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Math 337, Summer 2010

Assignment 4

Dr. T Hillen, University of Alberta

Exercise 0.1.

The neutron flux u in a sphere of uranium obeys the differential equation

λ

3

1

r2
d

dr

�
r2

du

dr

�
+ (k − 1)Au = 0

for 0 < r < a, where λ is the effective distance traveled by a neutron between

collisions, A is called the absorption cross section, and k is the number of

neutrons produced by a collision during fission. In addition, the neutron flux

at the boundary of the sphere is 0.

(a) Make the substitution

u =
v

r
and µ2

=
3(k − 1)A

λ

and show that v(r) satisfies
d2v

dr2
+ µ2 v = 0, 0 < r < a.

(b) Find the general solution to the differential equation in part (a) and

then find u(r) that satisfies the boundary condition and boundedness

condition:

u(a) = 0 and lim
r→0+

|u(r)| bounded.

(c) Find the critical radius, that is, the smallest radius a for which the

solution is not identically 0.

Solution to Exercise 0.1:

(a) Letting u = v/r, then

du

dr
=

1

r

dv

dr
− 1

r2
v and r2

du

dr
= r

dv

dr
− v,

so that

d

dr

�
r2

du

dr

�
= r

d2v

dr2
+

dv

dr
− dv

dr
= r

d2v

dr2
,
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and the differential equation for v(r) is

1

r

d2v

dr2
+

µ2

r
v = 0, that is,

d2v

dr2
+ µ2 v = 0

for 0 < r < a.

(b) The general solution to the differential equation in part (a) is

v(r) = c1 cosµr + c2 sinµr

for 0 < r < a, and the solution to the neutron flux equation is

u(r) =
v(r)

r
= c1

cosµr

r
+ c2

sinµr

r

for 0 < r < a. Applying the boundedness condition, since

lim
r→0+

sinµr

r
= µ and lim

r→0+

cosµr

r
doesn’t exist,

then we need c1 = 0, and the solution is

u(r) = c2
sinµr

r

for 0 < r < a.

(c) Applying the boundary condition

u(a) =
c2
a

sinµa = 0,

clearly, there is a nontrivial solution if and only if µa = nπ for some positive integer

n. The critical radius is a =
π

µ
.

Exercise 0.2.

Solve Laplace’s equation in the square 0 � x � π, 0 � y � π with the

boundary conditions given below

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 � x � π, 0 � y � π

u(0, y) = 0, 0 � y � π

u(π, y) = 0, 0 � y � π

u(x, 0) = 0, 0 � x � π

u(x, π) = 1, 0 � x � π.
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Solution to Exercise 0.2: We use separation of variables and assume a solution to

Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0

of the form u(x, y) = X(x) · Y (y).
Separating variables we have

X ��
(x)

X(x)
= −Y ��

(t)

Y (t)
= −λ,

and we obtain the two ordinary differential equations

X ��
+ λX = 0 0 � x � π Y �� − λY = 0, 0 � y � π

X(0) = 0 Y (0) = 0

X(π) = 0.

Solving the complete boundary value problem for X, the eigenvalues and eigenfunctions are

given by

λn = n2
and Xn(x) = sinnx

for n � 1.
The corresponding problem for Y is

Y �� − n2 Y = 0

Y (0) = 0

with solutions

Yn(y) = sinhny

for n � 1.
From the superposition principle, we write

u(x, y) =
∞�

n=1

bn sinhny sinnx,

and setting y = π, we need

1 = u(x, π) =
∞�

n=1

bn sinhnπ sinnx,

and from the orthogonality of the eigenfunctions,

bn sinhnπ =
2

π

� π

0

sinnx dx = − 2

nπ
cosnx

����
π

0

= − 2

nπ
[(−1)

n − 1] ,
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so that

u(x, y) =
2

π

∞�

n=1

[1− (−1)
n
]

n sinhnπ
sinnx sinhny

for 0 � x � π, 0 � y � π.

Exercise 0.3.

Consider the regular Sturm-Liouville problem

ϕ��
(x) + λϕ(x) = 0, 0 � x � 1

ϕ(0) = 0

ϕ(1)− hϕ�
(1) = 0

where h > 0.
Show that there is a single negative eigenvalue λ0 if and only if h < 1. Find
λ0 and the corresponding eigenfunction ϕ0(x).
Hint: Assume λ = −µ2

for some real number µ �= 0.

Solution to Exercise 0.3: Following the hint, the differential equation becomes

ϕ��
(x)− µ2 ϕ(x) = 0,

with general solution

ϕ(x) = A coshµx+B sinhµx

for 0 � x � 1.
Applying the first boundary condition, we have

ϕ(0) = A = 0,

so that

ϕ(x) = B sinhµx with ϕ�
(x) = µB coshµx.

Applying the second boundary condition, we have

ϕ(1)− hϕ�
(1) = B [sinhµ− hµ coshµ] = 0.

so that

B coshµ [tanhµ− hµ] = 0,

and we have a nontrivial solution if and only if

tanhµ = hµ
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for some µ �= 0.
However, the graphs of y = tanhµ and y = hµ intersect only at µ = 0 if h � 1, and they

intersect at exactly one positive value µ0 if 0 < h < 1.
Therefore, there is exactly one negative eigenvalue for this Sturm-Liouville problem if and

only if 0 < h < 1, and the eigenvalue is

λ0 = −µ2
0

where µ0 is the positive root of the equation tanhµ = hµ.
The corresponding eigenfunction is

ϕ0(x) = sinhµ0x

for 0 � x � 1.

Exercise 0.4.

Legendre’s differential equation reads

(1− x2
)y�� − 2xy� + λy = 0, −1 < x < 1

(a) Write the differential equation in Sturm-Liouville form. Decide if the

resulting Sturm-Liouville problem is regular or singular.

(b) Show that the first four Legendre polynomials

P0(x) = 1, P1(x) = x, P2(x) =
1
2(3x

2 − 1), P3(x) =
1
2(5x

3 − 3x)

are eigenfunctions of the Sturm-Liouville problem and find the corre-

sponding eigenvalues.

(c) Use an appropriate weight function and show that P1 and P2 are orthog-

onal on the interval (−1, 1) with respect to this weight function.

Solution to 0.4:

(a) Since

d

dx

�
(1− x2

)
dy

dx

�
= (1− x2

)
d2y

dx2
− 2x

dy

dx
,

Legendre’s equation can be written as

�
(1− x2

) y�
��
+ λy = 0, −1 < x < 1, (∗)
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which is the classical Sturm-Liouville form

[p(x) y�]� + [q(x) + λr(x)] y = 0, a < x < b

with

p(x) = 1− x2, q(x) = 0, and r(x) = 1,

for a < x < b, where a = −1 and b = 1.

For a regular Sturm-Liouville problem we require the regularity conditions:

p(x), p�(x), q(x), and r(x)

are continuous on the closed interval a � x � b, and

p(x) > 0 and r(x) > 0

for a � x � b.

We also require the boundary conditions

c1y(a) + c2y
�
(a) = 0 and d1y(b) + d2y

�
(b) = 0

where at least one of c1 and c2 is nonzero and at least one of d1 and d2 is nonzero.

Thus, it is clear that (∗) is a singular Sturm-Liouville problem (no matter what the

boundary conditions are) since one of the regularity conditions is violated, namely,

p(−1) = p(1) = 0.

(b) For P0(x) = 1, we have

P �
0(x) = 0 and P ��

0 (x) = 0

for −1 < x < 1, so that

(1− x2
)P ��

0 − 2xP �
0 + λP0 = 0, −1 < x < 1

is satisfied for λ = 0, and the eigenvalue corresponding to the eigenfunction P0(x) = 1

is λ0 = 0.

For P1(x) = x, we have

P �
1(x) = 1 and P ��

1 (x) = 0

for −1 < x < 1, so that

(1− x2
)P ��

1 − 2xP �
1 + λP1 = 0, −1 < x < 1

becomes

−2x · 1 + λx = 0, −1 < x < 1
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which is satisfied for λ = 2, and the eigenvalue corresponding to the eigenfunction

P1(x) = x is λ1 = 2.

For P2(x) =
1

2
(3x2 − 1), we have

P �
2(x) = 3x and P ��

2 (x) = 3

for −1 < x < 1, so that

(1− x2
)P ��

2 − 2xP �
2 + λP2 = 0, −1 < x < 1

becomes

3(1− x2
)− 6x2

+
λ

2
(3x2 − 1) = 0, −1 < x < 1

that is,

−3(3x2 − 1) +
λ

2
(3x2 − 1) = 0, −1 < x < 1

which is satisfied for λ = 6, and the eigenvalue corresponding to the eigenfunction

P2(x) =
1

2
(3x2 − 1) is λ2 = 6.

For P3(x) =
1

2
(5x3 − 3x), we have

P �
3(x) =

1

2
(15x2 − 3) and P ��

3 (x) = 15x

for −1 < x < 1, so that

(1− x2
)P ��

3 − 2xP �
3 + λP3 = 0, −1 < x < 1

becomes

15x(1− x2
)− (15x3 − 3x) +

λ

2
(5x3 − 3x) = 0, −1 < x < 1

that is,

−6(5x3 − 3x) +
λ

2
(5x3 − 3x) = 0, −1 < x < 1

which is satisfied for λ = 12, and the eigenvalue corresponding to the eigenfunction

P3(x) =
1

2
(5x3 − 3x) is λ3 = 12.

(c) Using the weight function w(x) = 1, for −1 < x < 1, we have

�P1, P2� =
� 1

−1

P1(x) · P2(x) dx = 0

since the product P1(x)P2(x) is an odd function integrated between symmetric limits,

thus P1(x) and P2(x) are orthogonal on the interval −1 < x < 1 with respect to the

weight function w(x) = 1.
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Exercise 0.5.

Find the solution to Laplace’s equation on the rectangle:

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < a, 0 < y < b

u(0, y) = 1, 0 < y < b

u(a, y) = 1, 0 < y < b

∂u

∂y
(x, 0) = 0, 0 < x < a

∂u

∂y
(x, b) = 0, 0 < x < a

using the method of separation of variables. Is your solution what you ex-

pected?

Solution to Exercise 0.5: Writing u(x, y) = X(x)Y (y) we obtain

X ��

X
= −Y ��

Y
= λ2

(constant)

and hence the two ordinary differential equations

X �� − λ2 X = 0 and Y ��
+ λ2 Y = 0 0 < y < b

Y �
(0) = 0

Y �
(b) = 0

Solving the regular Sturm-Liouville problem for Y, for the eigenvalue λ2
0 = 0 the correspond-

ing eigenfunction is

Y0(y) = 1,

and the corresponding solution to the first equation is

X0(x) = b0 x+ a0.

For the eigenvalues λ2
n =

�
nπ
b

�2
, the corresponding eigenfunctions are

Yn(y) = cosλny,

and the corresponding solutions to the first equation are

Xn(x) = an coshλnx+ bn sinhλnx,

for n = 1, 2, 3, . . .
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Using the superposition principle, we write

u(x, y) = b0 x+ a0 +
∞�

n=1

�
an coshλnx+ bn sinhλnx

�
cosλny.

From the boundary condition u(0, y) = 1, we have

1 = a0 +
∞�

n=1

an cosλny

so that

a0 =
1

b

� b

0

1 dy = 1

while

an =
2

b

� b

0

cosλny dy =
2

nπ
sinλny

����
b

0

= 0

for n = 1, 2, 3, . . .
From the boundary condition u(a, y) = 1, we have

1 = b0 a+ 1 +

∞�

n=1

bn sinhλna cosλny

and integrating this equation from 0 to b we get b0 a b = 0, and therefore b0 = 0, so that

0 =

∞�

n=1

bn sinhλna cosλny.

In order to evaluate the bn’s, we multiply this equation by cos
mπ
b y and integrate from 0 to

b, to obtain bm sinh
mπ
b a = 0, that is, bm = 0 for m = 1, 2, 3, . . . .

Therefore the solution is u(x, y) = 1, which is not totally unexpected, since the solution is

unique and it is clear from the statement of the problem that u(x, y) = 1 satisfies Laplace’s

equation on the rectangle and satisfies all of the boundary conditions.


