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Abstract. We use Fourier transform techniques to prove a result on detecting symmetry in
convex and star bodies with the help of conical sections. Our methods also allow us to give a
new proof of the well-known theorem of Makai, Martini and Ódor about maximal hyperplane
sections passing through the same point.

1. Introduction

Let K be a convex body in Rn, i.e. a compact convex set with a non-empty interior. We
say that K is origin-symmetric if K = −K. The presence of origin-symmetry is an essential
assumption in various problems. Many results that hold for origin-symmetric convex bodies
fail in the absence of the symmetry condition. For example, origin-symmetric convex bodies
are uniquely determined by the volumes of their projections or central sections, while this is
not true for general convex bodies; see [G]. Thus, detecting symmetry in convex bodies is
one of the fundamental questions in convex geometry and geometric tomography. For some
results in this direction the reader is referred to [AMM], [F], [Gro1], [Gro2], [Gru], [HS], [MM],
[MMO], [Sch]; see also [RYZ] for open problems.

In this paper we suggest a new method of detecting symmetry. Let K be a star body
and let C(ξ, z) be the cone {x ∈ Rn : x · ξ = |x|z}, where ξ ∈ Sn−1, z ∈ (−1, 1), and
x · ξ = x1ξ1 + x2ξ2 + ... + xnξn is the usual inner product in Rn. In this notation, z is the
cosine of the angle between x and ξ. For z ∈ (−1, 1), we define the conical section function

CK,ξ(z) by

CK,ξ(z) = voln−1(K ∩ C(ξ, z)).

On the picture below the shaded part represents the intersection K ∩ C(ξ, z), and α =
arccos z.
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Clearly, if K is an origin-symmetric star body, then for each ξ the function CK,ξ(z) is an
even function of z, and therefore has a critical point at z = 0. In this paper we show that the
converse statement is also true.

Theorem 1.1. Let K be a C1 star body in R
n. Assume that for each ξ ∈ Sn−1 the function

CK,ξ(z) has a critical point at z = 0. Then the body K is origin-symmetric.

This theorem is an analog of the result by Makai, Martini and Ódor [MMO], which can be
stated as follows.

Theorem 1.2. Let K be a C1 star body in R
n. If for every ξ ∈ Sn−1 the function AK,ξ(t) has

a critical point at t = 0, then K is origin-symmetric.

Here, AK,ξ(t) is the parallel section function defined by

AK,ξ(t) = voln−1(K ∩ (ξ⊥ + tξ)), t ∈ R,

and ξ⊥ = {x ∈ R
n : x · ξ = 0} is the hyperplane passing through the origin and orthogonal to

the vector ξ.
Makai, Martini and Ódor proved Theorem 1.2 in the class of convex bodies, in which case

the C1-smoothness assumption can be dropped. Using the same reasoning (see [MMO, Lemma
3.5] for details), it can be shown that Theorem 1.1 also holds true for convex bodies without
the smoothness assumption.

The techniques that we use in this paper were developed by Koldobsky (see [K]) and are
based on the Fourier transform of distributions. Using these methods we also give a new and
short proof of Theorem 1.2.

The study of properties of convex bodies using the information about the areas of their
planar sections is the classical problem of geometric tomography. However, a natural question
of what happens if plane sections are replaced by sections by other surfaces has not been
studied well. In this note we make a step in this direction by considering sections by conical
surfaces. In fact, a lot of problems like determination of symmetric bodies by central sections,
the Busemann-Petty problem and others can be asked in the setting of surfaces; see [Sa] for
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some results. These problems may be quite difficult, but they belong to a new interesting
direction.

2. Notation and auxiliary results

A body is a compact set equal to the closure of its interior. If K is a body containing the
origin in its interior and star-shaped with respect to the origin, its radial function is defined
by

ρK(x) = max{a ≥ 0 : ax ∈ K},
for x ∈ Rn \ {0}. If ξ ∈ Sn−1, then ρK(ξ) is the distance from the origin to the point on the
boundary in the direction of ξ. A body K is called a star body if its radial function is positive
and continuous. We say that a star body K is of class Ck if ρK ∈ Ck(Sn−1). The Minkowski

functional of a star body K ⊂ Rn is defined by

‖x‖K = min{a ≥ 0 : x ∈ aK}, x ∈ R
n.

It easy to see that ρK(x) = ‖x‖−1
K for x ∈ Rn \ {0}.

The main tool that we use in this paper is the Fourier transform of distributions. For the
background information, the reader is referred to the books by Gelfand and Shilov [GS] and
by Koldobsky [K].

Let S(Rn) be the Schwartz space of rapidly decreasing infinitely differentiable functions on
Rn. Elements of this space are referred to as test functions. Distributions are the elements of
the dual space, S ′(Rn), of linear continuous functionals on S(Rn). The action of a distribution
f on a test function φ is denoted by 〈f, φ〉.

Let φ ∈ S(R). The fractional derivative of the function φ of order q ∈ C at zero is defined
as follows

φ(q)(0) = 〈 t−1−q
+

Γ(−q)
, φ(t)〉,

where t+ = max{0, t}.
If <q < 0, then the function t−1−q is locally integrable and the above fractional derivative

is equal to

φ(q)(0) =
1

Γ(−q)

∫

∞

0

t−1−qφ(t)dt.

This integral can be written in the following form; see [K, Sec. 2.5 and 2.6] for details.

φ(q)(0) =
1

Γ(−q)

∫ 1

0

t−1−q
(

φ(t) − φ(0) − · · · − φ(m−1)(0)
tm−1

(m − 1)!

)

dt

+
1

Γ(−q)

∫

∞

1

t−1−qφ(t)dt +
1

Γ(−q)

m−1
∑

k=0

φ(k)(0)

k!(k − q)
.

Note that the latter expression makes sense for q with −1 < <q < m, q 6= 0, 1, ..., m − 1, and
this is how φ(q)(0) is defined for these values of q.
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If k ≥ 0 is an integer, we define the fractional derivative of the order k as the limit of the
latter expression as q → k, then we get

φ(k)(0) = (−1)k dk

dtk
φ(t)

∣

∣

∣

t=0
,

i.e. fractional derivatives of integral orders coincide up to a sign with ordinary derivatives.
Thus defined, φ(q)(0) is an entire function of the variable q ∈ C. Note that the fractional
derivatives φ(q)(0) can also be defined if φ is a continuous function with compact support and
sufficiently differentiable in a neighborhood of zero.

The Fourier transform of φ ∈ S(Rn) is defined by

φ̂(x) =

∫

Rn

φ(y)e−ix·y dy for x ∈ R
n.

The Fourier transform of a distribution f is defined by its action on test function as follows.

〈f̂ , φ〉 = 〈f, φ̂〉,

for any test function φ.
Our main tool is the Fourier transform of homogeneous distributions on Rn. For f ∈

C∞ (Sn−1) and p ∈ C, we denote by fp the homogeneous degree −n + p extension of f to
R

n\{0}. Thus,

fp(x) = |x|−n+pf

(

x

|x|

)

for x 6= 0.

Formulas for the Fourier transform of fp were obtained in the case of even functions in
[GKS] (see also [K]) and in the general case in [GYY]. We will need the following auxiliary
function. For f ∈ C (Sn−1) and ξ ∈ Sn−1, the function Fξ is defined by

Fξ(t) = (1 − t2)(n−3)/2

∫

Sn−1∩ξ⊥
f(t ξ +

√
1 − t2 ζ) dζ, t ∈ (−1, 1).

If Φ is an integrable function on [−1, 1], then

∫ 1

−1

Φ(t)Fξ(t)dt =

∫

Sn−1

Φ(θ · ξ)f(θ)dθ;

cf. [Gro1] or [Mu].
If 0 < <p < 1, then the Fourier transform of fp is a homogeneous function of degree −p on

Rn \ {0} given by

(1) f̂p(x) = Γ(p) cos
pπ

2

∫

Sn−1

|x · θ|−pf(θ) dθ − iΓ(p) sin
pπ

2

∫

Sn−1

|x · θ|−psgn (x · θ)f(θ) dθ.
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Using regularization, as in the case of fractional derivatives, one can obtain formulas for f̂p

when <p ≥ 1. In particular, for p = 1, 3, . . . , we have

f̂p(ξ) = −i(−1)(p−1)/2(p − 1)!

(

∫ 1

−1

|t|−psgn t

(

Fξ(t) −
p−1
∑

j=0

tj

j!
F

(j)
ξ (0)

)

dt

+
∑

0≤j≤p−1

j odd

2

j!(1 + j − p)
F

(j)
ξ (0)

)

+ (−1)(p−1)/2πF
(p−1)
ξ (0),

whereas, for p = 2, 4, . . . ,

f̂p(ξ) = (−1)p/2(p − 1)!

(

∫ 1

−1

|t|−p

(

Fξ(t) −
p−1
∑

j=0

tj

j!
F

(j)
ξ (0)

)

dt

+
∑

0≤j≤p−1

j even

2

j!(1 + j − p)
F

(j)
ξ (0)

)

+ i(−1)p/2πF
(p−1)
ξ (0).

Remark. It follows from the proof of these formulas that assumption f ∈ C∞ (Sn−1) can be
relaxed. For example, if 0 < <p < 1, formula (1) remains valid for f ∈ C (Sn−1). If p is an
integer, then it is enough to require that f ∈ Cp (Sn−1).

3. Proofs of results

Proof of Theorem 1.1. Consider the following auxiliary function

GK,ξ(z) =

{

(1 − z2)−1/2 · voln−1(K ∩ C(ξ, z)), |z| < 1,
0, |z| ≥ 1.

By our assumption, G
′

K,ξ(0) = 0 for all ξ ∈ Sn−1.
First, we establish the following formula:

(2) GK,ξ(z) =

{

1
n−1

(1 − z2)(n−3)/2
∫

Sn−1∩ξ⊥
ρn−1

K (zξ +
√

1 − z2θ)dθ, |z| < 1,

0, |z| ≥ 1.

In order to prove (2), we compute voln−1(K ∩ C(ξ, z)) using the idea from [Sa]. Denote
by (K ∩ C(ξ, z))|ξ⊥ the orthogonal projection of K ∩ C(ξ, z) onto the hyperplane ξ⊥. Let
α = arccos z. The cosine of the angle between the generating lines of the cone C(ξ, z) and the
hyperplane ξ⊥ equals sin α = (1 − z2)1/2. Projecting K ∩ C(ξ, z) onto the hyperplane ξ⊥, we
get

(3) voln−1

(

(K ∩ C(ξ, z))|ξ⊥
)

= (1 − z2)1/2voln−1(K ∩ C(ξ, z)).

Let θ ∈ Sn−1 ∩ ξ⊥. Then the radius of (K ∩ C(ξ, z))|ξ⊥ in the direction of θ is equal
to sin α · ρK(cos αξ + sin αθ). Therefore, computing the volume of the projection in polar
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coordinates, we get

voln−1

(

(K ∩ C(ξ, z))|ξ⊥
)

=
1

n − 1

∫

Sn−1∩ξ⊥
(sin α)n−1ρn−1

K (cos αξ + sin αθ) dθ.

Combining the latter formula with (3), we get

voln−1 (K ∩ C(ξ, z)) =
(1 − z2)(n−2)/2

n − 1

∫

Sn−1∩ξ⊥
ρn−1

K (zξ +
√

1 − z2θ) dθ.

Thus, formula (2) is proved.
Now we compute fractional derivatives of order q at z = 0 for the function GK,ξ(z). Our

goal is to show that

G
(q)
K,ξ(0) =

cos(qπ/2)

2π(n − 1)

(

‖x‖−n+1
K |x|q + ‖ − x‖−n+1

K |x|q
)∧

(ξ)(4)

−i sin(qπ/2)

2π(n − 1)

(

‖x‖−n+1
K |x|q − ‖ − x‖−n+1

K |x|q
)∧

(ξ).

First we assume that −1 < <q < 0 and then use the analytic extension. We have

G
(q)
K,ξ(0) =

1

Γ(−q)

∫

∞

0

z−1−qGK,ξ(z)dz

=
1

2Γ(−q)

∫

R

(

|z|−1−q + |z|−1−qsgn z
)

GK,ξ(z)dz

=
1

2(n − 1)Γ(−q)

∫ 1

−1

(

|z|−1−q + |z|−1−qsgn z
)

(1 − z2)(n−3)/2

×
∫

Sn−1∩ξ⊥
ρn−1

K (zξ +
√

1 − z2θ)dθdz

=
1

2(n − 1)Γ(−q)

∫

Sn−1

(

|x · ξ|−1−q + |x · ξ|−1−qsgn (x · ξ)
)

ρn−1
K (x) dx

=
1

4(n − 1)Γ(−q)

∫

Sn−1

|x · ξ|−1−q
(

ρn−1
K (x) + ρn−1

K (−x)
)

dx

+
1

4(n − 1)Γ(−q)

∫

Sn−1

|x · ξ|−1−qsgn (x · ξ)
(

ρn−1
K (x) − ρn−1

K (−x)
)

dx.

The latter equality allows us to consider G
(q)
K,ξ(t) as a function of ξ ∈ R

n \ {0}, and write it
in terms of the Fourier transform. By virtue of formula (1),

G
(q)
K,ξ(0) = − 1

4(n − 1)Γ(−q)Γ(q + 1) sin(qπ/2)

(

‖x‖−n+1
K |x|q + ‖ − x‖−n+1

K |x|q
)∧

(ξ)

+
i

4(n − 1)Γ(−q)Γ(q + 1) cos(qπ/2)

(

‖x‖−n+1
K |x|q − ‖ − x‖−n+1

K |x|q
)∧

(ξ).
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Since

Γ(−q)Γ(q + 1) = − π

sin qπ
,

(see [K, p. 31]), formula (4) is proved for the range −1 < <q < 0. It can be extended to
−1 < <q < n − 1 via an analytic continuation argument (see [K, pp. 60 - 61] and [GYY,
Theorem 3.1] for details). In particular, for q = 1 we obtain the following formula.

G
(1)
K,ξ(0) = − i

2π(n − 1)

(

‖x‖−n+1
K |x| − ‖ − x‖−n+1

K |x|
)∧

(ξ).

Finally, we use the condition G
′

K,ξ(0) = 0 for all ξ ∈ Sn−1 to get

(

‖x‖−n+1
K |x| − ‖ − x‖−n+1

K |x|
)∧

(ξ) = 0, ∀ξ ∈ Sn−1.

Due to homogeneity, the latter formula holds for all ξ ∈ R
n \ {0}.

Inverting the Fourier transform we get

‖x‖−n+1
K |x| − ‖ − x‖−n+1

K |x| = 0, x ∈ R
n \ {0},

which means that

‖x‖K = ‖ − x‖K , x ∈ R
n,

i.e. the body K is origin-symmetric.
�

Proof of Theorem 1.2. As above, our goal is to derive a formula for fractional derivatives
of the function AK,ξ(t) at t = 0 and then use the condition A′

K,ξ(0) = 0. The following
calculations are known in the class of origin-symmetric convex bodies; see [GKS] or [K]. We
will extend these results to cover the general case.

Let −1 < <q < 0. Using the definition of fractional derivatives, the Fubini theorem, and
integration in polar coordinates we get

A
(q)
K,ξ(0) =

1

Γ(−q)

∫

∞

0

z−1−qAK,ξ(z)dz

=
1

2Γ(−q)

∫

R

(

|z|−1−q + |z|−1−qsgn z
)

AK,ξ(z)dz

=
1

2Γ(−q)

∫

R

(

|z|−1−q + |z|−1−qsgn z
)

∫

(x,ξ)=z

χ(‖x‖K) dx dz
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=
1

2Γ(−q)

∫

K

(

|x · ξ|−1−q + |x · ξ|−1−qsgn (x · ξ)
)

dx

=
1

2Γ(−q)

∫

Sn−1

(

|x · ξ|−1−q + |x · ξ|−1−qsgn (x · ξ)
)

∫ ρK(θ)

0

rn−1r−1−qdr dθ

=
1

2(n − 1 − q)Γ(−q)

∫

Sn−1

(

|x · ξ|−1−q + |x · ξ|−1−qsgn (x · ξ)
)

ρn−1−q
K (θ) dθ

=
1

4(n − 1 − q)Γ(−q)

∫

Sn−1

|x · ξ|−1−q
(

ρn−1−q
K (θ) + ρn−1−q

K (−θ)
)

dθ

+
1

4(n − 1 − q)Γ(−q)

∫

Sn−1

|x · ξ|−1−qsgn (x · ξ)
(

ρn−1−q
K (θ) − ρn−1−q

K (−θ)
)

dθ.

The latter equality allows us to consider A
(q)
K,ξ(0) as a function of ξ ∈ Rn, and write it in

terms of Fourier transforms using formula (1), (cf. (4)),

A
(q)
K,ξ(0) =

cos(qπ/2)

2π(n − 1 − q)

(

‖x‖−n+1+q
K + ‖ − x‖−n+1+q

K

)∧

(ξ)

− i sin(qπ/2)

2π(n − 1 − q)

(

‖x‖−n+1+q
K − ‖ − x‖−n+1+q

K

)∧

(ξ).

By the analytic extension argument mentioned above, the formula can be extended to
−1 < <q < n − 1. Putting q = 1 in the latter formula and using the condition A′

K,ξ(0) = 0,

∀ξ ∈ Sn−1, we get
(

‖ − x‖K
−n+2 − ‖x‖K

−n+2
)∧

(ξ) = 0, ∀ξ ∈ Sn−1.

Therefore, ‖ − x‖K
−n+2−‖x‖K

−n+2 = 0, for x ∈ Rn\{0}, i.e. the body K is origin-symmetric.
�
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