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Abstract. Suppose that we have the unit Euclidean ball in Rn and
construct new bodies using three operations - linear transformations,
closure in the radial metric and multiplicative summation defined by
‖x‖K+0L =

√
‖x‖K‖x‖L. We prove that in dimension 3 this procedure

gives all origin symmetric convex bodies, while this is no longer true in
dimensions 4 and higher. We introduce the concept of embedding of a
normed space in L0 that naturally extends the corresponding properties
of Lp-spaces with p 6= 0, and show that the procedure described above
gives exactly the unit balls of subspaces of L0 in every dimension. We
provide Fourier analytic and geometric characterizations of spaces em-
bedding in L0, and prove several facts confirming the place of L0 in the
scale of Lp-spaces.

1. Introduction

Suppose that we have the unit Euclidean ball in Rn and are allowed to
construct new bodies using three operations - linear tranformations, mul-
tiplicative summation and closure in the radial metric. The multiplicative
sum K +0 L of star bodies K and L is defined by

‖x‖K+0L =
√
‖x‖K‖x‖L, (1)

where ‖x‖K = min{a ≥ 0 : x ∈ aK} is the Minkowski functional of a star
body K. What class of bodies do we get from the unit ball by means of these
three operations?

We are going to prove that in dimension n = 3 we get all origin-symmetric
convex bodies, while in dimension 4 and higher this is no longer the case.
However, the class of bodies that we get in arbitrary dimension also has a
clear interpretation. We introduce the concept of embedding in L0 and show
that the bodies that we get by means of these three operations are exactly
the unit balls of spaces that embed in L0.

The idea of this interpretation comes from a similar result for Lp-spaces
with p ∈ [−1, 1], p 6= 0. Namely, if we replace the multiplicative summation
by p-summation

‖x‖K+pL =
(
‖x‖p

K + ‖x‖p
L

)1/p (2)
then we get the unit balls of all spaces that embed in Lp. The case p = 1
is well-known (see [G2, Corollary 4.1.12]) and the unit balls of subspaces of
L1 have a clear geometric meaning - these are the polar projection bodies
(see [B]). On the other hand, it was proved by Goodey and Weil [GW]
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that if p = −1 (this case corresponds to the radial summation) then we get
the class of intersection bodies in Rn. As shown in [K4], intersection bodies
are the unit balls of spaces that embed in L−1. The concept of embedding
in Lp, p < 0 was introduced in [K3] as an analytic extension of the same
property for p > 0, see [KK2] for related results. The result of Goodey and
Weil can easily be extended to p ∈ (−1, 1), p 6= 0. Note that this construction
provides a continuous (except for p = 0) path from polar projection bodies
to intersection bodies, which is important for understanding the duality
between projections and sections of convex bodies. One of the goals of this
article is to fill the gap in this scheme at p = 0 and better understand the
geometry of this intermediate case.

Another interesting similarity of our result with other values of p is that
for p = 1 the procedure defined above gives all origin-symmetric convex
bodies only in dimension 2. This follows from a result of Schneider [S]
that every origin-symmetric convex body is a polar projection body only in
dimension 2. When p = −1 we get all origin-symmetric convex bodies only
in dimensions 4 and lower, because, by results from [G1], [Z], [GKS], only
in these dimensions every origin-symmetric convex body is an intersection
body. The transition between the dimensions 2 and 3 in the case p = 1 and
the transition between the dimensions 4 and 5 in the case p = −1 directly
correspond to the transition between the affirmative and negative answers
in the Shephard and Busemann-Petty problems, respectively. It would be
interesting to find a similar geometric result corresponding to the transition
between dimensions 3 and 4 in the case p = 0. We refer the reader to the
book [K5, Chapter 6] for more details and history of the connection between
convex geometry and the theory of Lp-spaces.

2. The definition of embedding in L0.

A compact set K in Rn is called an origin-symmetric star body if every
straight line passing through the origin crosses the boundary of K at exactly
two points, the boundary is continuous, and the origin is an interior point
of K. We denote by (Rn, ‖ · ‖K) the Euclidean space equipped with the
Minkowski functional of the body K. Clearly, (Rn, ‖ · ‖K) is a normed space
if and only if the body K is convex. Throughout the paper, we write (Rn, ‖·‖)
meaning that ‖·‖ is the Minkowski functional of some origin-symmetric star
body.

A well-known result of P.Lévy, see [BL, p. 189] or [K5, Section 6.1], is
that a space (Rn, ‖ · ‖) embeds into Lp, p > 0 if and only if there exists a
finite Borel measure µ on the unit sphere so that, for every x ∈ Rn,

‖x‖p =
∫

Sn−1

|(x, ξ)|pdµ(ξ). (3)

On the other hand, the definition of embedding in Lp with p < 0 from [K3]
implies that a space (Rn, ‖ · ‖) embeds into Lp, p ∈ (−n, 0) if and only if
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there exists a finite symmetric measure µ on the sphere Sn−1 so that for
every test function φ,∫

Rn

‖x‖pφ(x)dx =
∫

Sn−1

dµ(ξ)
∫

R
|t|−p−1φ̂(tξ)dt. (4)

Both representations (3) and (4) are invariant with respect to p-summation.
This gives an idea of defining embedding in L0 by means of a representation
that is invariant with respect to multiplicative summation. Note that the
multiplicative summation is the limiting case of p-summation as p → 0.

Definition 2.1. We say that a space (Rn, ‖ · ‖) embeds in L0 if there exist
a finite Borel measure µ on the sphere Sn−1 and a constant C ∈ R so that,
for every x ∈ Rn,

ln ‖x‖ =
∫

Sn−1

ln |(x, ξ)|dµ(ξ) + C. (5)

While being similar to (3) and (4), this definition has its unique features.
First, the measure µ must be a probability measure on Sn−1. In fact, put
x = ky, k > 0 in (5). Then

ln k + ln ‖y‖ =
∫

Sn−1

ln k dµ(ξ) +
∫

Sn−1

ln |(y, ξ)|dµ(ξ) + C

and, again by (5) with x = y, we get ln k =
∫
Sn−1 ln k dµ(ξ), so

∫
Sn−1 dµ(ξ) =

1.
Secondly, the constant C depends on the norm and can be computed

precisely. In order to compute this constant, integrate the equality (5) over
the uniform measure on the unit sphere. We get

C · |Sn−1| =
∫

Sn−1

ln ‖x‖dx−
∫

Sn−1

∫
Sn−1

ln |(x, θ)| dµ(θ)dx

=
∫

Sn−1

ln ‖x‖dx−
∫

Sn−1

∫
Sn−1

ln |(x, θ)| dx dµ(θ)

=
∫

Sn−1

ln ‖x‖dx−
∫

Sn−1

ln |(x, θ)| dx,

since
∫
Sn−1 ln |(x, θ)| dx is rotationally invariant and, therefore, is a constant

for θ ∈ Sn−1, and µ is a probability measure.
To compute the latter integral, use the well-known formula (see [K5, Sec-

tion 6.4]) ∫
Sn−1

|(x, θ)|p dx =
2π(n−1)/2Γ((p + 1)/2)

Γ((n + p)/2)
.

Differentiating with respect to p and letting p = 0 we get∫
Sn−1

ln |(x, θ)| dx = π(n−1)/2

[
Γ′(1/2)
Γ(n/2)

−
√

π
Γ′(n/2)
Γ2(n/2)

]
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Note that

|Sn−1| = 2πn/2

Γ(n/2)
,

so

C =
1

|Sn−1|

∫
Sn−1

ln ‖x‖dx− 1
2
√

π
Γ′(1/2) +

1
2

Γ′(n/2)
Γ(n/2)

.

Let us remark that Definition 2.1 is equivalent to the following. A finite-
dimensional normed space X = (Rn, ‖ · ‖) embeds into L0 if and only if
there is a probability space (Ω, µ) and a linear map T : X → M(Ω, µ)
(where M(Ω, µ) denotes the space of µ−measurable functions on Ω) such
that

ln ‖x‖ =
∫

Ω
ln |Tx(ω)| dµ(ω), x ∈ X.

(Here the integrals are also assumed to converge.) Indeed if such an operator
T exists we can write it in the form

Tx(ω) = h(ω)(x, ξ(ω)), x ∈ X

where h : Ω → R+ and ξ : Ω → Sn−1 are measurable. Then∫
Sn−1

ln |(x, ξ(ω))|dx > −∞

so that it follows for some x ∈ Sn−1, ω → ln |(x, ξ(ω)| is µ−integrable.
Hence so is ln h and further

ln ‖x‖ =
∫

lnh(ω) dµ(ω) +
∫

ln |(x, ξ(ω))|dµ(ω).

Now we can induce a probability measure µ′ on Sn−1 by µ′(B) = µ{ω :
ξ(ω) ∈ B} and we have the same situation as Definition 2.1.

One advantage of this viewpoint is that we can make sense of the state-
ment that an infinite-dimensional Banach space embeds into L0.

3. A Fourier analytic characterization of subspaces of L0

As usual, we denote by S(Rn) the space of infinitely differentiable rapidly
decreasing functions on Rn (test functions), and by S ′

(Rn) the space of
distributions over S(Rn).

We say that a distribution is positive (negative) outside of the origin in Rn

if it assumes non-negative (non-positive) values on non-negative Schwartz’s
test functions with compact support outside of the origin.

The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for
every test function φ.

Let φ be an integrable function on Rn that is also integrable on hyper-
planes, let ξ ∈ Sn−1, and let t ∈ Rn. Then

Rφ(ξ; t) =
∫

(x,ξ)=t
φ(x)dx
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is the Radon transform of φ in the direction ξ at the point t. A simple
connection between the Fourier and Radon transforms is that for every fixed
ξ ∈ Rn \ {0}

φ̂(sξ) = (Rφ(ξ; t))∧ (s), ∀s ∈ R (6)
where in the right hand side we have the Fourier transform of the function
t → Rφ(ξ; t).

The fact that the Fourier transform is useful in the study of subspaces
of Lp has been known for a long time. A well-known result of P.Levy is
that a finite dimensional normed space (Rn, ‖ · ‖) embeds isometrically in
Lp, 0 < p ≤ 2 if and only if exp(−‖ · ‖p) is a positive definite function
on Rn. It was proved in [K2] that a space (Rn, ‖ · ‖) embeds isometrically
in Lp, p > 0, p /∈ 2N if and only if the Fourier transform of the function
Γ(−p/2)‖x‖p (in the sense of distributions) is a positive distribution outside
of the origin. If −n < p < 0 a similar fact was proved in [K3]: a space
(Rn, ‖ · ‖) embeds in Lp if and only if the Fourier transform of ‖ · ‖p is a
positive distribution in the whole Rn. These characterizations have proved
to be useful in the study of subspaces of Lp and intersection bodies, see [K5,
Chapter 6]. In this section we prove a similar characterization of spaces that
embed in L0.

Theorem 3.1. Let K be an origin symmetric star body in Rn. The space
(Rn, ‖ · ‖K) embeds in L0 if and only if the Fourier transform of ln ‖x‖K is
a negative distribution outside of the origin in Rn.

Proof. First, assume that (Rn, ‖ · ‖K) embeds in L0. Let φ be a non-
negative even test function with compact support outside of the origin. By
the definition of embedding in L0, formula (6)(note that ˆ̂

φ = (2π)nφ for
even φ) and the Fubini theorem,

〈(ln ‖x‖)∧ , φ〉 = 〈ln ‖x‖, φ̂(x)〉

=
∫

Sn−1

∫
Rn

ln |(x, ξ)|φ̂(x) dx dµ(ξ) + C

∫
Rn

φ̂(x)dx

=
∫

Sn−1

〈ln |t|,
∫

(x,ξ)=t
φ̂(x) dx〉 dµ(ξ)

= (2π)n

∫
Sn−1

∫
R

(ln |z|)∧ (t)φ(tξ) dt dµ(ξ) (7)

since
∫

Rn φ̂(z)dz = (2π)nφ(0) = 0. Now, the formula for the Fourier trans-
form of ln |t| from [GS, p.362] implies that

(ln |z|)∧ (t) = −π|t|−1 < 0 (8)

outside of the origin, so (7) is negative (recall that φ is non-negative with
support outside of the origin). This means that (ln ‖x‖)∧ is a negative
distribution .

To prove the other direction, note that, by [K5, Section 2.6], a distribution
that is positive outside of the origin coincides with a finite Borel measure
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on every set of the form

A× (a, b) = {x ∈ Rn : x = tθ, t ∈ (a, b), θ ∈ A} ,

where A is an open subset of Sn−1 and 0 < a < b < ∞.
Denote by µ = −(ln ‖x‖)∧. This distribution coincides with a finite Borel

measure on each set A×(a, b), as above, so for any test function φ supported
outside of the origin

〈−(ln ‖x‖)∧, φ〉 = 〈µ, φ〉

=
∫

Rn

φ(x)dµ(x). (9)

Now for every test function φ with support outside of the origin and t > 0,
we have (φ(x/t))∧ (z) = tnφ̂(tz), so

〈µ(x), φ(x/t)〉 = −〈(ln ‖x‖)∧ (x), φ(x/t)〉

= −
∫

Rn

ln ‖z‖φ̂(tz)tndz

= −
∫

Rn

φ̂(x̃) ln ‖1
t
x̃‖dx̃

= −
∫

Rn

φ̂(x̃) ln ‖x̃‖dx̃ + ln |t|
∫

Rn

φ̂(x̃)dx̃

= −
∫

Rn

φ̂(x̃) ln ‖x̃‖dx̃

= 〈µ(x), φ(x)〉. (10)

Let χA×(a,b) be the indicator of the set A×(a, b). Approximating χA×(a,b)

by test functions and using (10), we get for any (a, b) ⊂ (0,∞) and A ⊂ Sn−1

µ (A× (a, b)) =
∫

Rn

χA×(a,b)(x)dµ(x)

=
∫

Rn

χA×(1,b/a)(x/a)dµ(x)

=
∫

Rn

χA×(1,b/a)(x)dµ(x)

= µ(A× (1, b/a)).

Applying this formula n times,

µ (A× (1, an)) = nµ (A× (1, a)) (11)

for n ∈ N. Moreover, we can extend formula (11) to n ∈ R. So, for any
a ∈ (0,∞), A ⊂ Sn−1

µ (A× [1, a]) = µ
(
A× [1, eln a]

)
= ln a · µ (A× [1, e])
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Now for every (a, b) ⊂ (0,∞) and A ⊂ Sn−1 we have

µ (A× (a, b)) = µ (A× (1, b/a))

= ln
(

b

a

)
µ (A× (1, e))

= (ln(b)− ln(a))µ(A× (1, e)).

Define a measure µ0 on Sn−1 by

µ0(A) =
µ (A× (a, b))
(ln(b)− ln(a))

= µ(A× (1, e))

for every Borel set A ⊂ Sn−1. We have

∫
Sn−1

dµ0(θ)
∫ ∞

0
|t|−1χA×(a,b)(tθ)dt = (ln(b)− ln(a))µ0(A)

= µ(A× (a, b))

=
∫

Rn

χA×(a,b)(x)dµ(x) (12)

Therefore, for an arbitrary even test function φ supported outside of the
origin,

1
2
〈µ, φ〉 =

∫
Sn−1

dµ0(θ)
∫ ∞

0
|t|−1φ(tθ)dt

=
1
2

∫
Sn−1

dµ0(θ)
∫

R
|t|−1φ(tθ)dt (13)

since A, a, b are arbitrary in (12).
Using µ = − (ln ‖x‖)∧, we get

〈(ln ‖x‖)∧ (ξ), φ〉 = −
∫

Sn−1

dµ0(θ)
∫

R
|t|−1φ(tθ)dt.

Define a new measure µ̃0 = (2π)nµ0. By (8),(13) and the connection
between the Fourier and Radon transforms

〈ln ‖x‖, φ̂(x)〉 = − 1
(2π)n

∫
Sn−1

dµ̃0(θ)
∫

R
|t|−1φ(tθ)dt

=
∫

Sn−1

〈ln |z|,Rφ̂(θ; z)〉dµ̃0(θ)

=
∫

Sn−1

dµ̃0(θ)
∫

R
ln |z|

(∫
(x,θ)=z

φ̂(x)dx

)
dz

=
∫

Sn−1

dµ̃0(θ)
∫

Rn

ln |(x, θ)| φ̂(x)dx



8 N.J.KALTON, A.KOLDOBSKY, V.YASKIN AND M.YASKINA

Thus, we have proved that for any even test function φ supported outside
of the origin

〈(ln ‖x‖)∧, φ〉 =
〈(∫

Sn−1

ln |(x, θ)| dµ̃0(θ)
)∧

, φ
〉
.

Therefore the distributions ln ‖x‖ and
∫
Sn−1 ln |(x, θ)| dµ̃0(θ) can differ only

by a polynomial. Clearly, this polynomial cannot contain terms homoge-
neous of degree different from zero, so it is a constant.

�

Remark 3.2. Let K be an infinitely smooth body. From the proof of the
previous theorem it follows that the measure µ from Definition 2.1 is equal
to restriction of the Fourier transform of ln ‖x‖K to the sphere. In the next
section we are going to prove that this is a function, therefore

dµ(ξ) = − 1
(2π)n

(ln ‖x‖K)∧ (ξ)dξ.

In particular, since µ is a probability measure, for any infinitely smooth
body K we get

− 1
(2π)n

∫
Sn−1

(ln ‖x‖K)∧ (ξ)dξ = 1.

4. A geometric characterization of subspaces of L0.

Let K be an origin symmetric star body in Rn. The function ρK(x) =
‖x‖−1

K is called the radial function of K. If x ∈ Sn−1, ρK(x) is the distance
from the origin to the boundary of K in the direction of x.

The radial metric on the set of all origin symmetric star bodies is defined
by

ρ(K, L) = max
x∈Sn−1

|ρK(x)− ρL(x)|.

Let ξ ∈ Sn−1 and (x, ξ) = t be the hyperplane orthogonal to ξ at the
distance t from the origin. Define the parallel section function of a star
body K in the direction of ξ by

AK,ξ(t) = voln−1(K ∩ {(x, ξ) = t}), t ∈ R.

Let f be an integrable continuous function on R, m-times continuously
differentiable in some neighborhood of zero, m ∈ N. For a number q ∈
(m− 1,m) the fractional derivative of the order q of the function f at zero
is defined as follows [K5, Section 2.5]:

f (q)(0) =
1

Γ(−q)

∫ ∞

0
t−1−q

(
f (t)− f (0)− tf ′(0)− · · ·−

− tm−1

(m− 1)!
f (m−1)(0)

)
dt.
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Note, that fractional derivatives of integer orders coincide with usual
derivatives up to a sign:

f (k)(0) = (−1)k dk

dtk
f(t)|t=0.

It was shown in [GKS] that if K has an infinitely smooth boundary then
the fractional derivatives of AK,ξ(t) can be computed in terms of the Fourier
transform of the Minkowski functional raised to certain powers. Namely, for
q ∈ C, q 6= n− 1,

A
(q)
K,ξ(0) =

cos qπ
2

π(n− q − 1)

(
‖x‖−n+q+1

K

)∧
(ξ), (14)

and, in particular,
(
‖x‖−n+q+1

K

)∧
is a continuous function on Rn \ {0}.

Here we extend A
(q)
K,ξ(0) from the sphere to the whole Rn as a homogeneous

function of the variable ξ of degree −q − 1. Note that 〈A(q)
K,ξ(0), φ〉 is an

analytic function of q for any fixed test function φ.
In our next Theorem we use a limiting argument to extend formula (14)

to the case q = n− 1.
Let D be an open set in Rn, f, g two distributions. We say that f = g on

D if 〈f, φ〉 = 〈g, φ〉 for any test function φ with compact support in D.

Theorem 4.1. Let K be an infinitely smooth origin symmetric star body
in Rn. Extend A

(n−1)
K,ξ (0) to a homogeneous function of degree −n of the

variable ξ ∈ Rn \{0}. Then (ln ‖ · ‖K)∧ is a continuous function on Rn \{0}
and

A
(n−1)
K,ξ (0) = −cos(π(n− 1)/2)

π
(ln ‖ · ‖K)∧ (ξ), (15)

as distributions (of the variable ξ) acting on test functions with compact
support outside of the origin. In particular,

i) if n is odd

(ln ‖x‖K)∧ (ξ) = (−1)(n+1)/2πA
(n−1)
K,ξ (0), ξ ∈ Rn \ {0}

ii) if n is even, then for ξ ∈ Rn \ {0},

(ln ‖x‖K)∧ (ξ) = an

∫ ∞

0

Aξ(z)−Aξ(0)−A′′
ξ (0) z2

2 − ...−An−2
ξ (z) zn−2

(n−2)!

zn
dz,

where an = 2(−1)n/2+1(n− 1)!

Proof. Let us start with the case where n is odd. Let φ be a test function
supported outside of the origin.
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Using formula (14) for q close to n− 1, we have

〈A(q)
K,ξ(0), φ(ξ)〉 =

cos(πq/2)
π(n− q − 1)

〈
(
‖x‖−n+q+1

)∧ (ξ), φ(ξ)〉

=
cos(πq/2)

π(n− q − 1)
〈‖x‖−n+q+1, φ̂(x)〉

=
cos(πq/2)

π(n− q − 1)

∫
Rn

‖x‖−n+q+1φ̂(x)dx

=
cos(πq/2)

π(n− q − 1)

∫
Rn

(
‖x‖−n+q+1 − 1

)
φ̂(x)dx

+
cos(πq/2)

π(n− q − 1)

∫
Rn

φ̂(x)dx

=
cos(πq/2)

π

∫
Rn

‖x‖−n+q+1 − 1
n− q − 1

φ̂(x)dx,

since
∫

Rn φ̂(x)dx = (2π)nφ(0) = 0. Taking the limit of both sides as q →
n− 1, we get

〈A(n−1)
K,ξ (0), φ(ξ)〉 =

〈
− cos(π(n− 1)/2)

π
(ln ‖x‖)∧ (ξ), φ(ξ)

〉
since

lim
q→n−1

∫
Rn

‖x‖−n+q+1 − 1
n− q − 1

φ̂(x)dx = −
∫

Rn

ln ‖x‖φ̂(x)dx

= 〈− (ln ‖x‖)∧ (ξ), φ(ξ)〉.
When n is odd the formula of i) follows immediately.
When n is even, both sides of (15) are equal to zero, and we repeat the

reasoning from Theorem 1 in [GKS]. Divide both sides of (14) by cos(πq
2 )

〈(‖x‖−n+q+1
K

)∧
(ξ)

(n− q − 1)
, φ(ξ)

〉
= π

〈A
(q)
K,ξ(0)

cos πq
2

, φ(ξ)
〉

and take the limit of both sides when q → n− 1.
We have already proved that

lim
q→n−1

〈(‖x‖−n+q+1
K

)∧
(ξ)

(n− q − 1)
, φ(ξ)

〉
= 〈− (ln ‖x‖)∧ (ξ), φ(ξ)〉

for any test function φ supported outside of the origin.

To compute the limit of
A

(q)
K,ξ(0)

cos qπ
2

we use the definition of fractional deriva-

tives in exactly the same way as it was done in [GKS, Theorem 1].

lim
q→n−1

Γ(−q)A(q)
K,ξ(0) =

∫ ∞

0

Aξ(z)−Aξ(0)−A′′
ξ (0) z2

2 − ...−An−2
ξ (z) zn−2

(n−2)!

zn
dz
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and

lim
q→n−1

Γ(−q) sin
(q + 1)π

2
=

π

2
(−1)n/2 1

(n− 1)!
.

Combining these two formulas we get the formula in the statement ii) of
the Theorem. �

An immediate application of Theorem 4.1 is

Corollary 4.2. Let K be an infinitely smooth body in Rn. Then
i) if n is odd, (Rn, ‖ · ‖K) embeds in L0 if and only if

(−1)(n−1)/2A
(n−1)
K,ξ (0) ≥ 0, ∀ξ ∈ Sn−1;

ii) if n is even, (Rn, ‖·‖K) embeds in L0 if and only if, for every ξ ∈ Sn−1,

(−1)(n+2)/2

∫ ∞

0

Aξ(z)−Aξ(0)−A′′
ξ (0) z2

2 − ...−An−2
ξ (z) zn−2

(n−2)!

zn
dz ≥ 0.

Corollary 4.3. Every 3-dimensional normed space (Rn, ‖ · ‖K) embeds in
L0.

Proof. The unit ball K of a normed space is an origin-symmetric convex
body. First assume that K is infinitely smooth. By Brunn’s theorem the
central section of a convex body has maximal volume among all sections
perpendicular to a given direction. Therefore, for any ξ the function AK,ξ(t)
attains its maximum at t = 0, hence A′′

K,ξ(0) ≤ 0. So, by Theorem 4.1, for
smooth convex bodies in R3 the distribution −(ln ‖x‖)∧ is positive outside
of the origin, and our result follows from Theorem 3.1. For general convex
bodies the result follows from the facts that any convex body can be approx-
imated by smooth convex bodies and that positive definiteness is preserved
under limits. In fact, let {Ki} be a sequence of infinitely smooth convex
bodies that approach K in the radial metric. Then for any non-negative
test function φ supported outside of the origin we have

−
∫

Rn

ln ‖x‖Ki φ̂(x)dx = 〈− ln ‖x‖Ki , φ̂(x)〉 = 〈−(ln ‖x‖Ki)
∧(ξ), φ(ξ)〉 ≥ 0

Since Ki approximate K there is a constant C > 0, such that

|ln ‖x‖Ki | ≤ C + |ln |x|2| ,

therefore the functions | ln ‖x‖Ki φ̂(x)| are majorated by an integrable func-
tion (C + | ln |x|2|)|φ̂(x)| and by the Lebesgue Dominated Convergence The-
orem we get

− lim
i→∞

∫
Rn

ln ‖x‖Ki φ̂(x)dx = −
∫

Rn

ln ‖x‖K φ̂(x)dx

= 〈−(ln ‖x‖K)∧(ξ), φ(ξ)〉 ≥ 0

�
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Our next result shows that that the previous statement is no longer true
in Rn, n ≥ 4.

Theorem 4.4. There exists an origin-symmetric convex body K in Rn,
n ≥ 4 so that the space (Rn, ‖ · ‖K) does not embed in L0.

Proof. It is enough to construct a convex body for which the distribution
−(ln ‖x‖)∧ is not positive. The construction will be similar to that from
[GKS].

Define fN (x) = (1 − x2 −Nx4)1/3, let aN > 0 be such that fN (aN ) = 0
and fN (x) > 0 on the interval (0, aN ). Define a body K in R4 by

K = {(x1, x2, x3, x4) ∈ R4 : x4 ∈ [−aN , aN ] and
√

x2
1 + x2

2 + x2
3 ≤ fN (x4)}.

The body K is strictly convex and infinitely smooth. By Theorem 4.1,

− (ln ‖x‖K)∧ (ξ) = 12
∫ ∞

0

Aξ(z)−Aξ(0)−A′′
ξ (0) z2

2

z4
dz.

The function AK,ξ can easily be computed:

AK,ξ(x) =
4π

3
(1− x2 −Nx4).

We have∫ ∞

0

Aξ(z)−Aξ(0)−A′′
ξ (0) z2

2

z4
dz =

4π

3
(−NaN +

1
aN

− 1
3a3

N

).

The latter is negative for N large enough, because N1/4 ·aN → 1 as N →∞.
�

5. Addition in L0

It is clear from the definition that the class of bodies K for which (Rn, ‖ ·
‖K) embeds in L0 is closed with respect to multiplicative summation, i.e. if
two spaces (Rn, ‖·‖K1) and (Rn, ‖·‖K2) embed in L0 and K = K1+0K2, then
(Rn, ‖ ·‖K) embeds in L0. In this section we are going to prove that the unit
ball of every space (Rn, ‖ · ‖K) that embeds in L0 can be obtained from the
Euclidean ball by means of multiplicative summation, linear transformations
and closure in the radial metric, i.e. it can be approximated in the radial
metric by multiplicative sums of ellipsoids.

Consider the set of bodies K for which (Rn, ‖ · ‖K) embeds in L0. As
mentioned above, this set is closed with respect to multiplicative summation,
also from the proof of Corollary 4.3 it follows that this set is closed with
respect to limits in the radial metric. Let us show that it is closed with
respect to linear transformations. Suppose that (Rn, ‖ · ‖K) embeds in L0.
By Theorem 3.1 (ln ‖x‖K)∧ is a negative distribution outside of the origin.
Let T be a linear transformation in Rn, then for any non-negative test
function φ with support outside of the origin, we have
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〈(ln ‖Tx‖K)∧ , φ〉 = 〈ln ‖Tx‖K , φ̂(x)〉

=
∫

Rn

ln ‖Tx‖K φ̂(x)dx

= |det T |−1

∫
Rn

ln ‖x‖K φ̂(T−1x)dx

=
∫

Rn

ln ‖x‖K (φ(T ∗y))∧ (x)dx

= 〈ln ‖x‖K , (φ(T ∗y))∧ (x)〉,
= 〈(ln ‖x‖K)∧ (y), φ(T ∗y)〉 ≤ 0.

So (ln ‖Tx‖K)∧ is a negative distribution outside of the origin. By Theorem
3.1, (Rn, ‖ · ‖TK) embeds in L0.

Moreover, if (ln ‖x‖)∧ is a function, then

(ln ‖Tx‖)∧ (y) = |det T |−1 (ln ‖x‖)∧ ((T ∗)−1y). (16)

To prove the main result of this section we need a few lemmas. For a
fixed x ∈ Sn−1, let Ea,b(x) be an ellipsoid with the norm

‖θ‖Ea,b(x) =
(

(x, θ)2

a2
+

1− (x, θ)2

b2

)1/2

, for θ ∈ Sn−1.

Lemma 5.1. For all θ ∈ Sn−1,(
ln ‖ξ‖Ea,b(x)

)∧
ξ

(θ) = −2n−1πn/2Γ(n/2)
an−1b

‖θ‖−n
Eb,a(x).

Proof. For −n < λ < 0 the following formula holds (see [GS, p.192]):

(
|x|λ2

)∧
(ξ) = 2λ+nπn/2 Γ((λ + n)/2)

Γ(−λ/2)
|ξ|−λ−n

2 .

Dividing both sides by λ, using the formula xΓ(x) = Γ(1 + x) and sending
λ → 0 we get

(ln |x|2)∧ (ξ) = −2n−1πn/2Γ(n/2)|ξ|−n
2 ,

as distributions outside of the origin. Note that, by rotation, it is enough to
prove Lemma for the ellipsoids Ea,b(x) with x = (0, 0, . . . , 0, 1).

‖ξ‖Ea,b(x) =
(

ξ2
n

a2
+

ξ2
1 + · · ·+ ξ2

n−1

b2

)1/2

.
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Since this norm can be obtained from the Euclidean norm by an obvious
linear transformation, one can use formula (16) to get(

ln ‖ξ‖Ea,b(x)

)∧
ξ

(θ) = −2n−1πn/2Γ(n/2)abn−1‖θ‖−n
E1/a,1/b(x)

= −2n−1πn/2Γ(n/2)
an−1b

‖θ‖−n
Eb,a(x).

�

Lemma 5.2. Let K be a star body, then ln ‖x‖K can be approximated in
the space C(Sn−1) by the functions of the form

fa,b(x) =
1

|Sn−1|an−1b

∫
Sn−1

ln ‖θ‖K‖θ‖−n
Eb,a(x)dθ, (17)

as a → 0 and b is fixed.

Proof. The proof is similar to that of [GW, Lemma 2]. First, note that the
space Rn with the Euclidean norm embeds in L0, so (Rn, ‖ · ‖E) embeds in
L0 for any ellipsoid E with center at the origin. Therefore, by Remark 3.2
and Lemma 5.1 we get∫

Sn−1

1
|Sn−1|an−1b

‖θ‖−n
Eb,a(x)dθ = 1,

for all values of a and b. From now on b will be fixed.
We have

∣∣∣∣ln ‖x‖K − 1
|Sn−1|an−1b

∫
Sn−1

ln ‖θ‖K‖θ‖−n
Eb,a(x)dθ

∣∣∣∣
≤ 1
|Sn−1|an−1b

∫
Sn−1

∣∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣∣‖θ‖−n
Eb,a(x)dθ

=
1

|Sn−1|an−1b

∫
|(x,θ)|≥δ

∣∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣∣‖θ‖−n
Eb,a(x)dθ

+
1

|Sn−1|an−1b

∫
|(x,θ)|<δ

∣∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣∣‖θ‖−n
Eb,a(x)dθ

= I1 + I2.

For the first integral I1 use the uniform continuity of ln ‖x‖K on the sphere.
For any given ε > 0 there exists δ ∈ (0, 1), δ close to 1, so that |(x, θ)| ≥ δ

implies
∣∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣∣ < ε/2. Therefore

I1 =
1

|Sn−1|an−1b

∫
|(x,θ)|≥δ

∣∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣∣‖θ‖−n
Ea,b(x)dθ

≤ ε

2

[
1

|Sn−1|an−1b

∫
|(x,θ)|≥δ

‖θ‖−n
Ea,b(x)dθ

]
≤ ε

2
.
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Now fix δ chosen above and estimate the integral I2 as follows

I2 =
1

|Sn−1|an−1b

∫
|(x,θ)|<δ

∣∣∣ ln ‖x‖K − ln ‖θ‖K

∣∣∣‖θ‖−n
Eb,a(x)dθ

≤ C(n, b,K)
an−1

∫
|(x,θ)|<δ

‖θ‖−n
Eb,a(x)dθ,

where

C(n, b,K) =
2 maxSn−1 | ln ‖x‖K |

|Sn−1|b
.

For the latter integral we use an elementary formula (see e.g. [K5, Section
6.4])

∫
|(x,θ)|<δ

f((x, θ))dθ = |Sn−2|
∫ δ

−δ
(1− t2)(n−3)/2f(t)dt, for x ∈ Sn−1.

Now,

I2 ≤ C(n, b,K)|Sn−2|
an−1

∫ δ

−δ
(1− t2)(n−3)/2

(
t2

b2
+

1− t2

a2

)−n/2

dt

≤ C(n, b,K)|Sn−2|
an−1

∫ δ

−δ
(1− t2)(n−3)/2

(
1− t2

a2

)−n/2

dt

= a · C(n, b,K)|Sn−2|
∫ δ

−δ
(1− t2)−3/2dt

≤ a · C(n, b,K)|Sn−2| 2δ

(1− δ2)3/2
.

Now we can choose a so small that I2 ≤ ε/2. �

Lemma 5.3. If µ is a probability measure on Sn−1 and a, b > 0, then the
function

f(x) =
∫

Sn−1

ln ‖ξ‖Ea,b(x)dµ(ξ)

can be approximated in C(Sn−1) by the sums of the form
m∑

i=1

1
pi

ln ‖x‖Ei ,

where E1,...,Em are ellipsoids and 1/p1 + · · ·+ 1/pm = 1.

Proof. Let σ > 0 be a small number and choose a finite covering of the
sphere by spherical σ-balls Bσ(ηi) = {η ∈ Sn−1 : |η − ηi| < σ}, ηi ∈ Sn−1,
i = 1, . . . ,m = m(δ). Define

B̃σ(ξ1) = Bσ(ξ1)
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and

B̃σ(ξi) = Bσ(ξi) \
i−1⋃
j=1

Bσ(ξj), for i = 2, ...,m.

Let 1/pi = µ(B̃σ(ξi)). Clearly, 1/p1 + · · ·+ 1/pm = 1.
Let ρ(Ea,b(ξ), x) be the radial function of the ellipsoid Ea,b(ξ), that is

ρ(Ea,b(ξ), x) = ‖x‖−1
Ea,b(ξ)

.

Note that ρ(Ea,b(ξ), x) = ρ(Ea,b(x), ξ), therefore

|ρ(Ea,b(ξ), x)− ρ(Ea,b(θ), x)| ≤ Ca,b|ξ − θ|,
with a constant Ca,b that depends on a and b. Also note that, since we
consider a close to zero and b fixed, we may assume

a ≤ ρ(Ea,b(ξ), x) ≤ b, x ∈ Sn−1.

Then, ∣∣∣∣∣
∫

Sn−1

ln ρ(Ea,b(ξ), x)dµ(ξ)−
m∑

i=1

1
pi

ln ρ(Ea,b(ξi), x)

∣∣∣∣∣ =
=

∣∣∣∣∣
m∑

i=1

(∫
B̃σ(ξi)

ln ρ(Ea,b(ξ), x)dµ(ξ)−
∫

B̃σ(ξi)
ln ρ(Ea,b(ξi), x)dµ(ξ)

)∣∣∣∣∣ ≤
≤

m∑
i=1

∫
B̃σ(ξi)

∣∣∣∣ln ρ(Ea,b(ξ), x)
ρ(Ea,b(ξi), x)

∣∣∣∣ dµ(ξ) ≤

≤
m∑

i=1

∫
B̃σ(ξi)

∣∣∣∣ln ρ(Ea,b(ξi), x) + [ρ(Ea,b(ξ), x)− ρ(Ea,b(ξi), x)]
ρ(Ea,b(ξi), x)

∣∣∣∣ dµ(ξ) ≤

≤
m∑

i=1

∫
B̃σ(ξi)

∣∣ln(1± C ′
a,b|ξ − ξi|)

∣∣ dµ(ξ) ≤

≤
∣∣ln(1± C ′

a,bσ)
∣∣ ,

and the result follows since σ is arbitrarily small.
�

Now we are ready to prove the following

Theorem 5.4. Let K be an origin symmetric star body in Rn. The space
(Rn, ‖ · ‖K) embeds in L0 if and only if ‖x‖K is the limit (in the radial
metric) of finite products ‖x‖1/p1

E1
· · · ‖x‖1/pm

Em
, where E1,...,Em are ellipsoids

and 1/p1 + · · ·+ 1/pm = 1.

Proof. The “if” part is a consequence of the fact that L0 is closed with
respect to the three operations as discussed above.

The proof of “only if” part easily follows the Lemmas we have proved.
Suppose that (Rn, ‖·‖K) embeds in L0 with the corresponding probability

measure µ on Sn−1 and constant C. By Remark 3.2, (Rn, ‖·‖Ea,b(x)) embeds
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in L0 with the measure − 1
(2π)n (ln ‖x‖E)∧ (θ)dθ and some constant CEa,b

.
Note, this constant does not depend on x. We have∫

Sn−1

ln ‖ξ‖Ea,b(x)dµ(ξ)

=
∫

Sn−1

∫
Sn−1

ln |(ξ, θ)|
(
− 1

(2π)n

)(
ln ‖x‖Ea,b(x)

)∧
(θ)dθdµ(ξ) + CEa,b

=
∫

Sn−1

[∫
Sn−1

ln |(ξ, θ)|dµ(ξ) + CK

](
− 1

(2π)n

)(
ln ‖x‖Ea,b(x)

)∧
(θ)dθ

+CEa,b
− CK

=
∫

Sn−1

ln ‖θ‖K

(
− 1

(2π)n

)(
ln ‖x‖Ea,b(x)

)∧
(θ)dθ + CEa,b

− CK

=
∫

Sn−1

ln ‖θ‖K

(
− 1

(2π)n

)(
ln ‖x‖Ea,b(x)

)∧
(θ)dθ + CEa,b

− CK

=
1

|Sn−1|an−1b

∫
Sn−1

ln ‖θ‖K‖θ‖−n
Eb,a(x)dθ + CEa,b

− CK

In Lemma 5.2 we proved that ln ‖x‖K can be uniformly approximated by
the integrals of the form

1
|Sn−1|an−1b

∫
Sn−1

ln ‖θ‖K‖θ‖−n
Eb,a(x)dθ,

as a → 0. Therefore, using the previous calculations, one can see that
ln ‖x‖K can be uniformly approximated by∫

Sn−1

ln ‖ξ‖Ea,b(x)dµ(ξ) + C ′.

Hence, by Lemma 5.3, ln ‖x‖K can be uniformly approximated by the
sums

m∑
i=1

1
pi

ln ‖x‖Ei + C ′.

Replacing E1 by another ellipsoid E′
1 given by ‖x‖1/p1

E′
1

= eC′‖x‖1/p1

E1
, we

get the statement of the Theorem.
�

Corollary 5.5. Any convex body in R3 can be obtained from the Euclidean
unit ball by means of three operations: linear transformations, multiplicative
addition and closure in the radial metric.

Proof. As was proved in Theorem 5.4, any convex body can be approx-
imated by the finite products of the type ‖x‖1/p1

E1
· · · ‖x‖1/pm

Em
. Since any

number 1/p can be approximated by the sums
1

2i1
+

1
2i2

+ · · ·+ 1
2ik

,
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the result follows.
�

A proof similar to that of Theorem 5.4 can be used to show that the
previous theorem holds for p-summation with −1 < p < 1, p 6= 0, in place
of the multiplicative summation.

Theorem 5.6. Let K be an origin symmetric star body in Rn. The space
(Rn, ‖ · ‖K) embeds in Lp, −1 < p < 1, p 6= 0 if and only if ‖x‖p

K is the limit
(in the radial topology) of finite sums ‖x‖p

E1
+ · · ·+ ‖x‖p

Em
, where E1,...,Em

are ellipsoids.

6. Confirming the place of L0 in the scale of Lp-spaces.

In this section we establish the relations between embedding in L0 and
in Lp with p 6= 0, which confirm the place of L0 between Lp with p > 0 and
p < 0. We are going to use the following result from [K3, Theorem 1]:

Theorem 6.1. An n-dimensional homogeneous space (Rn, ‖ ·‖K) embeds in
L−p, p ∈ (0, n) if and only if ‖x‖−p

K is a positive definite distribution.

We also use a well-known result of P.Levy (see [BL, p.189], also [BDK]
for the infinite dimensional case):

Theorem 6.2. A space (Rn, ‖ · ‖K) embeds in Lp, p ∈ (0, 2] if and only if
the function exp(−‖x‖p

K) is positive definite.

Now we are ready to prove

Theorem 6.3. Let K be an origin symmetric star body in Rn. If the space
(Rn, ‖ · ‖K) embeds in L0 then it also embeds in L−p, 0 < p < n.

Proof. By Theorem 5.4, ‖x‖K is the limit of finite products ‖x‖1/p1

E1
· · · ‖x‖1/pm

Em
.

Consider ‖x‖−p
K for 0 < p < n. It is the limit of the products of the form

‖x‖−p/p1

E1
· · · ‖x‖−p/pm

Em
. Using the formula

‖x‖−p =
2

Γ(p/2)

∫ ∞

0
tp−1 exp(−t2‖x‖2)dt,

we get

‖x‖−p/p1

E1
· · · ‖x‖−p/pm

Em
= C

∫ ∞

0
· · ·
∫ ∞

0
t
p/p1−1
1 · · · tp/pm−1

m ×

× exp(−t21‖x‖2
E1
− · · · − t2m‖x‖2

Em
)dt1 · · · dtm,

where

C =
2m

Γ(p/2p1) · · ·Γ(p/2pm)
.
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Therefore, for any non-negative test function φ we have

〈(‖x‖−p/p1

E1
· · · ‖x‖−p/pm

Em
)∧(ξ), φ(ξ)〉 = 〈‖x‖−p/p1

E1
· · · ‖x‖−p/pm

Em
, φ̂(x)〉 =

= C

∫ ∞

0
· · ·
∫ ∞

0
t
p/p1−1
1 · · · tp/pm−1

m ×

×〈exp(−t21‖x‖2
E1
− · · · − t2m‖x‖2

Em
), φ̂(x)〉dt1 · · · dtm =

= C

∫ ∞

0
· · ·
∫ ∞

0
t
p/p1−1
1 · · · tp/pm−1

m ×

×〈(exp(−t21‖x‖2
E1
− · · · − t2m‖x‖2

Em
))∧(ξ), φ(ξ)〉dt1 · · · dtm.

We claim that the latter expression is non-negative. Indeed, (Rn, ‖x‖E) em-
beds in L2 for any ellipsoid, therefore the 2-sum of ellipsoids t21‖x‖2

E1
+

· · · + t2m‖x‖2
Em

embeds in L2, and hence by Theorem 6.2, the function
exp(−t21‖x‖2

E1
− · · · − t2m‖x‖2

Em
) is positive definite. Now the fact that

〈(‖x‖−p
K )∧, φ〉 ≥ 0 follows by an approximation argument, as in Corollary

4.3.
�

Theorem 6.4. Let K be an origin symmetric star body in Rn. If the space
(Rn, ‖ · ‖K) embeds in L−p for every p ∈ (0, ε), then it also embeds in L0.

Proof. The space (Rn, ‖ · ‖K) embeds in L−p, so by Theorem 6.1 the
distribution ‖x‖−p is positive definite. Then for every non-negative test
function φ supported outside of the origin,

−
∫

Rn

ln ‖x‖φ̂(x)dx = lim
p→0

1
p

∫
Rn

(‖x‖−p − 1)φ̂(x)dx

= lim
p→0

1
p

∫
Rn

‖x‖−pφ̂(x)dx ≥ 0.

The result follows from Theorem 3.1.
�

Theorem 6.5. There are normed spaces that embed in L0, but do not embed
in Lp for p > 0.

Proof. As proved above, every 3-dimensional normed space embeds in L0,
hence l3q with q > 2 does. On the other hand, l3q , q > 2 does not embed in
Lp for 0 < p ≤ 2 (see [K1]).

�
Let us also mention that one can use the approach of [KK1] to produce

examples in the same spirit. It follows from [KK1], Proposition 3.5 that
R⊕2 `1 does not embed isometrically into Lp for p > 0; hence neither does
R⊕2 `n

1 for large enough n.

Proposition 6.6. For any n ∈ N the space R⊕2 `n
1 embeds in L0.
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Proof. Let (fn)∞n=1 be a sequence of functions on some probability space
which are independent and 1-stable symmetric, so that E(eitfj ) = e−|t| (i.e.
the fj have the Cauchy distribution). Then it is clear that

E ln |
n∑

j=1

ajfj | = ln
n∑

j=1

|aj |.

Indeed this follows from the fact that
1
π

∫ ∞

−∞

ln |x|
1 + x2

dx = 0.

On the other hand if f =
∑n

j=1 ajfj where
∑n

j=1 |aj | = 1 then f has the
Cauchy distribution and so has the same distribution as g1/g2 where g1, g2

are independent normalized Gaussians. Hence

E ln |a + bf | = E(ln |ag2 + bg1| − ln |g2|)

= ln(a2 + b2)
1
2 .

Now for any a0, a1, . . . , an ∈ R we have

E|a0 +
n∑

j=1

ajfj | = ln

|a0|2 + (
n∑

j=1

|aj |)2
 1

2

.

This shows (using the remarks at the end of §2) that R⊕2 `n
1 embeds into

L0 for every n. �

Theorem 6.7. Let K be an origin symmetric star body in Rn. If the space
(Rn, ‖ · ‖K) embeds in Lp0 , 0 < p0 ≤ 2, then it also embeds in L0.

Proof. Since (Rn, ‖ · ‖K) embeds in Lp0 , 0 < p0 ≤ 2, by [K3, Theorem 2] it
also embeds in L−p for any p ∈ (0, n) and hence, by Theorem 6.4, it embeds
in L0.

�
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