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Abstract. It is a well-known result due to Busemann that the intersection

body of an origin-symmetric convex body is also convex. Koldobsky introduced
the notion of k-intersection bodies. We show that the k-intersection body of

an origin-symmetric convex body is not necessarily convex if k > 1.

1. Introduction

A body in Rn is a compact set with non-empty interior. We say that a body K
is a star body if it is star-shaped about the origin and its radial function defined by

ρK(ξ) = max{λ > 0 : λξ ∈ K}, for ξ ∈ Sn−1,

is positive and continuous.
The Minkowski functional of a star body K is given by

‖x‖K = min{λ ≥ 0 : x ∈ λK}, for x ∈ Rn.

It is easy to see that the latter is a homogeneous function of degree 1 on Rn and
‖ξ‖K = ρ−1K (ξ), when ξ ∈ Sn−1.

The notion of the intersection body of a star body was introduced by Lutwak
[L] in 1988 and has played an important role in Convex Geometry since then. The
intersection body of a star body K is defined to be a star body IK whose radial
function is given by

ρIK(ξ) = voln−1(K ∩ ξ⊥), for ξ ∈ Sn−1,

where ξ⊥ stands for the hyperplane {x ∈ Rn : 〈x, ξ〉 = 0}.
Intersection bodies were a key ingredient in the solution of the celebrated Buse-

mann-Petty problem. Let K and L be origin-symmetric convex bodies in Rn such
that

voln−1(K ∩ ξ⊥) ≤ voln−1(L ∩ ξ⊥), for all ξ ∈ Sn−1.
Does it necessarily follow that

voln(K) ≤ voln(L)?

The answer to the problem is affirmative if n ≤ 4 and negative if n ≥ 5; see
[GKS], [K2], [Z2] for historical details.

A generalization of the original Busemann-Petty problem to sections of other
dimensions is often called the lower-dimensional Busemann-Petty problem. Let
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1 ≤ k ≤ n − 1 be an integer and G(n, k) the Grassmanian of all k-dimensional
subspaces of Rn. Let K and L be origin-symmetric convex bodies in Rn such that

volk(K ∩H) ≤ volk(L ∩H), for all H ∈ G(n, k).

Is it true that
voln(K) ≤ voln(L)?

It is shown by Bourgain and Zhang [BZ] that the answer to this problem is
negative if k ≥ 4. Another proof is given in [K1]. The cases k = 2 and k = 3 are
still open in dimensions n ≥ 5.

Related to this problem are certain classes of bodies that generalize the notion
of the intersection body. One generalization is due to Zhang [Z1] and another
to Koldobsky [K1]. In this paper we will only discuss Koldobsky’s k-intersection
bodies. For the relation between the two generalizations and other results see
Milman’s works [M1] and [M2]. Let us emphasize that the study of these classes of
bodies is important for the understanding of the open cases of the lower-dimensional
Busemann-Petty problem.

Let 1 ≤ k ≤ n− 1 and let K and L be origin-symmetric star bodies in Rn. We
say that K is the k-intersection body of L if for every (n− k)-dimensional subspace
H ⊂ Rn we have

volk(K ∩H⊥) = voln−k(L ∩H).

One can see that 1-intersection bodies coincide (up to a scaling factor) with Lut-
wak’s intersection bodies.

Koldobsky has shown that if K is the k-intersection body of L, then the following
relation holds (see e.g. [K2, Lemma 4.5]):

‖x‖−kK =
k

(n− k)(2π)k
(‖ · ‖−n+kL )∧(x), x ∈ Rn \ {0}, (1)

where in the right-hand side we have a Fourier transform in the sense of distribu-
tions; see next section for details. The latter formula implies, in particular, that for
some bodies L the corresponding k-intersection bodies may not exist when k > 1.

Formula (1) can be used as a definition of k-intersection bodies in the case when
k is not necessarily an integer (and in fact, this is related to the concept of a
space being embedded in L−k; see [K2, Section 6.3]). For example, formula (1) for
0 < k < 1 can be written as follows:

‖x‖−kK = cn,k

∫
Sn−1

|〈x, θ〉|−k‖θ‖−n+kL dθ.

Such bodies naturally arise in the theory of valuations, and in the following form

‖x‖pK =

∫
L

|〈x, θ〉|pdθ, (p > −1, p 6= 0),

they are usually called the Lp-intersection bodies (see [H], [HL]). Note that with a
different normalization these bodies are also known as polar p-centroid bodies (see
e.g. [GG], [LYZ], [LZ], [YY]).

There is a natural notion of the complex intersection body. Such bodies were in-
troduced and studied by Koldobsky, Paouris and Zymonopoulou, [KPZ2]. (See also
[KKZ], where these studies were initiated). It is shown that an origin-symmetric
complex star body K in R2n (which is naturally identified with Cn) is a complex
intersection body if and only if it is a 2-intersection body in R2n and has certain
rotational symmetries.
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It is a classical theorem of Busemann (see [G, Theorem 8.1.10] for example) that
the intersection body of an origin-symmetric convex body is also convex. There are
various generalizations and modifications of this result; see e.g. [MP], [B], [KYZ]. In
particular, Berck [B] has shown that the Lp-intersection bodies of origin-symmetric
convex bodies are convex for p > −1, p 6= 0. Until now it was unknown whether
k-intersection bodies of origin-symmetric convex bodies are convex. The question
was raised during discussions at various conferences, most recently Bernig asked this
question at the Oberwolfach workshop on Convex Geometry and its Applications
(December, 2012). In this paper we answer it in the negative for all k = 2, 3, ...,
n− 1.

It is worth noting that, in contrast with our result, Koldobsky, Paouris and
Zymonopoulou [KPZ2] has shown that the complex intersection body of a complex
convex body is convex (in other words, the 2-intersection body of a convex body in
R2n with certain symmetries is necessarily convex). Thus the complex structure in
fact plays a crucial role in preserving convexity.

For other properties of k-intersection bodies the reader is referred to [K2], [KPZ1],
[KY], [S], [Y].

2. Tools and Auxiliary Results

Let K be a star body. We say that K is origin-symmetric if ρK(ξ) = ρK(−ξ) for
all ξ ∈ Sn−1. We would like to compute the Fourier transform of powers of ‖ · ‖K ,
the Minkowski functional of K. Recall that given a function f ∈ L1(Rn) its Fourier

transform f̂ is defined as follows:

f̂(x) =

∫
Rn

f(y)e−i〈x,y〉 dy.

Unfortunately, no power of ‖ · ‖K belongs to L1(Rn). However, it is still possible
to compute the desired Fourier transforms in the sense of distributions. Here we
describe a basic idea; for details see [GS], [K2].

Let S(Rn) be the Schwartz space of rapidly decreasing infinitely differentiable
functions on Rn. Elements of this space are referred to as test functions. Distribu-
tions are the elements of the dual space, S ′(Rn), of linear continuous functionals
on S(Rn). The action of a distribution f on a test function φ is denoted by 〈f, φ〉.
The Fourier transform of a distribution f is defined to be a distribution f̂ (we also
use the notation (f)∧) satisfying

〈f̂ , φ〉 = 〈f, φ̂〉
for every test function φ from the space S(Rn).

Let K be a convex body and let ξ ∈ Sn−1. The parallel section function AK,ξ(t)
is defined by

AK,ξ(t) = voln−1(K ∩ (ξ⊥ + tξ)), t ∈ R.
There is a remarkable connection between the derivatives of the parallel section

function of a body K and the Fourier transform of the powers of its Minkowski
functional.

Theorem 2.1. ([GKS], Theorem 1) Let K be an origin-symmetric convex body in
Rn with C∞ boundary, k a non-negative integer, k 6= n− 1, and ξ ∈ Sn−1.

(a) If k is even, then

(‖x‖−n+k+1
K )∧(ξ) = (−1)k/2π(n− k − 1)A

(k)
K,ξ(0).
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(b) If k is odd, then

(‖x‖−n+k+1
K )∧(ξ) = (−1)(k+1)/22(n− 1− k)k!×

×
∫ ∞
0

AK,ξ(z)−AK,ξ(0)−A′′K,ξ(0) z
2

2 − · · · −A
(k−1)
K,ξ (0) zk−1

(k−1)!

zk+1
dz,

where A
(k)
K,ξ stands for the derivative of the order k and the Fourier transform is

considered in the sense of distributions.

In particular, it follows that for infinitely smooth bodies the Fourier transform
of ‖x‖−n+k+1

K restricted to the unit sphere is a continuous function (see also [K2,
Lemma 3.16]).

We also note that the previous theorem together with Brunn’s theorem implies
that for every origin-symmetric convex body K the Fourier transforms of ‖x‖−n+2

K

and ‖x‖−n+3
K are non-negative functions on the sphere (see [K2, Corollary 4.9]).

3. Main Result

Theorem 3.1. Let k be an integer, 2 ≤ k ≤ n− 1. There is an origin-symmetric
convex body L in Rn such that its k-intersection body K exists and is not convex.

Proof. We will consider three cases according to the value of k: 4 ≤ k ≤ n − 1,
k = 2, k = 3. The reader might have already noticed that the cases k = 2 and
k = 3 usually differ from the rest. In our proof, the reason why we need a different
construction for k = 2 and k = 3 is that the example used in Case 1 does not yield
a convex body L when k = 2 or k = 3.

Case 1. Let 4 ≤ k ≤ n − 1. For a small ε > 0 define an origin-symmetric star
body L = Lε by the formula:

‖x‖−n+kL = |x|−n+k2 − εk−1(1− ε)−n+k+1‖x‖−n+kE , x ∈ Rn \ {0}, (2)

where |x|2 is the Euclidean norm and E is the ellipsoid given by

‖x‖E =

(
x21 + · · ·+ x2n−1

(1− ε)2
+
x2n
ε2

)1/2

.

Since ‖x‖−1E < |x|−12 , it follows that ‖x‖−1L is positive for all ε > 0 small enough,
and so the body L is well defined.

We claim that the body L is convex for small enough ε. This is a standard
perturbation argument; cf. [K2, p.96]. By construction, the body L is obtained
as a small perturbation of the Euclidean ball. Since the latter has strictly positive
curvature, it is enough to control the first and second derivatives of the function
εk−1(1− ε)−n+k+1‖x‖−n+kE . One can see that these are of the order O(εk−3), which
is small for small enough ε (since k ≥ 4). Therefore L also has strictly positive
curvature.

We now construct K, the k-intersection body of L. If it exists, then by formula
(1) we have

‖x‖−kK = Bn,k(‖ · ‖−n+kL )∧(x),

where

Bn,k =
k

(n− k)(2π)k
.
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Recall that the Fourier transform of | · |−n+k2 , 0 < k < n, equals (see [GS, p.
363])

(| · |−n+k2 )∧(x) = Cn,k|x|−k2 ,

where

Cn,k =
2kπn/2Γ (k/2)

Γ ((n− k)/2)
.

In order to compute the Fourier transform for the norms of ellipsoids, we will use
the previous formula and the following connection between the Fourier transform
and linear transformations. Let T be an invertible linear transformation on Rn,
then

(|Tx|−n+k2 )∧(y) = Cn,k|detT |−1|(T ∗)−1y|−k2 .

Therefore,

(‖ · ‖−n+kL )∧(x) = Cn,k

(
|x|−k2 − εk(1− ε)k

(
(1− ε)2(x21 + · · ·+ x2n−1) + ε2x2n

)−k/2 )
= Cn,k

(
|x|−k2 −

(
x21 + · · ·+ x2n−1

ε2
+

x2n
(1− ε)2

)−k/2)
.

The latter is strictly positive for all x ∈ Rn \ {0}. Therefore the star body K is
well defined and is given by

‖x‖−kK = Bn,kCn,k

(
|x|−k2 −

(
x21 + · · ·+ x2n−1

ε2
+

x2n
(1− ε)2

)−k/2)
.

It remains to show that the body K is not convex. To this end, let us compute
the distance from the origin to the boundary of K in the directions ξ1 = (0, 0, ...0, 1),

ξ2 = (
√

2/2, 0, ...0,
√

2/2), and ξ3 = (−
√

2/2, 0, ...0,
√

2/2). One has

ρK(ξ1) = (Bn,kCn,k)
1/k
(

1− (1− ε)k
)1/k

,

which can be made as close to zero as we wish by choosing ε sufficiently small.
On the other hand,

ρK(ξ2) = ρK(ξ3) = (Bn,kCn,k)
1/k

(
1−

(
1

2ε2
+

1

2(1− ε)2

)−k/2)1/k

> (Bn,kCn,k)
1/k
(

1−
(
2ε2
)k/2)1/k

.

The latter does not tend to zero as ε gets small. Thus, the body K is not convex.

Case 2. Let k = 2. Here L = Lε will be a “smoothened version” of the cube
Bn∞ = {x ∈ Rn : max

1≤i≤n
|xi| ≤ 1}. For simplicity, one can think of (1− ε)Bn∞ + εBn2 .

However, the latter is not a C∞ body. Thus we will define L = Lε to be an
origin-symmetric convex body with C∞ boundary that satisfies the following two
conditions:

(1− ε)Bn∞ ⊂ L ⊂ Bn∞
and

AL,e1(z) = AL,e1(0), for |z| ≤ 1− ε, (3)

where e1 is the basis vector (1, 0, ..., 0).
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We now define a body K as follows:

‖ξ‖−2K =
2

(n− 2)(2π)2
(‖ · ‖−n+2

L )∧(ξ), ξ ∈ Sn−1.

By part (b) of Theorem 2.1 this means

‖ξ‖−2K = − 4

(2π)2

∫ ∞
0

AL,ξ(z)−AL,ξ(0)

z2
dz.

Since the latter integral is strictly negative (and convergent, due to the smoothness
and origin-symmetry of the body L) for every ξ ∈ Sn−1, it follows that the star
body K is well defined. Moreover, K is the 2-intersection body of L.

In order to show that K is not convex, we will compute ρK(ξ) in the directions

ξ1 = (1, 0, 0, ..., 0), ξ2 = (
√

2/2,
√

2/2, 0, ..., 0) and ξ3 = (
√

2/2,−
√

2/2, 0, ..., 0). By
virtue of (3), we have

ρ2K(ξ1) =
4

(2π)2

∫ ∞
0

AL,ξ1(0)−AL,ξ1(z)

z2
dz =

4

(2π)2

∫ ∞
1−ε

AL,ξ1(0)−AL,ξ1(z)

z2
dz

≤ 4AL,ξ1(0)

(2π)2

∫ ∞
1−ε

1

z2
dz ≤ 2n+1

(2π)2(1− ε)
.

Here we used the assumption that L ⊂ Bn∞ and therefore its central sections must
not exceed those of the cube, i.e. AL,ξ1(0) ≤ 2n−1. Thus ρK(ξ1) is bounded above
by an absolute constant for all small ε.

Now consider

ρ2K(ξ2) =
4

(2π)2

∫ ∞
0

AL,ξ2(0)−AL,ξ2(z)

z2
dz ≥ 4

(2π)2

∫ √2

ε

AL,ξ2(0)−AL,ξ2(z)

z2
dz.

Since (1− ε)Bn∞ ⊂ L, we have

AL,ξ2(0) ≥ A(1−ε)Bn
∞,ξ2

(0) =
√

2 2n−1(1− ε)n−1.
Similarly, L ⊂ Bn∞ implies

AL,ξ2(z) ≤ ABn
∞,ξ2

(z) = 2n−1(
√

2− z), when |z| ≤
√

2.

Thus,

ρ2K(ξ2) ≥ 2n+1

(2π)2

∫ √2

ε

√
2(1− ε)n−1 − (

√
2− z)

z2
dz

=
2n+1

(2π)2

(
(1− ε)n−1 − 1

ε

√
2 + 1− (1− ε)n−1 + ln

√
2− ln ε

)
.

The latter is large when ε is small.
We also have the same bound for ρ2K(ξ3). Thus we have proved that the radius

of K can be made as large as we want in the directions (
√

2/2,
√

2/2, 0, ..., 0) and

(
√

2/2,−
√

2/2, 0, ..., 0), while staying bounded in the direction (1, 0, 0, ..., 0). Thus
the body K cannot be convex.

Case 3. Consider k = 3. For a small ε > 0 we define an auxiliary origin-
symmetric body M = Mε ⊂ Rn as follows:

M = {x ∈ Rn : x41 + εx21 + x22 + x23 + · · ·+ x2n ≤ 1}.
One can see that the boundary surface of M is obtained by rotating the curve
x41 + εx21 + x22 = 1 about the x1-axis. It is easy to check that this curve has strictly
positive curvature. (This can be done by solving for x1 in terms of x2, as well



COUNTEREXAMPLES TO CONVEXITY OF k-INTERSECTION BODIES. 7

as solving for x2 in terms of x1, and finding the second derivatives of these two
functions.) Therefore, the body M also has strictly positive curvature (and thus,
convex).

Now we will compute the parallel section function of M in the direction of the
basis vector e1.

AM,e1(z) = κn−1(1− εz2 − z4)(n−1)/2,

where κn−1 is the volume of the (n− 1)-dimensional Euclidean ball Bn−12 .
Therefore

A
′′

M,e1(0) = −ε(n− 1)κn−1.

We claim that for the body M0 = {x ∈ Rn : x41 + x22 + x23 + · · ·+ x2n ≤ 1} (which
is the limiting case of Mε when ε→ 0) there is a direction ξ0 /∈ e⊥1 such that

A
′′

M0,ξ0(0) = −α < 0,

for some number α > 0.
Indeed, the body M0 has an infinitely smooth norm and therefore (as noted

after Theorem 2.1) the Fourier transform (‖ · ‖−n+3
M0

)∧ is a non-negative continuous

function on the sphere. If we had A
′′

M0,ξ
(0) = 0 for all ξ ∈ Sn−1 outside the equator

e⊥1 , then (‖ · ‖−n+3
M0

)∧ would be zero on the sphere, and therefore ‖ · ‖−n+3
M0

would
also be identically zero.

Now we will show that A
′′

M,ξ0
(0) is close to −α when ε is sufficiently small. Since

(‖x‖−n+3
M )∧(ξ) = −π(n− 3)A

′′

M,ξ(0),

by part (a) of Theorem 2.1, it is enough to show that (‖x‖−n+3
M )∧(ξ0) is close to

(‖x‖−n+3
M0

)∧(ξ0) when ε is sufficiently small. One can find explicitly a formula for
the norm of M :

‖x‖M =

√
εx21 + x22 + · · ·+ x2n +

√
(εx21 + x22 + · · ·+ x2n) + 4x41.

Observe that ‖ · ‖M and its first and second derivatives are continuous functions of
(x, ε) on Sn−1× [0, ε0] for some small ε0, and therefore uniformly continuous. Thus
‖ · ‖M converges to ‖ · ‖M0 in C2(Sn−1) as ε→ 0. By [K2, Corollary 3.17] it follows
that (‖ · ‖−n+3

M )∧ converges to (‖ · ‖−n+3
M0

)∧ in C(Sn−1).

Thus, for small enough ε we have that (‖ · ‖−n+3
M )∧(ξ0) is close to π(n− 3)α and

(‖ · ‖−n+3
M )∧(e1) is close to zero. We now fix ε so small that

(‖ · ‖−n+3
M )∧(ξ0) > |〈ξ0, e1〉|−3(‖ · ‖−n+3

M )∧(e1).

For a small λ > 0 define an origin-symmetric body L as follows:

‖x‖−n+3
L = ‖x‖−n+3

M + λ|x|n+3
2 .

Since M has strictly positive curvature, a small perturbation will not affect this
property. Thus L is convex for small enough λ. We will also require that λ be small
enough to guarantee that

(‖ · ‖−n+3
M )∧(ξ0) + λ(| · |−n+3

2 )∧(ξ0)

> |〈ξ0, e1〉|−3
(
(‖ · ‖−n+3

M )∧(e1) + λ(| · |−n+3
2 )∧(e1)

)
. (4)

Now define a star body K as follows:

‖x‖−3K =
3

(n− 3)(2π)3
(‖ · ‖−n+3

L )∧(x), x ∈ Rn \ {0}.
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Since (‖ · ‖−n+3
M )∧(x) ≥ 0 and (| · |−n+3

2 )∧(x) > 0 for all x ∈ Rn \{0}, it follows that

(‖ · ‖−n+3
L )∧(x) = (‖ · ‖−n+3

M )∧(x) + λ(| · |−n+3
2 )∧(x) > 0, x ∈ Rn \ {0},

and therefore the star body K is well-defined. Also observe that K is the 3-
intersection body of L.

Finally we show that K is not convex. First, note that K is a body of revolution
about the x1-axis, since M was such. Secondly, condition (4) implies that

|〈ξ0, e1〉|ρK(ξ0) > ρK(e1).

This means that the projection of the vector ρK(ξ0)ξ0 ∈ K onto the axis of revolu-
tion of K lies outside of K. Thus K is not convex. �
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