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Abstract. Mesenchymal motion describes the movement of cells in biological

tissues formed by fibre networks. An important example is the migration of
tumour cells through collagen networks during the process of metastasis forma-

tion. We investigate the mesenchymal motion model proposed by T. Hillen in

[14] in higher dimensions. We formulate the problem as an evolution equation
in a Banach space of measure-valued functions and use methods from semi-

group theory to show the global existence of mild and classical solutions. We

investigate steady states of the model and show that patterns of network type
exist as steady states. For the case of constant fibre distribution, we find an

explicit solution and we prove the convergence to the parabolic limit.

1. Introduction. Friedl and collaborators [11] observed mesenchymal tumour cells
as they move in a field of collagen fibres and change their velocities according to
the local orientation of the fibres. At the same time, the cells also remodel the
fibres, primarily through expression of matrix-degrading enzymes (proteases) that
cut selected fibres. In [14], the author introduced a mathematical model for this
process of mesenchymal cell movement in fibrous tissues. Recent analysis of this
and similar models [14, 21, 4, 5, 25] revealed the existence of biologically meaningful
measure valued solutions, which correspond to tissue and cell alignment. Hence a
sophisticated existence theory is needed. In this paper we will formulate the mes-
enchymal transport model proposed in [14] as a semilinear evolution equation in
a Banach space of measure-valued functions. We apply classical theory of semi-
groups of operators and a Banach Fixed Point argument to show well-posedness of
the problem (Section 3.1). With the correct theoretical framework in place, we are
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then able to classify possible steady states, whereby we introduce a new notation
of pointwise steady states, which are meant to resemble the network patterns which
were observed numerically in [21]. Moreover, we rigorously study the parabolic
limit (diffusion limit) of the kinetic model in the measure-valued context. We show
convergence to the diffusion limit for constant fibre distribution in Section 5.1.

The existence theory here employs a mild solution formulation which is based
on a variation of constant formula. The solutions are functions in L1 in space and
measures in velocity. It turns out that this definition is too “weak” in the sense that
it does not provide a nice representation of the global network patterns observed
numerically. Hence here we introduce a sub-class of steady states, which we call
pointwise steady states. First of all, we show that pointwise steady states do exist.
Secondly, pointwise steady states allow for a representation of network patterns.
Our results include a classification of possible network intersections.

In the model proposed in [14], undirected and directed tissues were distinguished.
In undirected tissues (e.g. collagen), fibres are symmetric and both directions are
identical, a situation that somewhat resembles a nematic liquid crystal [24]. In
directed tissues, fibres are asymmetric and the two ends can be distinguished. From
the mathematical point of view, which we adopt in the present paper, both cases
are completely analogous. Hence we focus on the case of undirected tissues. We
refer to [14] for the biological assumptions and the detailed mathematical derivation
of the model.

The model studied here is specifically designed for mesenchymal cell movement
in network tissues via contact guidance and degradation of the extracellular matrix
(ECM). Painter [21] has extended this model in various directions. His model vari-
ations allow (i) to choose between amoeboid and mesenchymal motion, (ii) to place
different weights between diffusive movement and movement by contact guidance,
(iii) to include ECM degradation as well as production, (iv) to include ECM remod-
eling or lack thereof, (v) to study focussed protease release at the cell tip versus
unfocussed ECM degradation via a diffusible proteolytic enzyme. Many of these
modifications lead to the same pattern formation properties as observed for the
initial model. All of these modifications show the same mathematical challenges,
namely the description of aligned tissue as weak solutions and orientation driven
instabilities. Hence we believe that the results which we present here are represen-
tative for a large class of kinetic models for cell movement in tissues and they can
be generalized to many other cases.

In [14], the techniques of moment closure, parabolic and hydrodynamic scaling
were used to study the macroscopic limits of the system that we later restate in
equation (1). The resulting macroscopic models have the form of drift-diffusion
equations where the mean drift velocity is given by the mean orientation of the
tissue and the diffusion tensor is given by the variance-covariance matrix of the tissue
orientations. Model (1) has been extended in [4, 5] to include cell-cell interactions
and chemotaxis. The corresponding diffusion limit was formally obtained in these
papers.

In the case of chemotaxis, a system of a transport equation for the cell motion
coupled to a parabolic or elliptic equation for the chemical signal was studied by
Alt [1], Chalub et al. [3] and Hwang et al. [15, 16]. Local and global existence
of solutions were studied and the macroscopic limits were proved rigorously in [3,
15, 16]. However, these authors assumed the existence of an equilibrium velocity
distribution for cells that is in L∞(V ) where V denotes the space of velocities. For
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the mesenchymal motion model here, it is necessary to allow for complete alignments
of either fibres or cells, corresponding to Dirac measures on V or the space of
directions, the unit sphere Sn−1. In particular, assumption (A0) in paper [3] does
not apply here and hence their respective results can not be applied directly to the
mesenchymal motion model.

In Section 2 we formulate the model and we introduce suitable function spaces
and operators. Our first main result on global existence of measure-valued solutions
is given in Section 3. In Section 4 we present a definition and classification of
pointwise steady states. In Section 5 we assume that the fibre density q is a given
function of x, t. In that case we find an explicit solution of the kinetic equation
using the methods of characteristics. If moreover, the fibre distribution is constant
in time and space, then we prove the convergence to a parabolic limit. It appears
to be impossible to prove convergence to the parabolic limit for arbitrary time and
space dependent fibre distributions. This confirms numerical observations of Painter
[21], who investigated the mesenchymal motion model and found interesting cases
of pattern formation of network type (see Figure 2). In the diffusion limit, however,
the patterns disappear in the numerical simulation. This indicates that there is a
significant difference in the asymptotics of the kinetic model and the diffusion limit
for timely varying tissue networks.

2. Formulation of the problem.

2.1. The model. We briefly recall the kinetic model for mesenchymal motion from
[14] for the undirected case. The distribution p(x, t, v) describes the cell density at
time t ≥ 0, location x ∈ Rn and velocity v ∈ V . Throughout the paper we assume
that V is a product V = [s1, s2] × Sn−1, where 0 ≤ s1 ≤ s2 < ∞ is the range of
possible speeds. If s1 = s2 then we assume s1 > 0. The fibre network is described
by the distribution q(x, t, θ) with θ ∈ Sn−1, the (n− 1)-dimensional unit sphere in
Rn. A schematic of the model is given in Figure 1.

fibres

movement direction

degraded fibres

directional change

Figure 1. Schematic of the model (1) for cell movement in net-
work tissues, including directional changes, contact guidance and
fibre degradation.

The model for mesenchymal motion from [14] reads
∂p(x, t, v)

∂t
+ v · ∇p(x, t, v) = −µp(x, t, v) + µp̄(x, t) q̃(x, t, v),

∂q(x, t, θ)
∂t

= κ(Πu(p(x, t, v))−Au(p(x, t, v), q(x, t, θ)))p̄(x, t)q(x, t, θ),

p(x, 0) = p0(x), q(x, 0) = q0(x),

(1)
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where µ and κ are positive constants. The transport term v ·∇p indicates that cells
move with their velocity. The right hand side of the first equation describes the
reorientation of the cells in the field of fibres. Turning away from their old direction
at rate µ, they turn into a new direction with a probability that corresponds to the
fibre distribution q. The new speed is chosen from the interval [s1, s2]. The cells
degrade (at rate κ) those fibres that they meet at an approximately right angle while
they leave fibres that are parallel to their own orientation unchanged. The exact
definitions of the corresponding terms in system (1) requires some mathematical
details that are given in the next subsection. The expressions p̄, q̃, Πu(p) and
Au(p, q) are defined in equations (2), (3), (5) and (6), respectively.

Painter showed in [21] that the second equation of (1) arises if instead of ECM
degradation one assumes that the cells realign the tissue. This would be the case
for fibroblasts, who do remodel the fibre newtork without destroying it. In that
case the term −Au measures the fibre degradation while Πu describes the fibre
production such that the total amount of fibre mass is preserved.

2.2. Spaces and operators. We show in Section 4 that Dirac measures occur as
meaningful steady states. Hence we need to construct a solution framework that
allows for measure-valued solutions. Let Ω = Rn be the spatial domain in which
particles are able to move.

Let B(V ) denote the space of regular signed real-valued (finite) Borel measures
on V . For p ∈ B(V ) let p = p+ − p− be its Hahn-Jordan decomposition and
|p| = p+ + p− its variation [6]. When equipped with the total variation norm (the
following notations are used interchangeably throughout the paper)

||p||B(V ) = |p|(V ) =
∫

V

d|p|(v) =
∫

V

|p|(dv),

B(V ) is a Banach space [6, Proposition 4.1.7]. Analogously, B(Sn−1) will denote
the Banach space of regular signed Borel measures on Sn−1 equipped with the
total variation norm. Naturally, we are interested in solutions taking values among
non-negative measures only. Let

X1 = L1(Rn,B(V )),

X2 = L∞(Rn,B(Sn−1)),
X = X1 × X2,

equipped with norms

||p||X1 =
∫

Rn

||p(x)||B(V ) dx,

||q||X2 = ess sup
x∈Rn

||q(x)||B(Sn−1),

||(p, q)||X = ||p||X1 + ||q||X2 .

We denote the positive cones of the spaces X1, X2 and X by X+
1 , X+

2 and X+,
respectively. We will write

||p||∞ = ess sup
x∈Rn

||p(x)||B(V )

for those p ∈ X1 for which the essential supremum is finite.
We define the following operators
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• The spatial mass density of a velocity distribution,

¯: B(V ) → R, p̄ = p(V ). (2)

Clearly, the operator ¯ is Lipschitz continuous.
• The lifting of a measure on Sn−1 to a measure on V ,

˜: B(Sn−1) → B(V ), q̃ = m⊗ q (3)

where m is a probability measure on [s1, s2]. If s1 = s2, then ˜ just maps a
measure on Sn−1 to the same measure on {s1}×Sn−1. In the paper [14] it was
taken to be the normalized Lebesgue measure on [s1, s2], which corresponds to
the weight parameter ω defined in [14, equation (4)]. The choice m([s1, s2]) =
1 guarantees that

||q̃||L∞(Rn,B(V )) = ||q||X2 .

In particular, a function that takes values among the probability measures on
B(Sn−1)+ is mapped to a function taking values among probability measures
on B(V )+. Since ˜ is a linear operator it is Lipschitz continuous. Additionally,
we use the lifting to connect the measures on V and on Sn−1 in a natural way
as

dv = m⊗ dθ, (4)

• The mean projection operator (for undirected fibres)

Πu(p)(θ) =
1
p̄

∫
V

∣∣∣∣θ · v

||v||

∣∣∣∣ dp(v). (5)

For sake of simpler notation and to avoid difficulties when p̄ = 0, we introduce
the operator

Λ : X1 → L1(Rn, L∞(Sn−1)), Λ(p) = p̄Πu(p).

Notice that Λ is linear and if ||p||∞ <∞ then

||Λ(p)||L∞(Rn,L∞(Sn−1)) ≤ ||p̄||L∞(Rn,R).

For sake of completeness we also state the directed version of the operator Λ,

Λd(p)(θ) =
∫

V

θ · v

||v||
dp(v).

As said above, existence of solutions is shown completely analogously in the
two cases.

• The relative alignment operator again, using the notation from [14]

Au(p, q) =
∫

Sn−1
Πu(p)(θ) dq(θ). (6)

Similarly to the introduction of Λ, we will work with

B : X → L1(Rn,R), B(p, q) = p̄ Au(p, q).

Notice that B is bilinear and if ||p||∞ <∞, then

||B(p, q)||L∞(Rn,R) ≤ ||p̄||L∞(Rn,R)||q||X2 .
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The operators Λ and B are Lipschitz continuous on bounded subsets.
Let µ > 0 denote the turning rate and κ > 0 denote the rate of fibre degradation.

The model (1) can be written as equality of measures

∂p

∂t
+ v · ∇p = −µp+ µp̄ q̃,

∂q

∂t
= κ(Λ(p)−B(p, q))q,

p(x, 0) = p0(x), q(x, 0) = q0(x).

(7)

3. Existence results. To provide a framework for local and global existence of
solutions we define

D(A) = {(p, q) ∈ X : ∇p ∈ Xn
1 },

A
(
p
q

)
=
(
−v · ∇ 0

0 0

)(
p
q

)
.

(8)

Here ∇ = ∇x is interpreted in the sense of weak derivatives of Banach space-
valued functions. We write f = ∇xp for a function f ∈ Xn

1 if for all test functions
φ ∈W 1,1(Rn, C(V ))

−
∫

Rn

p(x) · ∇xφ(x) dx =
∫

Rn

f(x)φ(x) dx ∈ B(V ),

where the integrals are Bochner integrals taking values in B(V ). Observe that the
domain D(A) is dense in X, as it contains the space C∞(Rn,B(V ))×X2 of infinitely
differentiable functions, which is dense in X [19, Theorem 2.16]. The operator A
with domain D(A) is the generator of a positive C0-semigroup U(t) on the Banach
space X (see also Theorem 1 in [2]).

Notice that the operator −v · ∇ is the collisionless transport operator occurring
in the linear Boltzmann equation which has been studied by many authors, see
[13, 10], [18, Chapter 13] and the references therein. It generates a semigroup (in
fact, a group) U1 on the space X1 via

U1(t)p0(x,A) = p0(x−At,A) :=
∫

A

p0(x− tdv,dv), (9)

for Borel sets A ⊂ V . Clearly, the positive cone X+
1 is invariant under U1. The

group U1 preserves the L1-norm while for ||p0||∞ <∞ we have

|U1(t)p0|(x, ·) =
∫

V

dp0(x− tdv,dv) ≤ (1 + ts2|Sn−1|)||p0||∞.

We denote the semigroup on X generated by the operator A from equation (8) by
(U(t))t≥0. It has a diagonal structure

U =
(
U1 0
0 I

)
, (10)

where I denotes the identity on X2. In the operator norm, U satisfies ||U(t)||L(X) ≤ 1
and for ||u0||∞ <∞ we obtain

||U(t)u0||∞ ≤ (1 + ts2|Sn−1|)||u0||∞. (11)

For a pair u = (p, q) ∈ X define the map || · ||∞ : X → [0,∞] by

||u||∞ = ||p||∞ + ||q||∞,
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and set
D = {u ∈ X : ||u||∞ <∞}.

For every r > 0 the set
Dr = {u ∈ X : ||u||∞ ≤ r}

is closed in X (in particular, the projection of D onto X1 is closed with respect to
the L1-norm on X1). Indeed, let pn ∈ X1 be a Cauchy sequence with ||pn||∞ ≤ r
for all n. Since X1 is complete, it has a limit p. We claim that ||p||∞ ≤ r. Suppose
that this were not the case, then there would be an ε > 0 and a set A ⊂ Rn with
Lebesgue measure |A| > 0 such that ||p(x)||B(V ) ≥ r + ε for all x ∈ A. But then
clearly the L1-norm would satisfy ||pn − p||X1 ≥ ε|A| > 0, which is a contradiction.

Problem (7) can now be written as an abstract Cauchy problem

u′ = Au+ F (u),

u(0) = u0,
(12)

with u = (p, q), u0 = (p0, q0) ∈ D.

Definition 3.1. [20] Let u0 = (p0, q0) ∈ D. We say that a function (p, q) = u ∈
C([0,∞),D) is a global mild solution if F (u( · )) is continuous and u satisfies the
integral equation

u(t) = U(t)u0 +
∫ t

0

U(t− s)F (u(s)) ds, (13)

where U(t) is the semigroup defined in equation (10). We call a function u = (p, q) :
[0, T ) → D a classical solution if it satisfies the following properties

(i) u ∈ C1((0, T ),X) ∩ C([0, T ), D(A)), and
(ii) equation (12) holds.

Our first result is

Theorem 3.2. Assume that q0(x, Sn−1) = 1 for almost every x ∈ Rn, then the
problem (12) has a unique global positive mild solution for every u0 ∈ D ∩ X+.

3.1. Proof of Theorem 3.2. The proof of Theorem 3.2 is established in the fol-
lowing Lemmas.

Lemma 3.3. The right hand side of equation (7) defines a nonlinear map
F : D → D, which maps D into itself

F (p, q) =
(
F1(p, q)
F2(p, q)

)
=
(

−µp+ µp̄ q̃
κ(Λ(p)−B(p, q))q

)
.

The map F is Lipschitz continuous on bounded subsets of D.

Proof. Observe that for (p, q) ∈ D the product p̄ q̃ is well defined and

||p̄ q̃||X1 ≤ ||p̄||L1(Rn,R)||q||X2 = ||p||X1 ||q||X2 ,

||p̄ q̃||L∞(Rn,B(V )) ≤ ||p||L∞(Rn,B(V ))||q||X2 ,

in particular,

||F1(p, q)||L∞(Rn,B(V )) ≤ 2µ||p||L∞(Rn,B(V ))||q||X2 .

For functions ϕ ∈ L∞(Sn−1) and measures q ∈ B(Sn−1) we define the product
ϕq ∈ B(Sn−1) by way of

(ϕq)(M) =
∫

M

ϕ(θ) dq(θ), (14)
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whereM ⊂ Sn−1 is a Borel set. This multiplication extends to functions in L∞(Rn×
Sn−1) and L∞(Rn,B(Sn−1)) and we have

||ϕq||X2 ≤ ||ϕ||L∞(Rn×Sn−1)||q||X2 .

With ϕ(θ) = Λ(p)(θ)−B(p, q) we obtain

||F2(p, q)||∞ = ||(Λ(p)−B(p, q))q||X2 ≤ ||p̄||L∞(Rn,R)(1 + ||q||X2)||q||X2 ,

showing that F2 takes values in X2. Computations similar to those just carried out
give the local Lipschitz continuity of F on bounded subsets of D. For example, for
(p1, q1), (p2, q2) ∈ D and ||p1||X1 + ||p2||X1 + ||q1||X2 + ||q2||X2 ≤ K there exists a
constant C(K) > 0 such that

||p̄1q̃1 − p̄2q̃2||X1 ≤ ||p̄1(q̃1 − q̃2)||X1 + ||(p̄1 − p̄2)q̃2||X1

≤ C(||p1 − p2||X1 + ||q1 − q2||X2).

We omit the remaining calculations. �

Lemma 3.4. Equation (12) has a unique local mild solution that remains positive
for u0 ∈ X+.

Proof. We set up a Banach’s Fixed Point argument, but we cannot work on D
directly since that set is not complete. Hence we work with DR for some R large
enough. For given u0 ∈ D and fixed R, T > 0 we define

ER,T = {u ∈ C([0, T ],DR) : u(0) = u0}.

This set ER,T is a complete metric space, with the metric given by

d(u, v) = sup
t∈[0,T ]

||u(t)− v(t)||X.

For a function u ∈ ER,T we define

Gu(t) = U(t)u0 +
∫ t

0

U(t− s)F (u(s)) ds, (15)

this is again an element of C([0, T ],D) with Gu(0) = u0 (since D is invariant under
both the semigroup U and the nonlinearity F ). We have for u, v ∈ ER,T

||Gu(t)− Gv(t)||X ≤
∫ t

0

||U(t− s)||L(X)||F (u(s))− F (v(s))||X ds

≤ Ct sup
s∈[0,t]

||u(s)− v(s)||X ≤ Ctd(u, v)

(where C is the Lipschitz constant of F ), hence

d(Gu,Gv) ≤ CTd(u, v),

and by choosing T sufficiently small, it can be achieved that G is a contraction on
the space ER,T . If v ∈ DR, then we have (see the proof of Lemma 3.3)

||F1(v)||∞ ≤ 2µR2, ||F2(v)||∞ ≤ R2(1 +R), and

||F (v)||∞ ≤ R2(1 +R+ 2µ).

Let u ∈ ER,T . We can estimate equation (15)

||Gu(t)||∞ ≤ (1 + ts2|Sn−1|)||u0||∞ + t(1 + ts2|Sn−1|)R2(1 +R+ 2µ).
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By choosing R > 2||u0||∞ (large) and T small, namely

T ≤ min
{

1
s2|Sn−1|

,
R− 2||u0||∞

2R2(1 +R+ 2µ)

}
,

we can achieve that

sup
t∈[0,T ]

||Gu(t)||∞ ≤ ||Gu(T )||∞ < R,

for all u ∈ ER,T . Hence the contraction G maps the complete metric space ER,T

into itself and hence has a unique fixed point by the Banach Fixed Point Theorem.
The positivity of solutions follows from the fact that the nonlinearity F is of

multiplicative type. If either p or q becomes zero on a set at some time, the left
hand side of equation (12) is non-negative. �

Concerning the global existence of solutions, if Tmax(u0) <∞, then by [22]

lim
t↗Tmax(u0)

||u(t)||X = ∞.

However, in our system (7) a blow-up in finite time cannot occur as the following
lemma shows.

Lemma 3.5. Let (p, q)(t) be a mild solution of equation (7) (equivalently, of (12))
taking values in D ∩ X+. Then for all t ∈ [0, Tmax) and almost every x ∈ Rn we
have

q(x, t,Sn−1) = 1,
and there exists a constant C > 0 such that

||p(t)||X1 = ||p0||X1 , and ||p(t)||∞ ≤ |V |||p0||∞eCt.

Proof. Let (p, q) be a mild solution of equation (7) taking values in X+. The second
component of equation (13) reads

q(x, t) = Iq0(x) +
∫ t

0

Iκ(Λ(p)−B(p, q)q) ds,

where I denotes the identity. We evaluate this relation at Sn−1 and use the fact
that

κ(Λ(p)−B(p, q))q(Sn−1) =
∫

Sn−1
Λ(p)(θ) dq(x, θ)−B(p, q)q(Sn−1)

= B(p, q)(1− q(Sn−1)).

We obtain

1− q(x, t,Sn−1) = 1− q0(x, Sn−1)− κ

∫ t

0

B(p, q)(1− q(x, s,Sn−1) ds

We apply Gronwall’s lemma and obtain

1− q(x, t,Sn−1) = (1− q0(x,Sn−1)) exp
(
−κ
∫ t

0

B(p(x, s), q(x, s)) ds
)
.

The integrand is positive and bounded, hence by the assumption on q0 we get

q(x, t,Sn−1) = 1 (16)

for almost all x ∈ Rn. For the L1-norm of p we notice first that since p is positive,
it satisfies

p(x, t, V ) = ||p(x, t)||B(V ).
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We evaluate the first equation of (7) and obtain as a consequence of (16)

∂

∂t
p̄(x, t) +∇ ·

(∫
V

v dp(x, t, v)
)

= 0.

Integrating this equation over Rn gives

d

dt

∫
Rn

p̄(x, t) dx = −
∫

Rn

∇ ·
(∫

V

v dp(x, t, v)
)

dx = 0

by the divergence theorem. For the L∞-part of p we use that F1(0, q) = 0 and the
following fact

||F1(p1, q)− F1(p2, q)||L∞(Rn,B(V )) ≤ µ(1 + ||q̃||X2)||p1 − p2||L∞(Rn,B(V )).

We estimate from (13)

||p(t)||∞ ≤ |V |
(
||p0||∞ +

∫ t

0

||F1(p(s), q(s))||∞ ds
)

= |V |
(
||p0||∞ +

∫ t

0

||F1(p(s), q(s))− F1(0, q(s))||∞ ds
)

≤ |V |

(
||p0||∞ + µ(1 + sup

s∈[0,t]

||q̃(s)||X2)
∫ t

0

||p(s)||∞ ds

)
.

This inequality warrants application of Gronwall’s lemma

||p(t)||∞ ≤ |V |||p0||∞eCt

with a suitably chosen constant C. By the density of the domain D(A) in D ∩ X
and because of the continuous dependence of the solution on the initial datum we
obtain the desired estimates for arbitrary initial data (p0, q0) ∈ D ∩ X+. �

Combining Lemmas 3.4–3.5 we conclude the proof of Theorem 3.2.

4. Steady states. In numerical simulations by Painter [21], shown in Figure 2, we
find interesting network patterns which form from random initial data. Numerically,
these patterns do not change after they have been established. We expect that the
system (7) allows for these network patterns as steady states. In this section we will
develop a theory of pointwise steady states which are candidates for the observed
network patterns.

To describe steady states of (7) we introduce the bilinear turning operator

L : B(Sn−1)× B(V ) → B(V ), L[q](p) = q̃p̄− p.

Observe that in contrast to the paper of Chalub et al. [3] the turning kernel does
not depend explicitly on v′, i.e., the cells are reoriented regardless of their original
orientation. For p ∈ kerL[q], we have

p = q̃p̄.

Hence the orientation of the cells in a steady state is entirely given by the fibre
distribution q. This reflects the fact that a perfect alignment of the cells with the
underlying fibre network and only such a perfect alignment remains invariant under
the turning operator L.

The trivial steady state is a uniform distribution of fibres and cells:
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Figure 2. Typical simulation of network formation for model (7).
The left figure shows the overall cell density p̄(x, t) at a time where
the steady state has almost been reached. Light (yellow) color
indicates high cell density and dark (black) color indicates low cell
density. The figure on the right shows the underlying network,
where the small bars indicate the mean direction and the gray
color describes the degree of alignment. Light gray indicates highly
aligned tissue, whereas dark gray/black indicates close to uniform
distribution of directions. The simulations were done by K. Painter,
and are described in detail in [21]. We are grateful to K. Painter
who allowed us to use this figure for illustrative purposes.

Lemma 4.1. (Homogeneous tissue) For every constant % ≥ 0 the pair

q(x) =
dθ

|Sn−1|
, p(x) = %q̃ = %

m⊗ dθ
|Sn−1|

= %
dv

|Sn−1|

is a steady state of (7) in L∞(Rn,B(V ) × B(Sn−1)). The only steady state of this
type in D ∩ X is obtained for % = 0.

Proof. If q = dθ/|Sn−1| and p = %q̃, then p̄ = % and p = p̄q̃. The right hand side
of the first equation of (7) is zero. For the second equation, we need to compute
Λ(p)−B(p, q). We have

Λ(p)(x, θ) = %

∫
V

∣∣∣∣θ · v

||v||

∣∣∣∣ dq̃(θ) = β

for a β ≥ 0, which is independent of θ and x. We obtain

B(p, q)(x) =
∫

Sn−1
β

dθ
|Sn−1|

= β.

Hence Λ(p) − B(p, q) = 0 and the right hand side of the second equation of (7)
is zero as well. Notice that the measures dv and dθ are coupled in a natural way
through (4). �

To find other steady states, we need a weak formulation.
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Definition 4.2. We say that (p, q) ∈ D∩X is a weak steady state of (7), if for each
pair of test functions

φ ∈W 1,1(Rn, C(V )), ψ ∈ C0(Rn, C(Sn−1)),

(where C0 denotes functions vanishing at ∞) we have

−
∫

Rn

∫
V

v · ∇φ(x, v)p(x, dv) dx =∫
Rn

∫
V

φ(x, v) (−µp(x,dv) + µp̄(x) q̃(x,dv)) dx, (17)∫
Rn

∫
Sn−1

(Λ(p)(θ)−B(p, q))ψ(x, θ)q(x, dθ) dx = 0. (18)

Notice that in this definition, φ and ψ are real-valued functions in the variables
v and θ, respectively, hence the integrals on V and Sn−1 make sense. In the next
Lemma we study the biologically meaningful case of a network completely aligned
in a single direction.

Lemma 4.3. (Strictly aligned tissue) Assume a preferred direction γ ∈ Sn−1 is
given and % ≥ 0 is a constant. Let δγ denote the Dirac mass on Sn−1 concentrated
at γ. Then

p(x) = %q̃, q(x) =
δγ + δ−γ

2
is a weak steady state in L∞(Rn,B(V )× B(Sn−1)).

Proof. Since p ∈ kerL and since it is spatially homogeneous, equation (17) is
satisfied. To study (18) we first compute the following integrals on Sn−1

Λ(p)(x, θ) =
%

2

∫
V

∣∣∣∣θ · v

||v||

∣∣∣∣ (δ̃γ + δ̃−γ)(dv) = %|θ · γ|,∫
Sn−1

Λ(p)(x, θ)ψ(x, θ) dq(θ) =
%

2
(ψ(x, γ) + ψ(x,−γ))

B(p, q)(x) =
%

2

∫
Sn−1

|θ · γ| (δγ + δ−γ)(dθ) = %,

and
B(p, q)(x)

2

∫
Sn−1

ψ(x, θ) (δγ + δ−γ)(dθ) =
%

2
(ψ(x, γ) + ψ(x,−γ)).

Hence ∫
Sn−1

(Λ(p)(x, θ)−B(p, q)(x))ψ(x, θ) dq(θ) = 0

for all x ∈ Rn. �

4.1. Pointwise steady states. In the preceding Lemmas we identified two simple
homogeneous steady states. A full analysis of other steady states at this level is
difficult, since the very weak formulation of measure valued solutions allows too
many degrees of freedom. We rather specialize to the study of pointwise steady
states as defined below. With pointwise steady states, we can combine the previous
two Lemmas and design networks of aligned tissue with patches of uniform tissue.

A schematic of the steady states which we construct here is shown in Figure 3.

Definition 4.4. We say that (p, q) ∈ D ∩ X is a pointwise steady state of (7), if
1. (p, q) is a weak steady state.
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Figure 3. Schematic of steady states. Figure A and B show typi-
cal fibre alignment and cell alignment for the homogeneous steady
state (in A) and the strictly aligned steady state (in B). Figures
C and D show the geometric construction that underlies pointwise
steady states. The fibres and cells are aligned tangentially along
the curves σi and uniformly inside the domains Ωi. Figure C shows
a pattern without intersections, while Figure D shows intersections.
One of the intersections has been blown up to illustrate how a three
pointed star of 120◦ angles can arise (see Corollary 1).

2. p(x), q(x) is well defined for each x ∈ Rn.
3. For each test function Ψ ∈ C(Sn−1) and each x ∈ Rn∫

Sn−1
(Λ(p)(θ)−B(p, q))Ψ(θ)q(x, dθ) = 0. (19)

4. For each test function Φ ∈ C(V ) and each x ∈ Rn∫
V

Φ(v) (−µp(x, dv) + µp̄(x) q̃(x,dv)) = 0. (20)

Remark 1. 1. An immediate consequence of item 1. and 4. in this definition is
that pointwise steady states satisfy

−
∫

Rn

∫
V

v · ∇φ(x, v)p(x,dv) dx = 0, (21)

for each test function φ ∈W 1,1(Rn, C(V )).
2. Another immediate observation is that the homogeneous steady state from

Lemma 4.1 and the completely aligned steady state from Lemma 4.3 are point-
wise steady states.

In the following we classify pointwise steady states in R2. It turns out that the
above definition allows for patchy steady states and for steady states of network
type. Patchy steady states include patches of uniform tissue surrounded by areas
of strictly aligned tissue, i.e. a combination of the above two types. Network type
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steady states arise if the areas of aligned tissue form a connected network of curves
with intersections and branches. For network type steady states, we will classify
possible intersections of network fibres. We are able to explicitly treat intersections
of up to four directions and we find a general algebraic condition for networks with
intersections of higher order.

4.2. Patchy steady states. Assume a set of smooth closed curves σi, i = 1, . . . , N
separate R2 into disjoint open sets Ωi, i = 1, . . . , k. Assume these curves σi have
finite length, no intersections but they might be closed. Assume p and q are uniform
inside each patch

p(x) = pi
dv
|V |

, q(x) =
dθ
|S1|

, if x ∈ Ωi, i = 1, . . . , k (22)

with pi = 0 if |Ωi| = ∞. Since we are interested in pointwise steady states, we
need to define (p(x), q(x)) for x ∈

⋃
i σi. For each i = 1, . . . , N we denote the unit

tangent vector at x ∈ σi by γi(x), where we will suppress the argument x whenever
possible. We define

qi(x) =
1
2
(δ−γi(x) + δγi(x)), p(x) = %iq̃(x), for x ∈ σi. (23)

and %i ≥ 0.

Lemma 4.5. The weak steady state defined by (22) and (23) is a pointwise steady
state.

Proof. (p(x), q(x)) are defined for all x ∈ R2 and as shown in the proofs of Lemma
4.1 and 4.3 the conditions (19) and (20) are satisfied for all x ∈ R2. We only need
to show that (p, q) as defined above is a weak steady state, i.e., we need to confirm
condition (21). We find

−
∫

R2

∫
V

v · ∇φ(x, v)p(x, dv) dx

=
k∑

i=1

∫
Ωi

∫
V

φ(x, v)v · ∇ p(x, dv) dx−
k∑

i=1

∫
σi

∫
V

n · v φ(x, v) p(x, dv) dσ,

= 0

The first integral vanishes since ∇xp(x, dv) = 0 in Ωi. The boundary integrals are
zero, since we assumed that on σi the fibre orientation is tangential, i.e. n · v = 0
for all v ∈ supp p(x, t), where n denotes the outer normal of σi at x ∈ σi. �

The above lemma allows for patches of uniform tissue surrounded by aligned
tissue. These could also be called encapsulations, as seen for many tumours in
tissue. A schematic of patchy steady states is given in Figure 3C. The steady states
in Lemma 4.5 do, however, not allow for intersections of the curves σi so that they
become of network type. To obtain network steady states, we need to study possible
intersections in more detail.

4.3. Symmetric intersections. To study multiple directions we introduce two
abbreviations. For a given vector γ ∈ S1 and a real valued function Ψ on S1 we
define the notation

δ|γ| :=
1
2
(δ−γ + δγ), Ψ(|γ|) :=

1
2
(Ψ(−γ) + Ψ(γ)).
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We first consider the intersection of two directions γ1, γ2 ∈ S1 with γ1 6= ±γ2

and with different weight α ∈ (0, 1). For a given x ∈ R2 we define

q(x) := αδ|γ1| + (1− α)δ|γ2| and p(x) = %q̃(x), (24)

where we set % = 1 without restriction.

Lemma 4.6. Assume (p, q) is a weak steady state of (7) and at x it is of the form
(24). It can only be a pointwise steady state, if the directions γ1 and γ2 have equal
weight, i.e. if α = 1

2 .

Proof. We only need to check condition (19) of Definition 4.4 at the intersection
point x. For this choice of p and q we find

Λ(p) =
∫

V

∣∣∣∣θ · v

||v||

∣∣∣∣ dq̃ = α|θ · γ1|+ (1− α)|θ · γ2| (25)

and

B(p, q) =
∫

S1
Λ(p)(θ)dq

= α2|γ1γ1|+ 2α(1− α)|γ1γ2|+ (1− α)2|γ2γ2|
= 2α2 − 2α+ 1 + 2α(1− α)|γ1γ2| (26)

where we used the fact that |γiγi| = 1, i = 1, 2. To check condition (19), we need
to test with a test function Ψ ∈ C(S1):∫

S1
Λ(p)(θ)Ψ(θ) dq = α(α+ (1− α)|γ1γ2|)Ψ(|γ1|)

+ (1− α)(α|γ1γ2|+ 1− α)Ψ(|γ2|),∫
S1
B(p, q)Ψ(θ) dq = B(p, q)

(
αΨ(|γ1|) + (1− α)Ψ(|γ2|)

)
.

Hence to satisfy (19) for any test function, we need to satisfy

α+ (1− α)|γ1γ2| = B(p, q) = α|γ1γ2|+ 1− α. (27)

Comparing the first and last term, we obtain the equation

2α− 1 = (2α− 1)|γ1γ2|
which is satisfied only if α = 1

2 . Notice that we assume |γ1γ2| 6= 1. For α = 1
2 we

find
B(p, q) =

1
2

+
1
2
|γ1γ2|

and hence the condition (27) is satisfied. �
Next we study the general case where at a given point x ∈ R2 we have an

intersection of N -different directions γ1, . . . , γN ∈ S1. We study N directions with
equal weight:

q(x) :=
1
N

(δ|γ1| + · · ·+ δ|γN |) and p(x) = q̃(x). (28)

To decide if this intersection can be a pointwise steady state, we define a matrix of
pairwise projections:

Γ := (|γiγj |)i,j=1,...,N . (29)

Theorem 4.7. Assume (p, q) is a weak steady state of (7) and at x it is of the
form (28). It can only be a pointwise steady state, if the corresponding projection
matrix Γ has an eigenvector (1, . . . , 1)T .
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Proof. Again, we only need to check condition (19) of definition (4.4) at the inter-
section point. For the above choice of p and q we find

Λ(p) =
1
N

N∑
i=1

|θγi| (30)

and

B(p, q) =
1
N2

N∑
i,j=1

|γjγi|. (31)

Applied to a test function Ψ ∈ C(S1) we obtain∫
S1

Λ(p)(θ)Ψ(θ)dq =
1
N2

N∑
j=1

(
N∑

i=1

|γjγi|Ψ(|γj |)

)
(32)

and ∫
S1
B(p, q)Ψ(θ)dq =

1
N2

N∑
i,j=1

|γjγi|
1
N

N∑
k=1

Ψ(|γk|). (33)

To satisfy condition (19) the right hand sides of (32) and (33) have to coincide for
any test function. In particular we need to satisfy

N∑
i=1

|γlγi| =
1
N

N∑
i,j=1

|γiγj |, for each l = 1, . . . , N (34)

This condition implies
N∑

i=1

|γlγi| =
N∑

i=1

|γkγi| for each l, k = 1, . . . , N. (35)

It can be directly verified that condition (35) implies (34) and it also implies
(32)=(33). Hence (35) is the limiting condition. This condition implies that the
row-sums of the matrix Γ are all identical, and since Γ is a symmetric matrix, the
column sums also have the same value. In other words (35) is equivalent with the
statement that Γ has an eigenvector (1, . . . , 1)T . �

A schematic of a steady state with intersections is shown in Figure 3D.

Remark 2. Notice that a related matrix to Γ is well known in linear algebra: the
Gram matrix

G = (γiγj)i,j

plays a role in coordinate transformations and the square root of the Gram deter-
minant is a measure for the volume element spanned by the vectors γ1, . . . , γN .

Example 4.8. As an example, we apply this general result to the two-directional
case studied in Lemma 4.6. For two directions we have

Γ =
(

1 |γ1γ2|
|γ1γ2| 1

)
, and Γ

(
1
1

)
= (1 + |γ1γ2|)

(
1
1

)
.

For three directions we obtain an interesting result:

Corollary 1. Assume (p, q) is a weak steady state of (7) and at x it is of the form
(28) with N = 3. It can only be a pointwise steady state, if the three directions have
equal angle, i.e. |γ1γ2| = |γ2γ3| = |γ3γ1|.
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Proof. We use the criterion from Theorem 4.7. The vector (1, 1, 1)T is an eigenvector
of Γ if

1 + |γ1γ2|+ |γ1γ3| = 1 + |γ1γ2|+ |γ2γ3| = 1 + |γ1γ3|+ |γ2γ3|
which implies

|γ1γ2| = |γ2γ3| = |γ3γ1|.
�

A three pointed intersection has been illustrated in Figure 3D.

The classification of intersections of four directions is a bit more complex.

Corollary 2. Assume (p, q) is a weak steady state of (7) and at x it is of the form
(28) with N = 4. It can only be a pointwise steady state, if the pairwise equal angle
condition (36) is satisfied.

Proof. To illustrate this case we introduce another abbreviation

gij := |γiγj |.
The corresponding projection matrix for four directions reads

Γ =


1 g12 g13 g14
g12 1 g23 g24
g13 g23 1 g34
g14 g24 g34 1


and the eigenvalue condition is given by

1 + g12 + g13 + g14 = 1 + g12 + g23 + g24 = 1 + g13 + g23 + g34

= 1 + g14 + g24 + g34.

Hence we obtain six unknowns and three equations, which will not give us such
a complete solution as for three directions. We can, however, reduce the above
condition to a set of pairwise equal angle conditions

|γ1γ2| = |γ3γ4|, |γ1γ3| = |γ2γ4|, |γ1γ4| = |γ2γ3|. (36)

If all angles are π/2 then this condition is satisfied. �

4.4. Unsymmetrical intersections. In the numerical simulations shown in Fig-
ure 2 we observe intersections that are asymmetric in the sense that for a direction
γ1 the opposite direction −γ1 is not seen. Indeed, at an intersection point x various
fibres come together. This means that at this point x the network has a number
of directions γ1, . . . , γN , but the opposite directions are missing (it could of course
happen by chance that γj = −γi for some i, j). Even though we assume that the dis-
tribution function q is symmetric almost everywhere, we find exceptional points at
those intersection points. In this section we show that unsymmetrical intersections
can arise as steady states in the framework developed here.

Assume at a given point x ∈ R2 we have an unsymmetrical intersection of N -
different directions γ1, . . . , γN ∈ S1 with equal weight:

q(x) :=
1
N

(δγ1 + · · ·+ δγN
) and p(x) = q̃(x). (37)

To decide if unsymmetrical intersections can arise as pointwise steady states, we
carry out the same computations as in the previous section. It turns out that the
computations change only marginally and we omit the details here. For example
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formulas (32) and (33) use Ψ(γi) instead of Ψ(|γi|). This implies that the conditions
for their existence remain the same. We summarize:

Theorem 4.9. 1. Assume (p, q) is a weak steady state of (7) and at x it is of
the form (37). It can only be a pointwise steady state, if the corresponding
projection matrix Γ has an eigenvector (1, . . . , 1)T .

2. If N = 3 then (p, q) can only be a pointwise steady state, if the three directions
have equal angle, i.e. |γ1γ2| = |γ2γ3| = |γ3γ1|.

3. If N = 4 it can only be a pointwise steady state, if the pairwise equal angle
condition (36) is satisfied.

Remark 3. 1. Indeed, unsymmetrical intersections of three directions with an-
gles of 120◦ seem to be typical building blocks for the network shown in Figure
2.

2. Although other intersections (symmetric or asymmetric) do exist theoretically,
they are rarely seen in simulations. This raises the question of stability of these
steady states. We defer this question to future studies.

4.5. Other steady states. We consider more general steady states where the cell
distribution is a multiple of the lifted fibre distribution, that is

p(x) = %(x)q̃(x),

where % ∈ L∞(Rn) is the density of cells (or even % ∈ L1 ∩ L∞(Rn)). The minimal
condition for such a pair to be a steady state is

Λ(p)(θ) = B(p, q),

in particular, the left hand side is actually independent of θ. Because of the linearity
of the operators Λ and B, this condition becomes

%(x)Λ(q̃(x))(θ) = %(x)B(q̃(x), q(x)).

Wherever % 6= 0 this condition can be stated as∫
V

∣∣∣∣θ · v

||v||

∣∣∣∣ q̃(x, dv) =
∫

Sn−1

∫
V

∣∣∣∣θ · v

||v||

∣∣∣∣ q̃(x,dv) q(x,dθ), (38)

for almost all x ∈ Rn. Now let us try the following ansatz

q(x) = f(x)δ|γ(x)| + (1− f(x))Σ,

where 0 ≤ f(x) ≤ 1 and Σ is the normalized Haar measure on Sn−1. Notice that
even the predominant direction γ may depend on x at this point. A calculation
gives ∫

V

∣∣∣∣θ · v

||v||

∣∣∣∣ q̃(x,dv) =
∫

Sn−1
|θ · ψ| q(x,dψ)

= f(x) + (1− f(x))
∫

Sn−1
|θ · ψ|Σ(dψ) =: C.

The last term in the second line is independent of θ because of the rotational
invariance of Σ. Hence we have∫

Sn−1
C q(x, dθ) = C

∫
Sn−1

q(x, dθ) = C.

Observe that
%(x)q̃(x) = %(x)
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and the right hand side of the first equation of (7) vanishes. Hence the condition
for % is

%(x)∇q̃(x) + q̃(x)∇%(x) = 0,
for almost all x ∈ Rn, which can be written as

∇(%(x)q̃(x)) = 0, (39)

In summary, if we have found q that satisfies (38), then % can be determined from
the differential equation (39).

5. Analysis for given fibre distribution. In this section we assume that cells
do not remodel the fibre network and that q(x, t) is a given distribution. The p-
equation of system (7) has a simple structure for given q. For classical solutions we
can use the method of characteristics to find an explicit solution. For given v ∈ V ,
the characteristic equation is d

dtx(t) = v. Hence the characteristic through x0 ∈ Rn

is given by x(t) = x0 + vt. We can write the first equation of (7) as follows
d

dt
p(x(t), t) + µp(x(t), t) = µq̃(x(t), t)p̄(x(t), t), (40)

We evaluate equation (40) at V and obtain
d

dt
p̄(x(t), t) =

d

dt
p(x(t), t, V ) = −µp(x(t), t, V ) + µp̄(x(t), t)q̃(x(t), t, V ) = 0,

where we have used the fact that q̃(x(t), t, V ) = 1. Hence p̄(x(t), t) is constant along
characteristics. Equation (40) is equivalent to the equation

e−µt d

dt
(p(x(t), t)eµt) = µq̃(x(t), t)p̄(x(t), t).

Integrating the above equation with respect to time, we obtain

p(x(t), t) = e−µtp(x0, 0) + µe−µtp̄(x(t), t)
∫ t

0

eµsq̃(x(s), s) ds. (41)

For a given (x, t) ∈ Rn × R+, we find the anchor-point x0(v) = x − vt and the
corresponding backward characteristic in the direction v

x(s) = x− vt+ vs.

Applying this to equation (41), we have

p(x, t) = e−µtp0(x− tdv) + µp̄(x, t)
∫ t

0

e−µ(t−s)q̃(x− (t− s) dv, s) ds. (42)

This is an equality in the Banach space B(V ) and the term p0(x − tdv) on the
right hand side has to be interpreted as the v-shifted measure defined in equation
(9). The same notation applies to q̃. We evaluate this measure p(x, t) at V , i.e., we
compute p̄(x, t) = p(x, t, V ), and obtain

p̄(x, t) = e−µtp0(x− V t, V ) + µp̄(x, t)
∫ t

0

e−µ(t−s)q̃(x− V (t− s), s, V ) ds,

which is an equality between real numbers. The measure q̃ is non-negative and for
fixed w ∈ V we have q̃(x− w(t− s), s)(V ) = 1, and

K(x, t) = µ

∫ t

0

e−µ(t−s)q̃(x− V (t− s), s, V ) ds > 0. (43)

Thus we get
(1−K(x, t))p̄(x, t) = e−µtp0(x− V t, V ).
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If K(x, t) 6= 1, then we can solve for p̄ as

p̄(x, t) =
e−µt

1−K(x, t)
p0(x− V t, V ). (44)

Then p̄ can be used in (42) to find an explicit solution

p(x, t) =e−µtp0(x− tdv)

+
µe−µt

1−K(x, t)
p0(x− V t, V )

∫ t

0

e−µ(t−s)q̃(x− (t− s) dv, s) ds.
(45)

Notice that this solution only depends on the initial condition p0 and on the fibre
distribution q. To clarify, equation (45) is again an equality in B(V ) and the right
hand side is of the type “measure + number ·measure”.

Equation (43) simplifies drastically in the special case of constant fibre distribu-
tion q(x, t) = q. In this case, it follows that

K(x, t) = µ

∫ t

0

e−µ(t−s)q̃(V ) ds = µ

∫ t

0

e−µ(t−s) ds = 1− e−µt.

Equation (44) becomes
p̄(x, t) = p0(x− V t, V ). (46)

Equation (46) deserves some interpretation. p̄ is the mass density of particles of
all velocities at point (x, t), whereas p0(x−V t, V ) integrates the initial condition over
the domain of dependence of the point (x, t), the set {x− tv : v ∈ V }. The velocity
distribution at (x, t) arises by following all characteristics through (x, t) backwards
(see Figure 4). We call (46) a generalized Huygens principle. The solution p(x, t)
from (45) can then be written entirely in terms of the initial condition

p(x, t) = e−µtp0(x− tdv) + (1− e−µt)p0(x− V t, V )q̃. (47)

Using equation (46), the explicit solution can also be written as

p(x, t) = e−µtp0(x− tdv) + (1− e−µt)p̄(x, t)q̃. (48)

Hence the solution is a convex combination of the initial condition p0 and the current
amount of cells p̄ redistributed with respect to the “controlling” distribution q̃. We
will use this observation in the next section to rigorously prove convergence of the
parabolic limit.

Hx,t1L

x

t

Hx,t2L

Figure 4. The domain of dependence of the point x at different
time points is shown as a thick solid line on the x-axis. In this
example V = [s1, s2]× Sn−1 with s1 > 0 is an annulus.
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It is interesting to understand the biological meaning of these explicit solutions.
Equation (48) tells us that eventually cells will completely align to the given network
structure. This has similarities with glioma cell invasion along white matter tracks
of the brain [17]. Equation (45) has a similar interpretation. In contrast to (48),
here the fibre distribution varies in time and space. The integral terms in (45) and
(43) denote a temporal average over the history of the fibre orientation, where the
influence of the history is exponentially damped. Then (45) can be understood
as cells that try to align with the tissue while the tissue is changing. We see
a biological analogy with wound healing, where fibroblasts constantly modify the
collagen network while immune cells move through this fibre scaffold and heal the
wound [7]. Notice that it is not our intention here to model brain tumours or wound
healing. These examples are only used as analogies and thought experiments. It
might be useful to make our model available to these processes in the future.

5.1. The parabolic limit problem. As shown in [14], we can formally derive a
diffusion limit equation from equation (7) under suitable scaling of space and time.
Let x̂ and v̂ denote reference length, and speed, respectively, with the dimensionless
quantity

ε =
v̂

µx̂
being small. We introduce rescaled variables as follows

t∗ = ε2t, x∗ =
εx

v̂
, and v∗ =

v

v̂
.

This gives
∂

∂t
= ε2

∂

∂t∗
, ∇x =

ε

v̂
∇x∗ ,

and we obtain, upon dropping the asterisks, the reduced parabolically scaled equa-
tion

ε2
∂pε

∂t
+ εv · ∇pε = −µL[q](pε),

pε(x, 0) = p0(x) ∈ D ∩ X+
1 .

(Pε)

Simultaneously, we consider the limit problem
∂%

∂t
= ∇ · (D[q]∇%) ,

%(x, 0) = p0(x, V ) = p̄0(x) ∈ L1,+(Rn,R),
(P0)

with ||%( · , 0)||∞ <∞ and where the diffusion tensor is given by

D[q] =
1
µ

∫
V

v ⊗ v dq̃(v). (49)

The formal derivation of the limit problem and the diffusion tensor in equation (49)
was carried out in [14, section 4], see in particular equations (29) and (41) in that
paper. We therefore omit these calculations here. Notice that D[q] can be written
as the scaled variance-covariance matrix V(q) of q,

D[q] =
1
µ

∫ s2

s1

∫
Sn−1

(sθ)⊗ (sθ) dq(θ) dm(s) = σV(q),

where

σ =
1
µ

∫ s2

s1

s2 dm(s), V(q) =
∫

Sn−1
θ ⊗ θ dq(θ)

and we have used equation (3).
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We define the notion of a weak solution of equation (P0).

Definition 5.1. Let T > 0 be given. We say that % ∈W 1,1([0, T ], W 2,1(Rn,R)) is
a weak solution of (P0) if the following holds

−
∫

Rn

%(x, 0)φ(x, 0) dx−
∫

Rn

∫ T

0

%(x, t)
∂φ

∂t
(x, t) dtdx

= −
∫

Rn

∫ T

0

D[q](x, t)∇%(x, t) · ∇φ(x, t) dtdx

for all test functions φ ∈ C∞c ([0, T ]× Rn) with φ( · , T ) = 0, and in addition

%(x, 0) = p̄0(x)

for almost every x ∈ Rn.

The tensor D[q] in equation (49) is positive definite as long as the support supp q
is not contained in a lower dimensional great sphere. To see this we take a ∈ Rn

and study

aTD[q]a =
1
µ

∫
V

(v · a)2 dq̃(v) > 0,

provided that supp q is not contained in 〈a〉⊥ ∩ Sn−1 for any a ∈ Rn. In this case,
we have the existence of weak solutions [12, 23].

5.2. Convergence result. The parabolic diffusion limit for chemotaxis was rig-
orously studied by Chalub et al. [3]. It was assumed that there exists a bounded
equilibrium velocity distribution F (v) ∈ L∞(V ) that is independent of space, time
and the distribution of the chemical signal, [3, Assumption (A0)]. The assumption
(A0) in [3] corresponds to our assumption (A0) below for the case that the equilib-
rium distribution of the turning operator is a given function/measure on Sn−1 (and
independent of x and t). The difference arises from the fact that F is uniformly
bounded while q̃ is a Borel measure.

Since we are now equipped with a suitable functional analytical setting, we will
rigorously study the convergence to the parabolic limit. However, as shown numeri-
cally in Painter (see [21, Figure 9]), the phenomenon of network forming patterns is
lost in the diffusion limit, hence we do not expect that convergence to the diffusion
limit is true in general. We assume that q is constant in space and time

q(x, t) = q ∈ B(Sn−1) (A0)

for all x ∈ Rn and t ≥ 0 and that q is symmetric with respect to θ 7→ −θ.

Theorem 5.2. Let assumption (A0) hold and fix T > 0. Let (pε)ε≥0 be the fam-
ily of solutions to problem (Pε) and % the weak solution to problem (P0) (in the
sense of Definition 5.1). Then, after possibly extracting a subsequence we have the
convergence

pε ⇀ %q̃

in the weak∗ topology on the space L∞([0, T ],X1).

Proof. Let pε denote the B(V )-valued solution of equation (Pε). We solve this
equation as we did in Section 5, observing the new scaling with respect to ε. After
dividing equation (Pε) by ε2 and applying (47), we find

pε(x, t) = e−
µ

ε2 tp0

(
x− tdv

ε

)
+ (1− e−

µ

ε2 t)p0

(
x− V t

ε
, V

)
q̃. (50)
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The family (pε)ε≥0 is uniformly bounded in L∞([0, T ],X1) since ||p( · , t)||X1 =
||p0||X1 . Hence there exists a weak∗-convergent subsequence, say pε ⇀ p∗ as ε→ 0.
Taking the B(V ) norm in equation (50) and then taking the supremum over all
x ∈ Rn and t ∈ [0, T ] gives

||pε(x, t)||B(V ) ≤
∥∥∥∥p0

(
x− tdv

ε

)∥∥∥∥
B(V )

+
∣∣∣∣p0

(
x− V t

ε
, V

)∣∣∣∣ ≤ 2||p0||∞ (51)

and hence ||p∗( · , t)||∞ < ∞. Using equation (46) in the rescaled coordinates we
rewrite equation (50) as

pε(x, t) = e−
µ

ε2 t

(
p0

(
x− tdv

ε

)
− p̄ε(x, t)q̃

)
+ p̄ε(x, t)q̃.

Sending ε to 0 in this equation we see that p∗(x, t) = %(x, t)q̃ for an appropriate
function % ∈ L1(Rn × [0, T ],R) with ||%( · , t)||∞ <∞. It remains to prove that % so
defined satisfies the parabolic limit problem (P0). To this end we define a residuum
rε and obtain with (50)

rε(x, t) =
pε − p̄εq̃

ε
=
e−

µ

ε2 t

ε

(
p0

(
x− tdv

ε

)
− p0

(
x− V t

ε
, V

)
q̃

)
.

Observe that r̄ε = 0 and for ε ≥ 0

e−
µ

ε2 t

ε
≤ 1.

By a similar argument as for pε in (51), we get

||rε(x, t)||B(V ) ≤ 2||p0||∞.

Hence there exists a weak∗-convergent subsequence rε ⇀ r∗. Finally, let ϕ ∈
C1

c (Rn × [0, T ],R) be a test function and observe that

ε

∫ T

0

∫
Rn

∂pε

∂t
(x, t)ϕ(x, t) dxdt

= ε

∫
Rn

pε(x, t)ϕ(x, t) dx

∣∣∣∣∣
T

0

− ε

∫ T

0

∫
Rn

pε(x, t)
∂ϕ

∂t
(x, t) dxdt.

Since the right hand side converges to zero as ε→ 0, so does the left hand side and
we have that

ε
∂pε

∂t
⇀ 0

in the distributional sense.
We divide equation (Pε) by ε and obtain

ε
∂pε

∂t
+ v · ∇pε = −µrε.

Now we let ε → 0, divide by µ and we obtain the following representation of the
limit of the residuum

r∗ = − 1
µ
v · ∇(%q̃). (52)

We evaluate equation (Pε) at V and obtain the conservation law

ε2
∂p̄ε

∂t
+ ε∇ ·

(∫
V

v d(εrε + p̄εq̃)
)

= 0. (53)
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By the symmetry of q, we have ∫
V

v dq̃(v) = 0.

We divide equation (53) by ε2 and let ε→ 0 and obtain
∂%

∂t
= −∇ ·

∫
V

v dr∗(v),

where
∂p̄ε

∂t
⇀

∂%

∂t
in the distributional sense. Using the representation (52) we obtain

∂%

∂t
= ∇ ·

(
1
µ

∫
V

v ⊗ v dq̃(v)∇%
)
.

Hence % satisfies the limit equation (P0). �

6. Discussion. In this paper we consider mathematical properties of a model (1),
or equivalently (7), that describes mesenchymal cell movement in tissues. The
model was developed in [14] and has been analyzed from various angles in recent
papers, [21, 4, 5, 25]. Through the previous analysis it became evident that a
solution framework is needed which allows for measure valued solutions. Here we
develop such a framework and prove global existence of solutions in X. We have
used semigroup methods, since they provide a dynamical systems point of view, and
we can use this framework for linear stability analysis in future work. Alternative
methods to show existence include energy methods as developed by DiPerna and
Lions [9].

We were able to find non-trivial measure-valued steady states, which correspond
to homogeneous distributions, or to aligned tissue, or to patches of uniform tissue
with a network separating these patches. We found that pointwise steady states
show network properties as observed numerically. We also found that, although the
system has been formulated symmetrically, we can have unsymmetrical intersection
points. This confirms the interpretation in [14], where it was suggested that a
network made from undirected fibres can have characteristics of a directed network.
The complete identification of steady states of (7) is an interesting open question.
Furthermore it would be interesting to see whether solutions of (7) converge to
steady states or to traveling wave solutions as t → ∞. The existence result in X
opens the door to a rigorous linear stability analysis of steady states. This endeavor
is left to future work.

The convergence to the parabolic limit is a standard feature of kinetic models
and it has been studied in many publications (see references in the text). Our
approach here extends known results to measure-valued solutions. Furthermore, we
formulate an explicit solution which shows that the solution basically is a convex
combination of initial data and its velocity-mean-value. The mean value then is close
to the parabolic limit. We also give an argument that the rigorous convergence to
a diffusion limit might only work for constant tissue.

Here we did not discuss the biological modelling of (7). We would like, however,
to discuss the biological assumptions and propose various extensions, which could
lead to more realistic models.

One possibility is to introduce birth and death processes for the cells into the
model. For example, it is known that growth factors can be bound to the fibres
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which promote proliferation. Also, harmful substances can be found in the fibre
network, possibly killing the cell. To model these effects, a term G(p) would be
added to the right-hand side of the first equation of (7). If G(p) satisfies certain
growth bounds, the global existence of solutions will continue to hold.

A second possibility is to allow diffusion of p with respect to both x and v.
Cells are likely to undergo some random walk and may also change their velocity
randomly (a perfect alignment of cell velocities will disperse). Diffusion with respect
to the x variable is easily modeled by adding a term of the type −Dx∆xp to the
left-hand side of the first equation. Also, diffusion in the velocity can be modelled
through an additional diffusion term of the form −Dv∆vp (see also Dickinison [8]
for chemotaxis). For these cases we expect a smoothing property of the linear
semigroup and the totally aligned steady states will no longer exist.

Another possibility to expand and make the model more realistic would be to
give the fibres some elasticity and to let the fibres be moved by the cells. Also, the
cells should chose their new speed not randomly, but according to some “stiffness”
of the neighborhood they are currently in. For example, a cell that has to cut a
lot of fibres in its way should slow down, while a cell that is aligned well with the
network can gain speed. Obviously, these are intuitive ideas, and would have to be
supported by biological evidence.

In model (7) we implicitly assume that the protease is released locally at the lead-
ing edge of the cell. In the literature, however, various protease cutting mechanisms
are discussed [11] and more detail of the cutting can be included into the model
(see also Painter [21]). This might necessitate to explicitly model the protease as a
third variable through its own reaction-diffusion equation.

A consideration of the length scales of the fibres relative to the size of the moving
cells might also give valuable input into the appropriate modelling assumptions.

Finally, we have studied an unbounded domain Rn to avoid boundary conditions.
To formulate the correct boundary conditions for model (7) is not trivial. A com-
monly observed effect seen in tissue is that a tumour is encapsulated by a dense
fibre network. In that case the fibres at the boundary will be aligned tangentially to
the boundary and should trap moving cells inside the domain. The encapsulations
can be understood as patchy steady states, as described here. A careful analysis of
other boundary conditions and its implications on existence and steady states is left
to future work. For the simulations in Figure 2, K. Painter used periodic boundary
conditions on a square domain, i.e. a flat torus.
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