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Abstract. Let K and L be origin-symmetric convex lattice sets in
Zn. We study a discrete analogue of the Aleksandrov theorem for the
surface areas of projections. If for every u ∈ Zn, the sets (K|u⊥) ∩
∂(conv(K)|u⊥) and (L|u⊥) ∩ ∂(conv(L)|u⊥) have the same number of
points, is then necessarily K = L? We give a positive answer to this
question in Z3. In higher dimensions, we obtain an analogous result
when conv(K) and conv(L) are zonotopes.

1. Introduction and main results

Typical questions in geometric tomography are concerned with the unique
determination of convex bodies from quantitative information coming from
their sections or projections. There are numerous results of this nature,
and Aleksandrov’s theorem is, arguably, one of the most interesting and
well-known among them. It asserts that if K is an origin-symmetric convex
body, then K is uniquely determined by the areas of its projections; see e.g.
[4, p. 115].

Discrete tomography deals with the study of finite sets in place of solid
objects. Gardner, Gronchi, and Zong [5] initiated a new direction where the
main idea is to transfer questions from geometric to discrete tomography in
order to establish the corresponding results. In particular, they formulated
a discrete analogue of the Aleksandrov theorem that reads as follows.

Problem 1.1. Let K and L be origin-symmetric convex lattice sets in Zn,
n ≥ 2. If for every u ∈ Zn we have

|K|u⊥| = |L|u⊥|,
is then necessarily K = L?

Here, for a finite set K we denote by |K| the cardinality of K, and by
conv(K) the convex hull of K. We say that a finite set K is a convex lattice
set if K = conv(K) ∩ Zn.

In [5] the authors showed that the answer to Problem 1.1 is negative
if n = 2. They constructed two noncongruent convex lattice sets in Z2

with equal projection counts (they used the term “projection count” when
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referring to the cardinality of a projection of a lattice set). However, it
is unknown whether there are other examples in Z2. Some work has been
done in this direction, [9], [11]. Gardner, Gronchi, and Zong also asked if
it is possible to impose an additional condition to guarantee the affirmative
answer in Z2. A positive answer to this question has been recently obtained
by N. Zhang; see [10]. If n ≥ 3, Problem 1.1 is completely open.

Note that the Aleksandrov projection theorem is also true for other in-
trinsic volumes of projections. For example, if the projections of two origin-
symmetric convex bodies onto all hyperplanes have equal surface areas, then
the bodies coincide, [4, p. 115].

In this note we suggest to study an analogue of the latter result in discrete
settings. Let K be a convex lattice set in Zn and u ∈ Zn. By the discrete
surface area |∂(K|u⊥)| of the projection of K onto u⊥ we will understand
the number of points in K|u⊥ that lie on the boundary of the convex hull
of K|u⊥, i.e.

|∂(K|u⊥)| = |(K|u⊥) ∩ ∂(conv(K)|u⊥)|.
When K ⊂ Z3, we will use the term “discrete perimeter”.

We say that a finite set K in Rn is full-dimensional if conv(K) has non-
empty interior. In questions below, we will only consider full-dimensional
convex lattice sets.

Problem 1.2. Let K and L be origin-symmetric full-dimensional convex
lattice sets in Zn. If for every u ∈ Zn we have

|∂(K|u⊥)| = |∂(L|u⊥)|,
is then necessarily K = L?

Below we give a positive answer to this problem in Z3.

Theorem 1.3. Let K and L be origin-symmetric full-dimensional convex
lattice sets in Z3. If the discrete perimeters of K|u⊥ and L|u⊥ are equal for
all u ∈ Z3, then K = L.

As one can see, if we drop the assumption that the sets are full-dimensional,
then Problem 1.2 in Z3 has a negative answer, since it reduces to Problem
1.1 in Z2.

We also solve Problem 1.2 in Zn, n ≥ 4, in the class of convex lattice
sets whose convex hulls are zonotopes. Recall that a zonotope is a finite
Minkowski sum of closed line segments, [4, p. 146].

Theorem 1.4. Let K and L be origin-symmetric full-dimensional convex
lattice sets in Zn, n ≥ 4, such that conv (K) and conv (L) are zonotopes. If

|∂(K|u⊥)| = |∂(L|u⊥)|
for all u ∈ Zn, then K = L.

Let us briefly mention some facts and concepts that are used in this paper.
The following is the well-known Theorem of Pick; see [1, p. 90] or [2, p. 38].
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Let K be a full-dimensional convex lattice set in Z2. Then the area of
conv(K) can be computed as follows:

vol2(conv(K)) = I +
1

2
B − 1,

where I is the number of points of K in the interior of conv(K) and B is
the number of points of K on the boundary of conv(K).

Let u1, . . . , um be linearly independent vectors in Zn, with m ≤ n. The
set

Λ =

{
m∑
i=1

aiui : ai ∈ Z, for 1 ≤ i ≤ m

}
is called a sublattice of Zn of rank m. The vectors u1, . . . , um form a basis
of Λ.

The set

Π =

{
m∑
i=1

biui : 0 ≤ bi < 1, for 1 ≤ i ≤ m

}
is called the fundamental parallelepiped of the basis u1, . . . , um. The m-
dimensional volume of the fundamental parallelepiped does not depend on
the choice of the basis of Λ; it is called the determinant of Λ and denoted
|Λ|. For these and other related results, the reader is referred to the books
by Barvinok [1] and Gruber [6].

We will also need the Minkowski uniqueness theorem saying that a convex
polytope in Rn is uniquely determined (up to translation) by the areas of
its facets and the normal vectors to the facets; see [7, p. 397].

2. Proofs of the main results

Proof of Theorem 1.3. The idea is to show that for every facet FK
of conv(K), there is a facet FL of conv(L) that is parallel to FK (and vice
versa), and

|∂FK ∩ Z3| − 2|FK ∩ Z3| = |∂FL ∩ Z3| − 2|FL ∩ Z3|. (1)

Using (1) and Pick’s theorem, we will conclude that for every pair of parallel
facets, vol2(FK) = vol2(FL), and will use the Minkowski uniqueness theorem
to finish the proof. Below we provide the details.

First we claim that for every facet FK of conv(K), there is a facet FL of
conv(L) that is parallel to FK , and vice versa. Indeed, assume that there
exists a facet FK such that no facet of conv(L) is parallel to FK . Note that
{θ ∈ S2 : θ = |u|−1u, where u ∈ Zn} is a dense subset of S2. One can see
that in the statement of the theorem we can take vectors from the sphere
S2. Choose a direction ξ ∈ S2 that is parallel to FK (and the opposite
facet, since K is origin-symmetric) and not parallel to any other facets of
either conv(K) or conv(L). Then, the boundary of conv(K|ξ⊥) consists of
the edges e and −e that are the projections of FK and −FK , as well as other
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edges that are the projections of some edges of conv(K). The boundary of
conv(L|ξ⊥) solely consists of the projections of some edges of conv(L).

Furthermore, we can assume that |K|ξ⊥| = |K| and |L|ξ⊥| = |L|, since
there are only finitely many directions that do not satisfy these equalities.
For φ small enough, consider the vectors ζ = cosφ ξ + sinφ η and θ =
cosφ ξ−sinφ η, where η is the unit outward normal vector to FK . Note that
the number of points in K that are projected to conv(K|ξ⊥), conv(K|ζ⊥),
and conv(K|θ⊥), and that do not come from the facets FK and −FK , is the
same. On the other hand, at least one of the points of FK belongs to the
interior of either conv(K|ζ⊥) or conv(K|θ⊥). Thus at least one of the two
inequalities holds:

|∂(K|ζ⊥)| < |∂(K|ξ⊥)| or |∂(K|θ⊥)| < |∂(K|ξ⊥)|.
However,

|∂(L|ζ⊥)| = |∂(L|ξ⊥)| and |∂(L|θ⊥)| = |∂(L|ξ⊥)|.
We get a contradiction. Thus, every facet of conv(K) is parallel to a facet
of conv(L) and vice versa.

To prove (1), we will use the following formula:

|∂(K|ζ⊥)|+ |∂(K|θ⊥)| − 2|∂(K|ξ⊥)| = 2|∂FK ∩ Z3| − 4|FK ∩ Z3|+ 4. (2)

Let us explain the validity of this equality. First of all, observe that the
left-hand side only sees the points that are projected from FK and −FK .
(The contribution of the rest of the boundary of K is annihilated, since
the number of points in K that are projected to conv(K|ξ⊥), conv(K|ζ⊥),
and conv(K|θ⊥), and that do not come from the facets FK and −FK , is the
same). Next we see that ∂(K|ζ⊥) gets points from one side of ∂FK∩Z3 (and
its reflection about the origin), and ∂(K|θ⊥) gets points from the other side
of ∂FK ∩ Z3 (and its reflection about the origin). There are two points on
each FK and −FK that are projected into both conv(K|ζ⊥) and conv(K|θ⊥),
which yields the constant term equal to 4 in (2). Since all points from FK
and −FK are projected into different points in ∂(K|ξ⊥), the latter set has
exactly 2|FK ∩ Z3| points coming from those facets. Formula (2) follows.

Now equality (2) together with the assumption of the theorem yields (1)
for every pair of parallel facets of conv(K) and conv(L).

Let H be the 2-dimensional subspace that is parallel to the facets FK and
FL. Then, Λ = H ∩ Z3 is a lattice of rank 2; see e.g. [8, Chap. I, §2]. Let
|Λ| be the determinant of the lattice Λ. By Pick’s theorem and equality (1),

vol2(FK) = |Λ|(|FK ∩ Z3| − 1

2
|∂FK ∩ Z3| − 1)

= |Λ|(|FL ∩ Z3| − 1

2
|∂FL ∩ Z3| − 1)

= vol2(FL).

Thus we have proved that for each facet FK in conv(K), there is a facet
FL in conv(L) (and vice versa), such that FK and FL are parallel and
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vol2(FK) = vol2(FL). Minkowski’s uniqueness theorem then implies that
conv(K) = conv(L), or equivalently, K = L. �

Before we present the proof of Theorem 1.4, let us introduce the following
notation. If P is a convex body in Rn, we define the upper boundary Uξ(P )
of P in the direction ξ ∈ Sn−1 to be

Uξ(P ) := {x ∈ P : (x+ εξ) ∩ P = ∅, ∀ε > 0},
and the lower boundary Lξ(P ) of P in the direction ξ to be

Lξ(P ) := {x ∈ P : (x− εξ) ∩ P = ∅, ∀ε > 0}.
If P is a polytope, then Uξ(P ) is the union of the facets Fi of P whose

outer normal vectors ni satisfy the inequality 〈ni, ξ〉 > 0. Similarly, Lξ(P )
is the union of the facets Fi of P whose outer normal vectors ni satisfy the
inequality 〈ni, ξ〉 < 0.

We will need the following lemma that will be used as an analogue of
Pick’s Theorem.

Lemma 2.1. Let Z be a zonotope with vertices in the lattice Λ ⊂ Rn. Let
ξ ∈ Sn−1 be a direction that is not parallel to any of the facets of K. Then

voln(Z) = |Λ|(|Z ∩ Λ| − |Uξ(Z) ∩ Λ|).

This formula is discussed in [3, Section 2.3.2], but, for the sake of com-
pleteness, we outline a sketch of our proof below.

First of all, without loss of generality, we can assume that Λ = Zn. Next
we proceed by induction on the number of summands of Z. The base case
is when Z is the sum of n segments. If Z is a box with facets parallel to the
coordinate planes, the formula is obvious. Furthemore, it is not hard to show
that it is true for all parallelotopes. The inductive step is as follows. Assume
that the formula is true for zonotopes that are the sum of N segments. If Z
is the sum of N + 1 segments, it can be written as the sum of a segment and
a zonotope with N summands. If the latter is full-dimensional, its facets
are zonotopes with at most N − 1 summands. (If it is not full-dimensional,
write it as sum of a segment and a zonotope with N − 1 summands). Thus
Z can be written as the union of zonotopes (with disjoint interiors) that are
sums of no more than N segments. Next use the induction hypothesis.

We will now present a solution of Problem 1.2 in the class of zonotopes
in Zn.

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.3,
but some additional considerations will be needed. Again, we can assume
that the hypothesis of the theorem is true for all directions u from Sn−1.
Let us denote ZK = conv(K) and ZL = conv(L). As above, one can show
that for every facet FK of ZK , there is a facet FL of ZL that is parallel to
FK , and vice versa.

Let ξ ∈ Sn−1 be a vector that is parallel to a facet FK (and the opposite
facet −FK) of ZK , but not parallel to any other facet of ZK . Furthermore,
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we can assume that |K|ξ⊥| = |K| and |L|ξ⊥| = |L|, since there are only
finitely many directions that do not satisfy these equalities.

Observe that

|∂(K|ξ⊥)| = 2|(FK ∩ Zn)|ξ⊥|+R(ξ) = 2|FK ∩ Zn|+R(ξ), (3)

where R(ξ) counts those points on the boundary of (ZK ∩ Zn)|ξ⊥ that did
not come from the facets FK or −FK .

Let η be the unit outward normal vector to FK . For φ > 0 small enough
consider the vector ζ = cosφ ξ + sinφ η. We claim that

|∂(K|ζ⊥)| = 2|Lξ(FK) ∩ Zn|+R(ζ), (4)

where R(ζ) counts those points on the boundary of K|ζ⊥ that did not come
from the facets FK or −FK .

Assume for the moment that the claim is proved. Then, by the hypothesis
of the theorem, we have

|∂(K|ξ⊥)| − |∂(K|ζ⊥)| = |∂(L|ξ⊥)| − |∂(L|ζ⊥)|.
Subtracting formulas (3) and (4), and using the fact that R(ξ) = R(ζ), and

|Uξ(FK) ∩ Zn| = |Lξ(FK) ∩ Zn|,
we get

|FK ∩ Zn| − |Uξ(∂FK) ∩ Zn| = |FL ∩ Zn| − |Uξ(∂FL) ∩ Zn|.
Since any facet of a zonotope is a zonotope, we can apply Lemma 2.1 to
the facets FK , FL and (a shift of) the sublattice Λ = H ∩ Zn, where H is
the subspace parallel to FK and FL. Thus, we obtain that voln−1(FK) =
voln−1(FL), and we can use Minkowski’s uniqueness theorem to conclude
that conv(K) = conv(L), or equivalently, K = L.

It remains to prove (4). We will use the boundary structure of ZK and
its projection ZK |ξ⊥. One can see that

∂ZK = FK ∪ (−FK) ∪ Uξ(ZK) ∪ Lξ(ZK)

and

ZK |ξ⊥ = Uξ(ZK)|ξ⊥ = Lξ(ZK)|ξ⊥.
Note that

∂(ZK |ξ⊥) = ∂(Uξ(ZK))|ξ⊥ = ∂(Lξ(ZK))|ξ⊥,
and for ζ = cosφ ξ + sinφ η we have

∂(ZK |ζ⊥) = (Uζ(ZK) ∩ Lζ(ZK))|ζ⊥. (5)

We see that if x ∈ ∂(ZK |ξ⊥) and x /∈ (FK ∪ (−FK))|ξ⊥, then x ∈
(Uξ(ZK)∩Lξ(ZK))|ξ⊥. Therefore, R(ξ) counts the number of lattice points
on (Uξ(ZK) ∩ Lξ(ZK)) \ (FK ∪ (−FK)). Note that the latter number does
not change if we replace ξ by another vector ζ that is close enough. In
particular,

R(ζ) = |(Uξ(ZK) ∩ Lξ(ZK)) \ (FK ∪ (−FK)) ∩ Zn|. (6)
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Now observe that

Uζ(ZK) = Uξ(ZK) ∪ FK and Lζ(ZK) = Lξ(ZK) ∪ (−FK).

Hence,

Uζ(ZK)∩Lζ(ZK) = (Uξ(ZK)∩Lξ(ZK))∪(Uξ(ZK)∩(−FK))∪(Lξ(ZK)∩FK),

that is

Uζ(ZK) ∩ Lζ(ZK) = (Uξ(ZK) ∩ Lξ(ZK)) ∪ Uξ(−FK) ∪ Lξ(FK).

In view of the latter formula, and (5), (6), we get

|∂(K|ζ⊥)| −R(ζ) = |Uξ(−FK) ∩ Zn|+ |Lξ(FK) ∩ Zn| = 2|Lξ(FK) ∩ Zn|.
Thus, formula (4) is proved. This finishes the proof of the theorem. �
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