
INEQUALITIES OF THE KAHANE-KHINCHIN TYPE
AND SECTIONS OF Lp-BALLS.

A. KOLDOBSKY, A. PAJOR AND V. YASKIN

Abstract. We extend Kahane-Khinchin type inequalities to the case
p > −2. As an application we verify the slicing problem for the unit
balls of finite-dimensional spaces that embed in Lp, p > −2.

1. Introduction.

A simple version of the Kahane-Khinchin inequality states that for a
convex origin symmetric body K in Rn with vol(K) = 1 and p > q > 0, we
have for all ξ ∈ Rn

(∫
K
|(x, ξ)|pdx

) 1
p

≤ C(p, q)
(∫

K
|(x, ξ)|qdx

) 1
q

,

where C(p, q) depends only on p and q, see e.g. [MP].
Lata la [La] extended this result to the case q = 0, and later Guédon [G]

showed that this inequality holds for q > −1. These results were extended
to the quasi-convex case by Litvak [Li]. In this article we extend Kahane-
Khinchin’s inequality further to q > −2 and as an application we prove the
slicing problem for the unit balls of spaces that embed in Lp, p > −2.

Recall that an origin-symmetric convex body (compact set with non-
empty interior) K ⊂ Rn is called isotropic with constant of isotropy LK

if voln(K) = 1 and∫
K

(x, θ)2dx = L2
K , for all θ ∈ Sn−1.

For every convex origin-symmetric body K there exists a linear isomor-
phism T of Rn, such that TK is isotropic, and we define the constant of
isotropy of K by LK = LTK , see [MP] for more details.

2000 Mathematics Subject Classification. 52A20, 46B07.
Key words and phrases. Convex body, the slicing problem, the Kahane-Khinchin in-

equality, embedding in Lp.
Research of the first author was supported in part by NSF grants DMS-0455696 and

DMS-0652571, and by the European Union program EU/FP6 Marie Curie ToK SPADE2
during his visit to the Institute of Mathematics of the Polish Academy of Sciences.

Research of the third author was supported in part by NSF grant DMS-0455696, and by
the European Network PHD, FP6 Marie Curie Actions, RTN, Contract MCRN-511953.

1



2 A. KOLDOBSKY, A. PAJOR AND V. YASKIN

Recall that the slicing problem asks the following question. Does there
exist a universal constant C such that, for every convex origin symmetric
body K in any dimension, we have LK < C?

An equivalent formulation of this problem (see [MP]) is whether there
exists a universal constant C1 such that for every origin symmetric convex
body in Rn the following inequality holds

(vol(K))(n−1)/n ≤ C1 max
ξ∈Sn−1

vol(K ∩ ξ⊥), (1)

where ξ⊥ is the central hyperplane orthogonal to ξ, and Sn−1 is the unit
sphere in Rn. In other words, does there exist a universal constant such that
every convex origin symmetric body of volume one has a hyperplane section
of volume greater than this universal constant?

The problem still remains open. Bourgain [Bo1] proved that LK ≤
O(n1/4 log n), and very recently Klartag [Kl2] removed the logarithmic term
in this estimate. However there are many classes of bodies for which the
slicing problem holds true with a constant independent of the dimension
(see e.g [Ba], [BKM], [KMP], [MP]). In particular the slicing problem is
solved for the unit balls of subspaces of L1 (and hence for subspaces of Lp,
1 ≤ p ≤ 2) by Ball [Ba]. For the unit balls of subspaces of quotients of
Lp, 1 < p < ∞, the problem is solved by Junge [J]. In Junge’s proof the
bounds blow up as p approaches either 1 or ∞. E. Milman [M1] gave a sim-
ple proof of these results for the unit balls of subspaces of Lp, 0 ≤ p < ∞,
and for quotients of Lp, 1 < p ≤ ∞. Klartag and E. Milman [KlM] showed
that the isotropic constant for subspaces of quotients of Lp, 1 < p ≤ 2, is
bounded from above by O(1/

√
p− 1) thus improving Junge’s estimate which

was of order 1/(p − 1). We also note that for subspaces of Lp, 2 ≤ p < ∞,
E. Milman gave two different proofs of the fact that LK < O(

√
p). Here we

present yet another proof of this result, which is somewhat similar to one
of E. Milman’s proofs, but uses the Lewis position instead of the isotropic
position.

Since the latter bound blows up as p → ∞, we try a different approach,
considering negative values of p. The concept of embedding in L−p with
0 < p < n was introduced in [Ko3], and it was proved that a space (Rn, ‖ ·‖)
embeds in L−p if and only if the Fourier transform of ‖ · ‖−p is a positive
distribution in Rn. We will call unit balls of such spaces p-intersection bodies
or L−p-balls. For example, L−1-balls are intersection bodies and L−k-balls
are k-intersection bodies, see [Ko4].

We would like to know whether the statement of the slicing problem
is true for Lp-balls with p negative. Of course, if one could show this for
p ∈ (−n,−n + 3], then one would solve the slicing problem completely, since
for any convex body K ∈ Rn, the space (Rn, ‖ · ‖K) embeds in Lp for such
values of p, see [Ko5, Section 4.2]. In this paper we employ Kahane-Khinchin
type inequalities, discussed above, to show that the slicing problem is true
for Lp-balls, p > −2.
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For other results on the slicing problem we refer the reader to [Bo2], [D],
[Kl1], [MP], [P].

2. Subspaces of Lp with p > 2.

In this section we give a different proof of the result LK < O(
√

p) men-
tioned in the introduction. Note that if 0 ≤ p ≤ 2 then the unit ball of
a finite-dimensional subspace of Lp is an intersection body (see [Ko3] for
0 < p ≤ 2 and [KKYY] for p = 0), and the slicing problem for such bodies
follows from the positive part of the Busemann-Petty problem. This problem
asks the following question. Let K and L be two origin-symmetric convex
bodies in Rn, such that voln−1(K ∩ H) ≤ voln−1(L ∩ H) for every central
hyperplane H. Is it true that voln(K) ≤ voln(L)? The connection between
intersection bodies and the Busemann-Petty problem was found by Lutwak
[Lu]. The answer to the problem is affirmative if K is an intersection body
and L is any origin symmetric star body. Hence, in order to prove the slicing
problem for intersection bodies it is enough to take L to be the Euclidean
ball of the same volume as K, see [MP, Proposition 5.5].

In view of the previous remarks it is enough to consider p > 2.
Let K be a convex origin-symmetric body in Rn, denote by

‖x‖K = min{a > 0 : x ∈ aK}
the norm on Rn generated by K.

Theorem 2.1. Let p > 2, there exists a constant C(p) depending only on p
such that LK ≤ C(p) for the unit ball K of any finite-dimensional subspace
of Lp. Moreover, C(p) = O(

√
p), as p →∞.

Proof. According to a theorem of Lewis [Le] (we formulate it in the form
given in [LYZ, Theorem 8.2]), if (Rn, ‖ · ‖K) is a subspace of Lp, p ≥ 1, then
there exist a position of the body K (which will again be denoted by K and
will be called Lewis’ position) and a finite Borel measure µ on Sn−1 such
that for all x ∈ Rn

‖x‖p
K =

∫
Sn−1

|(x, u)|p dµ(u), (2)

and
|x|2 =

∫
Sn−1

|(x, u)|2 dµ(u). (3)

On the other hand, for any body K one has (see [MP, Section 1.6])

L2
K ≤ 1

n(vol(K))1+2/n

∫
K
|x|2 dx. (4)

Using formula (3), applying Hölder’s inequality twice and then using for-
mula (2) we get ∫

K
|x|2 dx =

∫
K

∫
Sn−1

|(x, u)|2 dµ(u) dx
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≤ (vol(K))1−2/p

∫
Sn−1

(∫
K
|(x, u)|p dx

)2/p

dµ(u)

≤ (vol(K))1−2/p

(∫
Sn−1

∫
K
|(x, u)|p dx dµ(u)

)2/p(∫
Sn−1

dµ(u)
)1−2/p

= (vol(K))1−2/p

(∫
K
‖x‖p

K dx

)2/p(∫
Sn−1

dµ(u)
)1−2/p

.

Passing to polar coordinates one can easily check that∫
K
‖x‖p

K dx =
n

n + p
vol(K),

therefore the previous computations combined with inequality (4) yield

L2
K ≤ 1

n
(vol(K))−2/n

( n

n + p

)2/p
(∫

Sn−1

dµ(u)
)1−2/p

≤ 1
n

(vol(K))−2/n

(∫
Sn−1

dµ(u)
)1−2/p

. (5)

Let us estimate from below the volume of the body K. Let σ be the
normalized Haar measure on the sphere.∫

Sn−1

‖x‖p
K dσ(x) =

∫
Sn−1

∫
Sn−1

|(x, u)|p dµ(u) dσ(x)

=
∫

Sn−1

|x1|p dσ(x) ·
∫

Sn−1

dµ(u) ≤
(

Cp

n + p

)p/2 ∫
Sn−1

dµ(u),

where C is an absolute constant. The latter estimate follows, for example,
from [Ko5, Lemma 3.12] and Stirling’s formula.

We get

Cp

n + p

(∫
Sn−1

dµ(u)
)2/p

≥
(∫

Sn−1

‖x‖p
K dσ(x)

)2/p
≥

≥
(∫

Sn−1

‖x‖−n
K dσ(x)

)−2/n
=
(
vol(K)/vol(Bn

2 ))−2/n ∼ 1
n

(vol(K))−2/n,

since vol(Bn
2 )1/n ∼ n−1/2, meaning that vol(Bn

2 )1/nn1/2 approaches a non-
zero constant, as n →∞; see e.g. [Ko5, Corollary 2.20] and apply Stirling’s
formula.

Therefore inequality (5) implies

L2
K ≤ Cp

n + p

∫
Sn−1

dµ(u), (6)

where C is an absolute constant (possibly different from the one used above).
Finally let us compute the measure of Sn−1 with respect to µ. Integrating

equation (3) with respect to σ we get



SECTIONS OF Lp-BALLS. 5

1 =
∫

Sn−1

|x|2 dσ(x) =
∫

Sn−1

∫
Sn−1

(x, u)2 dµ(u) dσ(x)

=
∫

Sn−1

|x1|2 dσ(x) ·
∫

Sn−1

dµ(u) =
1
n

∫
Sn−1

dµ(u).

This equality together with (6) implies

LK ≤ C
√

p.

�

3. Subspaces of Lp with p < 0.

First let us give some preliminary definitions and results to introduce the
reader into the subject of Fourier analysis of distributions, which will be the
main tool of this section.

Let φ be a function from the Schwartz space S of rapidly decreasing
infinitely differentiable functions on Rn. We define the Fourier transform of
φ by

φ̂(ξ) =
∫

Rn

φ(x)e−i(x,ξ)dx, ξ ∈ Rn.

The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for
every test function φ ∈ S.

We say that a distribution is positive definite if its Fourier transform is a
positive distribution, in the sense that 〈f̂ , φ〉 ≥ 0 for every non-negative test
function φ.

Let f be an infinitely differentiable function on the sphere Sn−1, extend
it to Rn \{0} as a homogeneous function of degree −k, 0 < k < n. Then the
Fourier transform of the homogeneous extension is an infinitely differentiable
function on Rn \{0}, homogeneous of degree −n+k. (See for example [Ko5,
Section 3.3]).

We will need the following version of Parseval’s formula on the sphere
proved in [Ko2].

Lemma 3.1. If K and L are origin symmetric infinitely smooth convex
bodies in Rn and 0 < p < n, then (‖x‖−p

K )∧ and (‖x‖−n+p
L )∧ are continuous

functions on Sn−1 and∫
Sn−1

(
||x||−p

K

)∧
(ξ)
(
||x||−n+p

L

)∧
(ξ)dξ = (2π)n

∫
Sn−1

||x||−p
K ||x||−n+p

L dx.

A well-known result of P. Lévy, see for example [Ko5, Section 6.1], is that
a space (Rn, ‖ · ‖) embeds into Lp, p > 0 if and only if there exists a finite
Borel measure µ on the unit sphere so that, for every x ∈ Rn,

‖x‖p =
∫

Sn−1

|(x, ξ)|pdµ(ξ). (7)
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If p is not an even integer, this condition is equivalent to the fact that
(Γ(−p/2)‖x‖p)∧ is a positive distribution outside of the origin, see [Ko5,
Theorem 6.10].

The concept of embedding in L−p with 0 < p < n was introduced in [Ko3]
by extending formula (7) analytically to negative values of p. It was also
proved that, as for positive p, there is a Fourier analytic characterization for
such embeddings, namely a space (Rn, ‖ · ‖) embeds in L−p if and only if
the Fourier transform of ‖ · ‖−p is a positive distribution in Rn. We will call
unit balls of such spaces p-intersection bodies or L−p-balls.

Lemma 3.2. Let K be an infinitely smooth origin symmetric convex body
in Rn. If K is a p-intersection body, 0 < p < n, then

(vol(K))(n−p)/n ≤ C(n, p) max
ξ∈Sn−1

(‖x‖−n+p
K )∧(ξ),

where

C(n, p) =
Γ(n−p

2 )
2pπn/2n(n−p)/nΓ(p

2)
|Sn−1|(n−p)/n.

Proof. Using the formula for the volume in polar coordinates and Parseval’s
formula

vol(K) =
1
n

∫
Sn−1

‖x‖−n
K dx =

1
n

∫
Sn−1

‖x‖−p
K ‖x‖−n+p

K dx

=
1

(2π)nn

∫
Sn−1

(‖x‖−p
K )∧(ξ)(‖x‖−n+p

K )∧(ξ)dξ.

If K is a p−intersection body, then (‖x‖−p
K )∧(ξ) ≥ 0, therefore

vol(K) ≤ 1
(2π)nn

∫
Sn−1

(‖x‖−p
K )∧(ξ)dξ · max

ξ∈Sn−1
(‖x‖−n+p

K )∧(ξ).

Using that (see [GS, p.192]):

(|x|−n+p
2 )∧(ξ) = 2pπn/2 Γ(p

2)
Γ(n−p

2 )
|ξ|−p

2 ,

and applying Parseval’s formula again, we get

vol(K) ≤ 2−pπ−n/2

(2π)nn

Γ(n−p
2 )

Γ(p
2)

∫
Sn−1

(‖x‖−p
K )∧(ξ)(|x|−n+p

2 )∧(ξ)dξ×

× max
ξ∈Sn−1

(‖x‖−n+p
K )∧(ξ)

=
2−pπ−n/2

n

Γ(n−p
2 )

Γ(p
2)

∫
Sn−1

‖x‖−p
K dx · max

ξ∈Sn−1
(‖x‖−n+p

K )∧(ξ)

≤ 2−pπ−n/2

n

Γ(n−p
2 )

Γ(p
2)

(∫
Sn−1

‖x‖−n
K dx

)p/n

·|Sn−1|(n−p)/n· max
ξ∈Sn−1

(‖x‖−n+p
K )∧(ξ)
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= C(n, p)(vol(K))p/n · max
ξ∈Sn−1

(‖x‖−n+p
K )∧(ξ).

�
From the result of Lemma 3.2 it follows that one can obtain inequalities

of type (1) by finding a good upper estimate for (‖x‖−n+p
K )∧(ξ) in terms of

the central section. Our next Lemma gives an answer to this question for
certain values of p. The proof of the Lemma will be given in Section 5.

Lemma 3.3. Let K be an origin symmetric convex infinitely smooth body
in Rn. Then

i) for p ∈ (0, 1) we have(
‖x‖−n+p

K

)∧
(ξ) ≤ 2p−1π(n− p)

Γ(2− p) sin(πp/2)

(
voln−1(K ∩ ξ⊥)

)p
(vol(K))1−p ,

ii) for p ∈ (1, 2) we have(
‖x‖−n+p

K

)∧
(ξ) ≤ 2p−1π(n− p)

sin(πp/2)

(
voln−1(K ∩ ξ⊥)

)p
(vol(K))1−p .

We remark that these inequalities become equalities in the case p = 1,
since (‖x‖−n+1

K )∧(ξ) = π(n−1)voln−1(K ∩ ξ⊥), see e.g. [Ko5, Theorem 3.8].
Now we are ready to state our main result.

Theorem 3.4. Let 0 < p < 2, if K is a convex p-intersection body, then

(vol(K))(n−1)/n ≤ C(p) max
ξ∈Sn−1

voln−1(K ∩ ξ⊥),

where

C(p) =


(

π1−p/2

Γ(p/2)Γ(2−p) sin(πp/2)

)1/p
, if 0 < p ≤ 1,(

π1−p/2

Γ(p/2) sin(πp/2)

)1/p
, if 1 < p < 2.

Proof. For infinitely smooth bodies the theorem is a consequence of Lemma
3.2, Lemma 3.3 and Lemma 7.1 from the Appendix. For non-smooth bodies
the theorem follows from the fact that every Lp-ball can be approximated in
the radial metric by infinitely smooth Lp-balls, see [M2, Lemma 3.11]. �

Remark. As remarked by E. Milman [M1, Remark 4.3], a uniform bound
on the isotropic constant for subspaces of Lq with −1+ε < q ≤ 0 follows from
his argument and Guédon’s extension of the Kahane-Khinchin inequality to
the case q > −1. The novelty of the previous theorem for Lq with−1 < q < 0
is that the bound does not blow up as q approaches −1. (p from the previous
theorem and q are related by p = −q). Unfortunately, the bound does blow
up as p tends to 2.

Next sections will be devoted to the proof of Lemma 3.3.
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4. Reduction to the section function.

Let K be an infinitely smooth origin symmetric convex body. For ξ ∈
Sn−1, consider the parallel section function AK,ξ on R defined by

AK,ξ(t) = voln−1 (K ∩ {(x, ξ) = t}) .

The fractional derivative of AK,ξ of order q at zero is defined as the action
of the distribution t−1−q

+ /Γ(−q) on this function, where t+ = max{t, 0}.
That is

A
(q)
K,ξ(0) =

〈
1

Γ(−q)
t−1−q
+ , AK,ξ(t)

〉
.

In particular, see [GKS], it follows that for 0 < p < 1

A
(−1+p)
K,ξ (0) =

1
Γ(1− p)

∫ ∞

0
t−pAK,ξ(t)dt (8)

and for 1 < p < 2

A
(−1+p)
K,ξ (0) =

1
Γ(1− p)

∫ ∞

0
t−p(AK,ξ(t)−AK,ξ(0))dt. (9)

Also note

voln−1(K ∩ ξ⊥) = AK,ξ(0) = lim
ε→0+

1
Γ(ε)

∫ ∞

0
t−1+εAK,ξ(t)dt = lim

ε→0+
A

(−ε)
K,ξ (0).

It was shown in [GKS] that if K has an infinitely smooth boundary then
the fractional derivatives of the function AK,ξ can be computed in terms of
the Fourier transform of the Minkowski functional raised to certain powers.
Namely, for p > 0, p 6= n we have

A
(−1+p)
K,ξ (0) =

sin(πp/2)
π(n− p)

(
‖x‖−n+p

K

)∧
(ξ). (10)

Therefore the inequalities from Lemma 3.3 can now be written as follows:

A
(−1+p)
K,ξ (0) ≤ C(p) (vol(K))(1−p) (AK,ξ(0))p ,

for an appropriate constant C(p). Or equivalently (if we assume for simplic-
ity that vol(K) = 1)〈

1
Γ(1− p)

t−p
+ , AK,ξ(t)

〉1/p

≤ c(p) lim
ε→0

〈
1

Γ(ε)
t−1+ε
+ , AK,ξ(t)

〉
. (11)

5. Kahane-Khinchin type inequalities.

Assume that vol(K) = 1 (K is not necessarily convex) and 0 < p < q.
Then for all ξ ∈ Sn−1 the following holds by virtue of Hölder’s inequality.(∫

K
|(x, ξ)|pdx

) 1
p

≤
(∫

K
|(x, ξ)|qdx

) 1
q

.
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However, if K is convex and origin-symmetric, then this inequality can be
reversed. Namely, there is a constant C(p, q) depending on p and q only,
such that(∫

K
|(x, ξ)|qdx

) 1
q

≤ C(q, p)
(∫

K
|(x, ξ)|pdx

) 1
p

, ∀ξ ∈ Sn−1.

The latter is called the Kahane-Khinchin inequality for linear functionals;
see [Ka], [Bor], [MP].

Note that∫
K
|(x, ξ)|qdx =

∫
Rn

|(x, ξ)|qχK(x)dx =
∫

R
|t|q
∫

(x,ξ)=t
χK(x)dx dt

=
∫

R
|t|qAK,ξ(t) dt = 2

〈
tq+, AK,ξ(t)

〉
.

Therefore the Kahane-Khinchin inequality can be written as〈
1

Γ(q)
tq+, AK,ξ(t)

〉1/q

≤ c̃(p, q)
〈

1
Γ(p)

tp+, AK,ξ(t)
〉1/p

,

which resembles Lemma 3.3 in the form of inequality (11). Hence in order
to prove Lemma 3.3, we need to extend the Kahane-Khinchin inequality to
negative values of p and q.

Proof of Lemma 3.3: case 0 < p < 1.
From [MP, p.76] it follows that

F (q) =
(

(q + 1)
∫ ∞

0
tq

AK,ξ(t)
AK,ξ(0)

dt

)1/(1+q)

is an increasing function of q on (−1,∞).
Therefore, taking q = −p with 0 < p < 1 and using F (−p) ≤ F (0) we get(

(1− p)
∫ ∞

0
t−p AK,ξ(t)

AK,ξ(0)
dt

)1/(1−p)

≤
∫ ∞

0

AK,ξ(t)
AK,ξ(0)

dt =
vol(K)

2 AK,ξ(0)
.

Using formulas (10), (8) and applying the previous inequality , we get(
‖x‖−n+p

K

)∧
(ξ) =

π(n− p)
sin(πp/2)

A
(−1+p)
K,ξ (0)

=
π(n− p)

Γ(1− p) sin(πp/2)

∫ ∞

0
t−pAK,ξ(t)dt

≤ 2p−1π(n− p)
(1− p)Γ(1− p) sin(πp/2)

(vol(K))(1−p) (AK,ξ(0))p

=
2p−1π(n− p)

Γ(2− p) sin(πp/2)
(vol(K))(1−p) (AK,ξ(0))p .

�
Proof of Lemma 3.3: case 1 < p < 2.
What follows is similar to [MP, Section 2.6]. Consider the function
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G(p) =

∫∞0 t−p AK,ξ(0)−AK,ξ(t)
AK,ξ(0) dt∫∞

0 t−p(1− e−t)dt


1

1−p

.

We want to show that it is increasing on (1, 2).
Let Φ(t) = log AK,ξ(0)− log AK,ξ(t). By Brunn’s theorem (see e.g. [Ko5,

Theorem 2.3]), Φ(t) ≥ 0 and it is increasing and convex on the support of
AK,ξ(t). Now

G(p) =

(∫∞
0 t−p(1− e−Φ(t))dt∫∞

0 t−p(1− e−t)dt

) 1
1−p

.

Let α = 1/G(p), then it is not hard to check that∫ ∞

0
t−p(1− e−αt)dt =

∫ ∞

0
t−p(1− e−Φ(t))dt.

Consider the function

H(x) =
∫ ∞

x
t−p(e−Φ(t) − e−αt)dt.

We want to show that H(x) ≤ 0 for x ∈ [0,∞). Since H(0) = H(∞) = 0,
it suffices to show that H(x) is first decreasing and then increasing.

Indeed,
H ′(x) = −x−p(e−Φ(x) − e−αx).

Since Φ(x) is increasing and convex, there is a point x0, such that Φ(x) ≤ αx
for 0 < x < x0 and Φ(x) ≥ αx for x > x0. Therefore H ′(x) ≤ 0 if 0 < x < x0

and H ′(x) ≥ 0 if x > x0. So, we have proved that H(x) ≤ 0, which means
that for every x > 0∫ ∞

x
t−p(1− e−Φ(t))dt ≥

∫ ∞

x
t−p(1− e−αt)dt.

Now let 1 < q < p < 2, we have∫ ∞

0
t−q(1− e−Φ(t))dt = (p− q)

∫ ∞

0
xp−q−1

∫ ∞

x
t−p(1− e−Φ(t))dt

≥ (p− q)
∫ ∞

0
xp−q−1

∫ ∞

x
t−p(1− e−Φ(t))dt =

∫ ∞

0
t−q(1− e−αt)dt

= αq−1

∫ ∞

0
t−q(1− e−t)dt.

Therefore, using the definition of α, we get∫∞
0 t−q(1− e−Φ(t))dt∫∞

0 t−q(1− e−t)dt
≥ G(p)1−q

or
G(q) ≤ G(p).

So, G(p) is increasing on (1, 2).
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If we extend the function G(p) to p ∈ (0, 1) by the formula

G(p) =

(∫∞
0 t−pe−Φ(t)dt∫∞

0 t−pe−tdt

) 1
1−p

,

then according to [MP, p.81], this function is increasing on (0, 1).
Note that on both intervals (0, 1) and (1, 2) the function can be written

as

G(p) =

A
(−1+p)
K,ξ (0)

AK,ξ(0)

 1
1−p

.

Moreover, since A
(−1+p)
K,ξ (0) is an analytic function of p ∈ C (see [Ko5, p.37]),

we have

lim
p→1+

G(p) = lim
p→1−

G(p) = exp

− d
dpA

(−1+p)
K,ξ (0)|p=0

AK,ξ(0)

 .

Consequently, for p ∈ (1, 2) we get

G(p) ≥ G(0),

and therefore ∫∞0 t−p AK,ξ(0)−AK,ξ(t)
AK,ξ(0) dt∫∞

0 t−p(1− e−t)dt


1

1−p

≥ vol(K)
2AK,ξ(0)

,

or
1

Γ(1− p)

∫ ∞

0
t−p AK,ξ(t)−AK,ξ(0)

AK,ξ(0)
dt ≤

(
vol(K)

2AK,ξ(0)

)1−p

.

Using formulas (10), (9) and applying the previous inequality , we get(
‖x‖−n+p

K

)∧
(ξ) =

π(n− p)
sin(πp/2)

A
(−1+p)
K,ξ (0)

=
π(n− p)

sin(πp/2)Γ(1− p)

∫ ∞

0
t−p(AK,ξ(t)−AK,ξ(0))dt

≤ 2p−1π(n− p)
sin(πp/2)

AK,ξ(0)p (vol(K))1−p .

�

6. Higher order derivatives.

In this section we show that inequalities similar to those from Lemma 3.3
exist for bigger values of p, however in this case we need to pay the price of
averaging the Fourier transform over a sphere.

Let H ∈ G(n, n−2) and let ξ1, ξ2 be an orthonormal basis in H⊥. Define:

AK,H(u) = voln−2(K ∩ {H + u1ξ1 + u2ξ2}), u ∈ R2.
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Lemma 6.1. Let K be an origin symmetric infinitely smooth convex body
in the isotropic position. Then for q ∈ (0, 1) we have∫

Sn−1∩H⊥

(
‖x‖−n+2+q

)∧ (θ)dθ ≤ C(q)L−2−q
K ,

where LK is the constant of isotropy of K and C(q) is a constant depending
only on q.

Proof. From the proof of Theorem 2 in [Ko4] we know that∫
Sn−1∩H⊥

(
‖x‖−n+2+q

)∧ (θ) = C(q)
〈
|u|−2−q, AK,H(u)

〉
= C1(q)

∫
R2

|u|−2−q
(
AK,H(u)−AK,H(0)

)
du,

and passing to polar coordinates, we get

= C1(q)
∫

Sn−1∩H⊥

∫ ∞

0
r−1−q

(
AK,H(rθ)−AK,H(0)

)
drdθ.

Since AK,H is log-concave, we can apply a Kahane-Khinchin type inequal-
ity (part (ii) of Lemma 3.3) to the inner integral.∫ ∞

0
r−1−q

(
AK,H(0)−AK,H(rθ)

)
dr

≤ C2(q)(AK,H(0))1+qvoln−1(K ∩ span{H, θ})−q.

Since for isotropic bodies central sections of codimension 1 and 2 are equiv-
alent to L−1

K and L−2
K correspondingly (see e.g. [MP, p.96]) we get∫ ∞

0
r−1−q

(
AK,H(0)−AK,H(rθ)

)
dr ≤ C(q)L−2−2q

K Lq
K = C(q)L−2−q

K .

�

7. Appendix.

Here we prove a result used in one of the previous sections.

Lemma 7.1. Let 0 ≤ p < n and C(n, p) as in Lemma 3.2, then

C(n, p) · (n− p) ≤ 21−p π−p/2

Γ(p
2)

.

Proof. We need to show that

(n− p)
n(n−p)/n

Γ(n−p
2 )

2π(n−p)/2
|Sn−1|(n−p)/n ≤ 1.

The left-hand side is equal to

(n− p)
n(n−p)/n

Γ(n−p
2 )

2π(n−p)/2

(
2πn/2

Γ(n/2)

)(n−p)/n

=
Γ(n−p

2 + 1)

(Γ(n/2 + 1))(n−p)/n
.
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Since the function log(Γ(x)) is convex [Ko5, p.30], we have

log(Γ(n/2 + 1))− log(Γ(1))
n/2

≥ log(Γ((n− p)/2 + 1))− log(Γ(1))
(n− p)/2

,

therefore
(Γ(n/2 + 1))n/2 ≥ (Γ((n− p)/2 + 1))(n−p)/2.

�
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