φ(ξ)〉

and

q 7→
cos πq

2

π(n− p− q − 1)
〈(‖x‖−n+p+q+1 · |x|−p

2 )∧(ξ), φ(ξ)〉

are analytic in the domain {q ∈ C : − 1 < dRe qe < n− p− 1}. (The fact,
that (‖x‖−n+p+q+1 · |x|−p

2 )∧(ξ) is analytic with respect to q, can be seen
from the argument of [K5, Lemma 2.22]). The result of the Lemma fol-
lows, since these analytic functions coincide for q ∈ (−1, 0), φ is arbitrary
and, by Lemma 2.1, the fractional derivative is a continuous function of ξ
outside of the origin.

�

Lemma 2.3. Let K be an origin-symmetric convex body in Rn. Assume
that q ∈ (−1, 2] and 0 ≤ p < n − dqe − 1, then ‖x‖−n+p+q+1

K · |x|−p
2 is a

positive definite distribution on Rn.

Proof. First we prove that

AK,ξ,p(t) ≤ AK,ξ,p(0), for all t ≥ 0 (5)
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If p = 0, it follows from Brunn’s theorem (see [K5, Theorem 2.3]) that the
central hyperplane section of an origin-symmetric convex body has maxi-
mal volume among all hyperplane sections orthogonal to a given direction.
If p > 0 one can see that

|x|−p
2 = p

∫ ∞

0
χ(z|x|2)zp−1dz,

therefore

AK,ξ,p(t) =
∫

K∩〈x,ξ〉=t
|x|−p

2 dx

= p

∫
K∩〈x,ξ〉=t

∫ ∞

0
χ(z|x|2)zp−1dzdx

= p

∫ ∞

0
zp−1

∫
K∩〈x,ξ〉=t

χ(z|x|2)dxdz

= p

∫ ∞

0
zp−1

∫
B1/z∩K∩〈x,ξ〉=t

dxdz

≤ p

∫ ∞

0
zp−1

∫
B1/z∩K∩〈x,ξ〉=0

dxdz = AK,ξ,p(0)

by Brunn’s theorem applied to the convex origin-symmetric body B1/z∩K,
where B1/z is a ball of radius 1/z.

Now consider q ∈ (1, 2). Here cos
qπ

2
is negative, therefore we need to

prove that A
(q)
K,ξ,p(0) ≤ 0. Using inequality (5), the formula for fractional

derivatives for q ∈ (1, 2) and the fact that A′(0) = 0 we get

A
(q)
K,ξ,p(0) =

1
Γ(−q)

∫ ∞

0
t−q−1(A(t)−A(0)− tA′(0))dt

=
1

Γ(−q)

∫ ∞

0
t−q−1(A(t)−A(0))dt ≤ 0

since Γ(−q) is positive.
If q ∈ (0, 1) then cos qπ

2 is positive and

A
(q)
K,ξ,p(0) =

1
Γ(−q)

∫ ∞

0
t−q−1(A(t)−A(0))dt ≥ 0

since Γ(−q) < 0 for these values of q.
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Finally if q ∈ (−1, 0) then cos qπ
2 is positive, Γ(−q) is also positive and

A
(q)
K,ξ,p(0) =

1
Γ(−q)

∫ ∞

0
t−q−1A(t)dt ≥ 0

We still have to prove the Lemma for q = 0, 1, 2.
When q = 0, cos πq

2 = 1 and

A
(0)
K,ξ,p(0) = (−1)0AK,ξ,p(0) ≥ 0.

When q = 2, cos πq
2 = −1 and

A
(2)
K,ξ,p(0) = (−1)2A′′

K,ξ,p(0) ≤ 0,

since AK,ξ,p(t) has maximum at 0.
When q = 1, take small ε > 0. By what we just proved for non-integer

q, for any non-negative test function φ,

〈(|x|−p
2 ‖x‖−n+p+2+ε

K )∧, φ〉 ≥ 0.

Since ‖x‖K ≤ C|x|2 for some C, it follows that

‖x‖−n+p+2+ε
K |x|−p

2 ≤ C̃|x|−n+2+ε
2 ≤ C̃|x|−n+1

2 ,

the latter being a locally-integrable function on Rn.
Set g(x) = C̃|x|−n+1

2 |φ̂(x)| for |x|2 < 1 and g(x) = C̃|φ̂(x)| for |x|2 > 1.
The function g(x) is integrable on Rn and for small ε we have that
‖x‖−n−p+2+ε

K |x|p2φ̂(x) ≤ g(x). Therefore by the Lebesgue dominated con-
vergence theorem,

〈(‖x‖−n+p+2
K |x|−p

2 )∧, φ〉 =
∫

Rn

‖x‖−n+p+2
K |x|−p

2 φ̂(x)dx =

= lim
ε→0

∫
Rn

‖x‖−n+p+2+ε
K |x|−p

2 φ̂(x)dx = lim
ε→0

〈(‖x‖−n+p+2+ε
K |x|−p

2 )∧, φ〉 ≥ 0

�

3. The proof of the main result

Theorem 3.1. Let α ∈ [n − 4, n − 1), K and L be origin-symmetric
infinitely smooth convex bodies in Rn, n ≥ 4, so that for every ξ ∈ Sn−1

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ). (6)

Then
voln(K) ≤ voln(L).

On the other hand, for any α ∈ [n − 5, n − 4) there are convex origin-
symmetric bodies K, L ∈ Rn, n ≥ 5 that satisfy (6) for every ξ ∈ Sn−1 but
voln(L) < voln(K).
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Proof of the affirmative part. Let SK(ξ) = voln−1(K ∩ ξ⊥), ξ ∈ Sn−1,
the central section function defined in the Introduction. Then, as proved
in [K1]

SK(ξ) =
1

π(n− 1)
(‖x‖−n+1

K )∧(ξ). (7)

Extending SK(ξ) to Rn as a homogeneous function of degree −1 and
using the definition of fractional powers of the Laplacian we get

(−∆)α/2SL(θ) =
1

π(n− 1)
(|x|α2 ‖x‖−n+1

L )∧(θ),

therefore

(2π)n

∫
Sn−1

‖x‖−1
K ‖x‖−n+1

L dx =

= (2π)n

∫
Sn−1

(|x|−α
2 ‖x‖−1

K )(|x|α2 ‖x‖−n+1
L )dx

=
∫

Sn−1

(|x|−α
2 ‖x‖−1

K )∧(θ)(|x|α2 ‖x‖−n+1
L )∧(θ)dθ

= π(n− 1)
∫

Sn−1

(|x|−α
2 ‖x‖−1

K )∧(θ)(−∆)α/2SL(θ)dθ

Here we used Parseval’s formula on the sphere (see [K2, Lemma 3]) and
(7).

By Lemma 2.3 with p = α and q = n− α− 2, (|x|−α
2 ‖x‖−1

K )∧ is a non-
negative function on Sn−1, therefore using the condition of the theorem
and repeating the above calculation in the opposite order, we get∫

Sn−1

‖x‖−1
K ‖x‖−n+1

K dx ≤
∫

Sn−1

‖x‖−1
K ‖x‖−n+1

L dx.

Then by Hölder’s inequality and the polar formula for the volume (4),

n voln(K) ≤
(∫

Sn−1

‖θ‖−n
K dθ

)1/n(∫
Sn−1

‖θ‖−n
L dθ

)(n−1)/n

=

n(voln(K))1/n(voln(L))(n−1)/n,

which yields the statement of the positive part of the theorem.
Proof of the negative part. Let α ∈ [n−5, n−4). We need to construct
two convex origin-symmetric bodies K, L ∈ Rn, n ≥ 5 such that for every
ξ ∈ Sn−1

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ),
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but
voln(L) < voln(K).

First let us prove the following Lemma.

Lemma 3.2. Let α ∈ [n − 5, n − 4). There exists an infinitely smooth
origin-symmetric convex body L with positive curvature, so that

‖x‖−1
L · |x|−α

2

is not a positive definite distribution.

Proof. First assume that α ∈ (n − 5, n − 4). Put q = n − α − 2, so
q ∈ (2, 3). Our goal is to construct a body L so that there is a ξ ∈ Sn−1

satisfying∫ ∞

0
t−q−1

(
AL,ξ,α(t)−AL,ξ,α(0)−A′′

L,ξ,α(0)
t2

2

)
dt < 0. (8)

If we construct such a body L the result of this lemma immediately follows
from Lemma 2.2 and the definition of fractional derivatives.

Consider the function

f(t) =
(
1− t2 −Nt4

) 1
n−α−1

Let aN be the positive real root of the equation f(t) = 0. Define the
body L ∈ Rn as follows.

L =

(x1, ..., xn) ∈ Rn : xn ∈ [−aN , aN ] and

(
n−1∑
i=1

x2
i

)1/2

≤ f(xn)

 ,

which is a strictly convex infinitely differentiable body.
Take ξ to be the unit vector in the direction of the xn-axis. Then for

t ∈ [0, aN ],

AL,ξ,α(t) =
∫

Sn−1

∫ f(t)

0
(t2 + r2)−α/2rn−2dr dθ

= Cn

∫ f(t)

0
(t2 + r2)−α/2rn−2dr

where Cn = |Sn−1|, and for t > aN we have AL,ξ,α(t) = 0.
One can compute:

AL,ξ,p(0) =
Cn

n− α− 1
,

and
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A′′
L,ξ,p(0) = −Cn

[
α

n− α− 3
+

2
n− α− 1

]
.

In order to estimate the integral (8), we split it into three parts: over
[0, bN ], [bN , aN ] and [aN ,∞), where bN is the positive real root of the
equation 1− t2 −Nt4 = tq+1. Recall that aN was defined as the positive
real root of the equation 1 − t2 − Nt4 = 0. It is easy to check that
aN ' bN ' N−1/4 for large N . Also note that on [0, aN ] we have f(t) ≥ 0,
and f(t) ≥ t if and only if t ∈ [0, bN ].

First consider the interval [0, bN ]. For all t from this interval we have
t ≤ f(t). Then we can break the integral:∫ f(t)

0
(t2 + r2)−α/2rn−2dr = I1 + I2

into two parts, where the first one can be estimated as follows

I1 =
∫ t

0
(t2 + r2)−α/2rn−2dr ≤

∫ t

0
(r2)−α/2rn−2dr =

tn−α−1

n− α− 1

and for the second one we will use the inequality:

(1 + x)−γ ≤ 1− γx +
γ(γ + 1)

2
x2, for γ > 0 and 0 < x < 1.

Then

I2 =
∫ f(t)

t
(t2 + r2)−α/2rn−2dr

=
∫ f(t)

t

(
1 +

t2

r2

)−α/2

rn−α−2dr ≤

≤
∫ f(t)

t

(
1− α

2
t2

r2
+

α
2

(
α
2 + 1

)
2

t4

r4

)
rn−α−2dr

=

[
rn−α−1

n− α− 1
− α

2
t2rn−α−3

n− α− 3
+

α
2

(
α
2 + 1

)
2

t4rn−α−5

n− α− 5

]f(t)

t
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=
fn−α−1(t)
n− α− 1

− α

2
t2

n− α− 3
fn−α−3(t) +

+
α
2

(
α
2 + 1

)
2

t4

n− α− 5
fn−α−5(t) + Ctn−α−1

≤ fn−α−1(t)
n− α− 1

− α

2
t2

n− α− 3
fn−α−3(t) + Ctn−α−1

=
1− t2 −Nt4

n− α− 1
− α

2
t2

n− α− 3
(1− t2 −Nt4)

n−α−3
n−α−1 + Ctn−α−1

for some constant C. The last inequality follows from f(t) ≥ 0 on [0, bN ]
and α ∈ (n− 5, n− 4).

Using the inequality:

(1− x)γ ≥ 1− γx(1− x)γ−1, for 0 < γ < 1 and 0 < x < 1,

applied to the second term in the previous expression, we get

I2 ≤ 1− t2 −Nt4

n− α− 1
− α

2
t2

n− α− 3
×

×
(

1− n− α− 3
n− α− 1

(1− t2 −Nt4)
n−α−3
n−α−1

−1(t2 + Nt4)
)

+ Ctn−α−1

=
1− t2 −Nt4

n− α− 1
− α

2
t2

n− α− 3
+

+C1
t4 + Nt6

(1− t2 −Nt4)
2

n−α−1

+ Ctn−α−1

Now using the estimates for I1 and I2 we get∫ bN

0
t−q−1

(
AL,ξ,α(t)−AL,ξ,α(0)−A′′

L,ξ,α(0)
t2

2

)
dt ≤

≤ Cn

∫ bN

0
t−q−1

(1− t2 −Nt4

n− α− 1
− α

2
t2

n− α− 3
+ C1

t4 + Nt6

(1− t2 −Nt4)
2

n−α−1

+Ctn−α−1 − 1
n− α− 1

+
[

α

n− α− 3
+

2
n− α− 1

]
t2

2

)
dt

= Cn

∫ bN

0
t−q−1

(
−Nt4

n− α− 1
+ C1

t4 + Nt6

(1− t2 −Nt4)
2

n−α−1

+ Ctn−α−1

)
dt

Now one can estimate each term of the last integral separately. Since
bN ' N−1/4, we get that∫ bN

0
t−q−1 −Nt4

n− α− 1
dt ' −C2N

q/4
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for a positive constant C2.
For the second term, we change the variable of integration: u = N1/4t.

Then

∫ bN

0
t−q−1 t4 + Nt6

(1− t2 −Nt4)
2

n−α−1

dt

= N q/4

∫ bNN1/4

0
u−q−1 u4N−1 + u6N−1/2

(1−N−1/2u2 − u4)
2

n−α−1

du

≤ N (q−2)/4

∫ bNN1/4

0
u−q−1 u4 + u6

(1−N−1/2u2 − u4)
2

n−α−1

du

≤ C3N
(q−2)/4,

since bNN1/4 → 1 as N →∞, and the integral∫ 1

0
u−q−1 u4 + u6

(1− u4)
2

n−α−1

du

converges both at 0 and 1.
And finally the integral of the last term is small for large values of N ,

since n−α− 1 = q +1. From what we have obtained one can see that the
integral over [0, bN ] will be negative for large values of N since the leading
term is −C2N

q/4.
Now consider the integral over [bN , aN ]. The expression AL,ξ,α(t) −

AL,ξ,α(0) − A′′
L,ξ,α(0)t2/2 can be estimated from above by a constant C,

not depending on N . Indeed, AL,ξ,α(t) ≤ AL,ξ,α(0), A′′
L,ξ,α(0) is a constant

independent of N , and t ≤ aN ' N−1/4 ≤ 1 for N large enough. Therefore∫ aN

bN

t−q−1

(
AL,ξ,α(t)−AL,ξ,α(0)−A′′

L,ξ,α(0)
t2

2

)
dt ≤

≤ C

∫ aN

bN

t−q−1dt ≤ C

∫ aN

bN

(bN )−q−1dt = C
aN − bN

(bN )q+1

Recalling that aN and bN satisfy the equations

1− a2
N −Na4

N = 0 and 1− b2
N −Nb4

N = bq+1
N

we conclude that

bq+1
N = (a2

N − b2
N )(1 + N(a2

N + b2
N )).
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Therefore

C

∫ aN

bN

t−q−1dt ≤ C

(aN + bN )(1 + N(a2
N + b2

N ))
' CN−1/4.

Finally, the integral over [aN ,∞) can be computed as follows∫ ∞

aN

t−q−1

(
−AL,ξ,α(0)−A′′

L,ξ,α(0)
t2

2

)
dt ' −D1N

q/4 + D2N
(q−2)/4

where D1 > 0. Therefore, this integral is negative for N large enough.
Combining all the integrals one can see that for N large enough the

desired integral (8) is negative. This means that for some direction ξ ∈
Sn−1 the function (‖x‖−1

L · |x|−α
2 )∧(ξ) is negative, if α ∈ (n− 5, n− 4).

If α = n − 5, both sides of the equality in the statement of Lemma
2.2 vanish, therefore we need to apply the argument from [GKS] (see the
proof of Theorem 1). Then

(‖x‖−1
L · |x|−n+5

2 )∧(ξ) =

= C

∫ ∞

0
t−4

(
AL,ξ,α(t)−AL,ξ,α(0)−A′′

L,ξ,α(0)
t2

2

)
dt

for a positive constant C. Considering the same body as before, we get
that (‖x‖−1

L · |x|−n+5
2 )∧(ξ) is also negative at some point ξ.

�
Now we are ready to finish the proof of the negative part. Apply Lemma

3.2 to construct an infinitely smooth origin-symmetric body L with pos-
itive curvature for which (‖x‖−1

L · |x|−α
2 )∧(ξ) < 0 for some direction ξ.

By Lemma 2.2, the function (‖x‖−1
L · |x|−α

2 )∧ is continuous on the sphere
Sn−1, hence there is a neighborhood of ξ where it is negative.

Let
Ω = {θ ∈ Sn−1 : (‖x‖−1

L · |x|−α
2 )∧(θ) < 0}.

Choose a non-positive infinitely differentiable even function v supported
on Ω. Extend v to a homogeneous function r−α−1v(θ) of degree −α − 1
on Rn. By [K5, Lemma 3.16], the Fourier transform of |x|−α−1

2 v(x/|x|2)
is equal to |x|−n+α+1

2 g(x/|x|2) for some infinitely differentiable function g
on Sn−1.

Define a body K by

‖x‖−n+1
K = ‖x‖−n+1

L + ε|x|−n+1
2 g(x/|x|2)

for some small ε so that the body K is convex (see for example [K5,
Theorem 5.3 ] for this standard perturbation argument). Multiply both

sides by
1

π(n− 1)
|x|α2 and apply the Fourier transform:
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(−∆)α/2SK = (−∆)α/2SL +
ε(2π)n

π(n− 1)
|x|−α−1

2 v(x/|x|2) ≤ (−∆)α/2SL,

since v is non-positive.
On the other hand,∫

Sn−1

(‖x‖−1
L · |x|−α

2 )∧(θ)(−∆)α/2SKdθ =

=
∫

Sn−1

(‖x‖−1
L · |x|−α

2 )∧(θ)(−∆)α/2SLdθ

+ε
(2π)n

π(n− 1)

∫
Sn−1

(‖x‖−1
L · |x|−α

2 )∧(θ)v(θ)dθ

>

∫
Sn−1

(‖x‖−1
L · |x|−α

2 )∧(θ)(−∆)α/2SLdθ.

Repeating the argument from the proof of the affirmative part we get:

voln(L) < voln(K).

�
Remarks. (i) The negative part is formulated only for q ∈ [n− 5, n− 4),
because we wanted this to work for n = 5. In fact, for bigger n one can
take q ∈ [0, n− 4). Also the condition (1) can be written in terms of the
Fourier transforms so that no smoothness of the bodies is required.

(ii) In the case where q = n − 4 and n is an even integer, the result of
Theorem 3.1 was proved in [K4] using an induction argument. The proof
from [K4] can not be extended to other values of q and n and does not
produce any results in the negative direction.

(iii) Shephard’s problem (see, for example, [K5, Section 8.4]) asks whe-
ther convex origin-symmetric bodies with smaller projections necessarily
have smaller n-dimensional volume. As proved independently by Petty [P]
and Schneider [S], the answer to this problem is affirmative only in dimen-
sion n = 2, so one may try to modify Shephard’s problem to guarantee
the affirmative answer in all dimensions. However, attempts to repeat
the proof of Theorem 3.1 for Shephard’s problem fail, since the section
function AK,ξ,p may not be sufficiently differentiable.
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