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Abstract We discuss some open questions on unique determination of convex bod-
ies.

1 Introduction and notation

The purpose of this note is to give a short overview of known results and open ques-
tions on unique determination of convex and star bodies. These questions are usually
treated with the aid of techniques of Harmonic Analysis. We give a typical example
of such a problem in the next section. The reader is referred to the books by Groemer
[9] and Koldobsky [20], as well as to the articles by Falconer [5] and Schneider [31]
for the use of spherical harmonics and the Fourier transform in Convex Geometry.

First we introduce some notation. For standard notions in Convex Geometry we
refer the reader to the books by Gardner [8] and Schneider [33].

A convex body in Rn is a compact convex set with non-empty interior. The sup-
port function hK of a convex body K in Rn is defined by

hK(x) = max{〈x,y〉 : y ∈ K}, x ∈ Rn.
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Clearly, hK is positively homogeneous of degree 1, and therefore is determined by
its values on the unit sphere. If V is a subspace of Rn, then we write K|V for the
orthogonal projection of K onto V . It is easy to see that the support function of K|V ,
as a convex body in V , is just the restriction of hK to V .

A convex body K is of constant width if hK(ξ ) + hK(−ξ ) = constant for all
ξ ∈ Sn−1. Let G(n,k) denote the Grassmanian of k-dimensional subspaces of Rn.
The kth projection function of a convex body K is the function on G(n,k) that as-
signs volk(K|H) to every k-dimensional subspace H ∈ G(n,k). A convex body K
has constant k-brightness if volk(K|H) = c for all H ∈ G(n,k) and some constant c.
In the case k = n−1 we say that K has constant brightness.

Let K be a compact convex set in Rn. Its intrinsic volumes Vi(K), 1≤ i≤ n, can
be defined via Steiner’s formula

voln(K + εBn
2) =

n

∑
i=0

κn−iVi(K)εn−i,

where the addition is the Minkowski addition, κn−i is the volume of the (n− i)-
dimensional Euclidean ball, and ε ≥ 0.

In particular, if K is a convex body in Rn, then Vn(K) is its volume, and Vn−1(K)
is half the surface area. For these and other facts about intrinsic volumes we refer
the reader to the book [33].

We say that K is a star body if it is compact, star-shaped at the origin, and its
radial function ρK defined by

ρK(x) = max{λ > 0 : λx ∈ K}, x ∈ Sn−1,

is positive and continuous.

2 Typical result

Harmonic Analysis is an indispensable tool in Convex Geometry. Let us demon-
strate this with the following well-known result, showing that origin-symmetric star
bodies are uniquely determined by the size of their central sections.

Theorem 1. Let K and L be origin-symmetric star bodies in Rn such that

voln−1(K∩H) = voln−1(L∩H)

for every central hyperplane H. Then K = L.

We will give two very similar Harmonic Analysis proofs of this theorem. The first
one uses the spherical Radon transform, which is a linear operator R : C(Sn−1)→
C(Sn−1) defined by

R f (ξ ) =
∫

Sn−1∩ξ⊥
f (x)dx, ξ ∈ Sn−1,
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where ξ⊥ is the hyperplane passing through the origin, and orthogonal to a given
direction ξ ∈ Sn−1,

ξ
⊥ = {x ∈ Rn : 〈x,ξ 〉= 0}.

Proof. The spherical Radon transform arises naturally in problems about volumes
of central sections of star bodies. If H has unit normal vector ξ , then passing to
polar coordinates in H we obtain

voln−1(K∩H) =
1

n−1

∫
Sn−1∩ξ⊥

ρ
n−1
K (x)dx =

1
n−1

Rρ
n−1
K (ξ ).

Thus, we can reduce the geometric question about sections of star bodies to the
question about the injectivity properties of the spherical Radon transform. The latter
is known to be injective on even functions; see [9, Section 3.4] for details. In our
case, both ρ

n−1
K and ρ

n−1
L are even functions on the unit sphere, since K and L are

origin-symmetric. Hence, the condition of the theorem,

1
n−1

Rρ
n−1
K (ξ ) =

1
n−1

Rρ
n−1
L (ξ ) ∀ξ ∈ Sn−1,

yields ρ
n−1
K (x) = ρ

n−1
L (x), and ρK(x) = ρL(x) for all x∈ Sn−1. This gives the desired

result. ut
Another known proof of Theorem 1 is based on the Fourier transform of distri-

butions; see [20].

Proof. The main idea is that for an even function f , homogeneous of degree−n+1,
and continuous on Rn \{0}, we have

R f (ξ ) =
1
π

f̂ (ξ ), ∀ξ ∈ Sn−1.

Thus, the assumption of Theorem 1 can be written as

ρ̂
n−1
K (ξ ) = ρ̂

n−1
L (ξ ), ∀ξ ∈ Sn−1.

By homogeneity, the latter equality is true on Rn \{0}. Inverting the Fourier trans-
forms, we get ρK = ρL. ut
For bodies that are not necessarily symmetric, Theorem 1 is not true; see [8, Thm
6.2.18, Thm 6.2.19].

We would like to mention that we are not aware of any other proof of Theorem 1
that uses ideas, different from the ones we just discussed.

3 Central sections

What is the answer in Theorem 1 if we replace the (n− 1)-volume by the surface
area or other intrinsic volumes?
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Question 1. Let i and k be integers with 1≤ i≤ k≤ n−1, and let K and L be origin-
symmetric convex bodies in Rn such that

Vi(K∩H) = Vi(L∩H), ∀H ∈ G(n,k).

Is it true that K = L?

In the simplest form when n = 3, k = 2, and i = 1, this question was asked by
Gardner in his book [8]. Namely, are two origin-symmetric convex bodies K and L
in R3 equal if the sections K∩ξ⊥ and L∩ξ⊥ have equal perimeters for all ξ ∈ S2?
The problem is open, except for some particular cases.

Howard, Nazarov, Ryabogin and Zvavitch [16] solved the problem in the class
of C1 star bodies of revolution. Rusu [28] settled an infinitesimal version of the
problem, when one of the bodies is the Euclidean ball and the other is its one-
parameter analytic deformation. Yaskin [36] showed that the answer is affirmative
in the class of origin-symmetric convex polytopes in Rn, where in dimensions n≥ 4
the perimeter is replaced by the surface area of the sections. On the other hand,
Question 1 has a negative answer in the class of general (not necessarily symmetric)
convex bodies containing the origin in their interiors; see [29].

There are many interesting questions about the so-called intersection bodies, re-
lated to the volumes of sections of origin-symmetric star bodies. We refer the reader
to the books [20], [22] for these problems.

We finish this section with several uniqueness results and questions about con-
gruent sections of convex bodies. We start with the following result of Schneider
[32].

Theorem 2. Let K ⊂ Rn, n ≥ 3, be a convex body containing the origin. If for all
ξ ∈ Sn−1 all the intersections K∩ξ⊥ are congruent, then K is a Euclidean ball.

A similar problem about two bodies is still open even in the three-dimensional case.

Question 2. Let K and L be two convex bodies in Rn, n ≥ 3, containing zero in
their interiors. Assume that the (n−1)-dimensional sections of these bodies by the
hyperplanes passing through the origin are congruent. Does it follow that K and L
are congruent?

What happens if we drop the convexity assumption, but require only the “parallel
translation congruency” of sections? Gardner [8] asks the following.

Question 3. Let K and L be two star-shaped bodies in Rn containing the origin in
their interiors. Assume that the (n−1)-dimensional sections of these bodies by the
hyperplanes passing through the origin are translates of each other. Does it follow
that K and L are congruent?

We will return to analogous questions about projections in a subsequent section.

4 Maximal sections

Let K be a convex body in Rn. The inner section function mK is defined by
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mK(ξ ) = max
t∈R

voln−1(K∩ (ξ⊥+ tξ )),

for ξ ∈ Sn−1.
In 1969, Klee [18], [19] asked whether a convex body is uniquely determined

(up to translation and reflection in the origin) by its inner section function. In [10]
Gardner, Ryabogin, Yaskin, and Zvavitch answered Klee’s question in the negative
by constructing two convex bodies K and L, one of them origin-symmetric and the
other is not centrally-symmetric, such that mK(ξ ) = mL(ξ ) for all ξ ∈ Sn−1. Klee
also asked whether a convex body in Rn, n ≥ 3, whose inner section function is
constant, must be a ball. This question was recently answered in the negative in
[27].

Since the knowledge of the inner section function is not sufficient for determining
a convex body, one can try to put additional assumptions. For example, it is natural
to ask the following.

Question 4. Are convex bodies uniquely determined by their inner section functions
and the function tK(ξ ), that gives the distance from the origin to the affine hyper-
plane that contains the maximal section in the direction of ξ ?

Motivated by Theorem 2 one can also ask the following question about maximal
sections.

Question 5. Let K be a convex body and tK(ξ ) be defined as above. If for all ξ ∈
Sn−1 all the intersections K ∩{ξ⊥+ tK(ξ )ξ} are congruent, is then K a Euclidean
ball?

We finish this section with the question about maximal sections which is a ver-
sion of a result of Montejano (see [8] for references and related results).

Question 6. Let K be a convex body in R3 such that its maximal sections are of
constant width. Does it follow that K is a Euclidean ball?

5 t-sections

In [2] Barker and Larman ask the following.

Question 7. Let K and L be convex bodies in Rn containing a sphere of radius t in
their interiors. Suppose that for every hyperplane H tangent to the sphere we have
voln−1(K∩H) = voln−1(L∩H). Does this imply that K = L?

In [2] the authors obtained several partial results. They showed that in R2 the
uniqueness holds if one of the bodies is a Euclidean disk. (The authors of [2] were
apparently unaware of the paper [30] by Santaló, where he obtained an analogous
result on the sphere. He then remarks that the limiting case, when the radius of the
sphere tends to infinity, gives the result in the Euclidean plane). In Rn Barker and
Larman proved that the answer to this conjecture is affirmative if hyperplanes are
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replaced by planes of a larger codimension. However, the answer to the original
question is still unknown, even in dimension 2.

Yaskin [35] showed that the answer to the problem is affirmative if both K and L
are convex polytopes in Rn. The case n = 2 of this result when K and L are polygons
in R2 was earlier settled by Xiong, Ma and Cheung [34].

Barker and Larman also suggest another generalization of the problem.

Question 8. Let K and L be convex bodies in Rn containing a convex body M in their
interiors. Suppose that for every hyperplane H that supports M we have voln−1(K∩
H) = voln−1(L∩H). Does this imply that K = L?

Let us mention that in the case when M is just a straight line segment, the answer
to the latter problem is affirmative. This is just a reformulation of the result proved
independently by Falconer [6] and Gardner [8], that any convex body is uniquely
determined by the volumes of hyperplane sections through any two points in the
interior of the body. See also [21].

6 Slabs

Let t > 0 and ξ ∈ Sn−1. The slab of width 2t in the direction of ξ is defined by

St(ξ ) = {x ∈ Rn : |〈x,ξ 〉| ≤ t}.

Slabs can be thought of as “thick” sections.
In [29] the following problem was suggested.

Question 9. Let K and L be origin-symmetric convex bodies in Rn that contain the
Euclidean ball of radius t in their interiors. Suppose that for some i (1≤ i≤ n)

Vi(K∩St(ξ )) = Vi(L∩St(ξ )), ∀ξ ∈ Sn−1.

Is it true that K = L?

Note that without the symmetry assumption this question has a negative answer;
see [29].

7 Projections

The well-known Aleksandrov’s projection theorem states that origin-symmetric
convex bodies are uniquely determined by the sizes of their projections.

Theorem 3. Let 1 ≤ i ≤ k ≤ n and let K and L be origin-symmetric convex bodies
in Rn. If

Vi(K|H) = Vi(L|H), ∀H ∈ Gr(n,k),
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then K = L.

This result fails in the absence of symmetry; see [8, Thm 3.3.17, Thm 3.3.18] or
[12]. In fact, they prove more.

Theorem 4. There are noncongruent convex bodies K and L in Rn such that for all
i and k with 1≤ i≤ k ≤ n we have

Vi(K|H) = Vi(L|H), ∀H ∈ Gr(n,k).

Moreover, the pair of bodies can be chosen to be C∞
+ bodies of revolution, or poly-

topes.

As we can see, even the knowledge of all projection functions does not allow
to determine a convex body uniquely. Suppose that some projection function of
convex body is known to be constant, is then the body a ball? No, since there are
non-spherical bodies of constant k-brightness; see [7].

The following is an old question of Bonnesen [4].

Question 10. Let K ⊂Rn, n≥ 3, be a convex body whose inner section function and
brightness function are constant. Does it follow that K is a Euclidean ball?

If the inner section function and the brightness function of a body K are both equal
to the same constant, then the answer is known to be affirmative. A simple proof of
this result was communicated to us by Nazarov.

Assume now that two projection functions are constant. Is then the body a ball?
The question of whether a convex body in R3 of constant width and constant bright-
ness must be a ball, is known as the Nakajima problem. Back in 1926, Nakajima
[26] gave an affirmative answer to the problem under the additional assumption that
the boundary of the body is of class C2

+. The general case was resolved by Howard
[13].

Theorem 5. Let K be a convex body in R3 of constant width and constant bright-
ness. Then K is a Euclidean ball.

Generalizations were obtained by Howard and Hug [14], [15] and by Hug [17].

Theorem 6. Let K be a convex body in Rn. Let 1≤ i < j≤ n−2 and (i, j) 6= (1,n−
2). Assume that K has constant i-brightness and constant j-brightness. Then K is a
Euclidean ball.

However, the following, for example, is still unknown, even in the smooth case.

Question 11. Let K be a convex body in Rn, n≥ 4, with constant (n−1)-brightness
and constant (n− 2)-brightness. Is K a Euclidean ball? What about bodies of con-
stant width and (n−1)-brightness?

There are questions where one is interested in the shape of projections, rather
than their size. The following problem is a “dual” version of Question 2.
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Question 12. Let K and L be two convex bodies in Rn, n ≥ 3. Assume that the
projections of these bodies (on corresponding hyperplanes) are congruent. Does it
follow that K and L are congruent?

A beautiful Fourier analytic lemma was obtained by Golubyatnikov [11], who
showed that in the three-dimensional case the corresponding projections could only
be of three types: translations, reflections, and two-dimensional bodies of constant
width. Using this lemma, Golubyatnikov, in particular, proved the following.

Theorem 7. Let K and L be convex bodies in R3 such that for all ξ ∈ S2 the projec-
tions K|ξ⊥ and L|ξ⊥ are SO(2)-congruent and one of the following is true.

i) The projections are discs,
ii) the projections are not of constant width,
iii) the projections have no SO(2) symmetries.
Then K is congruent to L.

This result is a generalization of the so-called Süss’ Lemma (an analogue of
Theorem 7 when the projections K|ξ⊥ and L|ξ⊥ are translates of each other). We
would also like to mention that a beautiful and elementary proof of Süss’ Lemma
was obtained by Lieberman [1].

There is no doubt that the reader is now able to come up with other questions of
mixed nature, involving sections and projections. We would like to add one more
suggested to us by Gardner.

Question 13. Let K in R3 be a convex body containing the origin in its interior. If
all one-dimensional central sections of K have constant length and K is of constant
brightness, does it follow that K is a ball?

We finish our note with several questions about symmetry of convex bodies.

8 Symmetry

Let K be a convex body in Rn. The parallel section function of K in the direction of
ξ ∈ Sn−1 is defined by

AK,ξ (t) = voln−1(K∩ (ξ⊥+ tξ )), t ∈ R.

It is a consequence of the Brunn-Minkowski inequality that the maximal sections
of an origin-symmetric convex body pass through the origin. Makai, Martini, Ódor
[25] has shown that the converse statement is also true.

Theorem 8. Let K be a convex body in Rn such that AK,ξ (0) ≥ AK,ξ (t) for all ξ ∈
Sn−1 and all t ∈ R, then K is symmetric with respect to the origin.

They also posed a similar question for lower intrinsic volumes of sections (see
also [23] for other results in this direction).
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Question 14. Let K be a convex body in Rn such that Vi(K ∩ ξ⊥) ≥ Vi(K ∩{ξ⊥+
tξ}) for all ξ ∈ Sn−1 and all t ∈ R. Is K an origin-symmetric body?

The problem is open unless K is a smooth perturbation of the Euclidean ball. In the
latter case, Makai and Martini [24] have shown that the answer is affirmative.

We suggest a question in the same spirit.

Question 15. Let tK(ξ ) be such a function on the sphere that AK,ξ (tK(ξ )) =
maxt∈R AK,ξ (t). Assume that for every ξ ∈ Sn−1 the hyperplane {ξ⊥ + tK(ξ )ξ}
divides the surface of K into two parts of equal area. Is K centrally symmetric?

What are other criteria that allow to determine the symmetry of a given body? In
[3] Bianchi and Gruber ask the following.

Question 16. Let K be a convex body and t a continuous function on the sphere
Sn−1. Assume that for every ξ ∈ Sn−1 the (n− 1)-dimensional body K ∩{x ∈ Rn :
〈x,ξ 〉= t(ξ )} has a center of symmetry. Is then K centrally symmetric?

In particular, is the following true?

Question 17. Let tK(ξ ) be such that AK,ξ (tK(ξ )) = maxt∈R AK,ξ (t). If for every
ξ ∈ Sn−1 the (n− 1)-dimensional body K ∩{x ∈ Rn : 〈x,ξ 〉 = tK(ξ )} is centrally
symmetric, does it follow that K is centrally symmetric?

Such questions are directly related to questions about t-sections, mentioned be-
fore.

Question 18. Let K be convex body in Rn containing the Euclidean ball of radius
t > 0 in its interior. Suppose that the sections K∩{ξ⊥+tξ} are (n−1)-dimensional
centrally symmetric bodies for all ξ ∈ Sn−1. Is it true that K is origin symmetric? Is
it an ellipsoid?

Question 19. Let K be convex body in Rn containing the Euclidean ball of radius
t > 0 in its interior. Suppose that AK,ξ (t) = AK,ξ (−t) for every ξ ∈ Sn−1. Is K origin
symmetric?

As one can check, the latter question is equivalent to the following question about
slabs.

Question 20. Let K be a convex body in Rn containing the Euclidean ball of radius
t > 0 in its interior. Suppose that

voln(K∩{x : |〈x,ξ 〉| ≤ t}) = max
a∈R

voln(K∩{x :−t +a≤ 〈x,ξ 〉 ≤ t +a})

for all ξ ∈ Sn−1. Does this imply that K is origin symmetric?
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