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Abstract. Migrating cells measure the external environment through receptor-
binding of specific chemicals at their outer cell membrane. In this paper this
non-local sampling is incorporated into a chemotactic model. The existence
of global bounded solutions of the non-local model is proven for bounded and
unbounded domains in any space dimension. According to a recent classifica-
tion of spikes and plateaus, it is shown that steady state solutions cannot be
of spike-type. Finally, numerical simulations support the theoretical results,
illustrating the ability of the model to give rise to pattern formation. Some
biologically relevant extensions of the model are also considered.

1. Introduction. Chemotaxis, the active orientation of cells and organisms along
chemical gradients, plays a crucial role in many biological processes, including em-
bryonic development, immunology and cancer growth. Accordingly, a vast amount
of research, both experimental and theoretical, has been devoted to understanding
the mechanistic basis of chemotaxis.

In 1953, Patlak [28] introduced the first mathematical model for chemotaxis.
A similar model was derived by Keller and Segel in 1970 [16], albeit under differ-
ent assumptions. These pioneering works have initiated an intensive mathematical
investigation of the Patlak-Keller-Segel (PKS) model over the last 30 years. Of
particular interest is the following special case, which we refer to as the classical
chemotaxis model:

ut = ∇ · (Du∇u− χu∇s)
st = Ds∆s + αu− βs.

(1)

The function u(x, t) denotes the population density at time t and location x, while
s(x, t) denotes the concentration of a chemical signal; in the above model this is pro-
duced by the species themselves. The parameters χ, α, β, Du, Ds are non-negative.
The system (1) has been studied on bounded domains with appropriate boundary
conditions (Neumann, Dirichlet, Robin etc.) or on unbounded domains (see e.g.
Hortsmann [12] and Dolbeault and Perthame [7]). An important feature of the
above model lies in its ability to exhibit pattern formation, or “aggregation”: an
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example of a typical aggregation pattern for (1) can be found in Figure 3 (a). As
such, models based on the above equations have been applied to a wide range of bi-
ological pattern formation processes, including mound formation in the slime mold
Dictyostelium, bacterial pattern formation, animal pigmentation patterns and limb
bud patterning ([16, 33, 26, 18]).

In this paper we study a simple modification of the classical chemotaxis model
(1), where the gradient sensing term ∇s is replaced by the non-local gradient

◦
∇ρ s:

ut = ∇ · (Du∇u− χu
◦
∇ρ s)

st = Ds∆s + αu− βs,
(2)

where for ρ > 0 the non-local gradient, which was introduced in [22], is defined as
◦
∇ρ s(x, t) =

n

ωρ

∫

Sn−1
σs(x + ρσ, t) dσ, (3)

where ω = |Sn−1| and Sn−1 denotes the (n−1)-dimensional unit sphere in Rn. The
nonlocal gradient describes sensing of the chemical signal over an effective sampling
radius ρ > 0.

The model is modified in a straightforward way, when the position domain is not
the whole space Rn, but some Ω ⊂ Rn:

◦
∇ρ s(x, t) =

n

ωΩ(x)ρ

∫

Sn−1
Ω (x)

σs(x + ρσ, t) dσ, (4)

with Sn−1
Ω (x) = {σ ∈ Sn−1 : x + ρσ ∈ Ω} and ωΩ(x) = |Sn−1

Ω (x)|.
While the classical chemotaxis model (1) in dimensions 2 or higher is known to

exhibit solutions that blow-up in finite time, we show in this paper that the non-
local model (2) has global in time solutions on bounded or unbounded domains in
any dimension, as long as ρ > 0 (Theorem 1). Details behind this model and about
the analysis will be given later. First we summarise some results of the classical
chemotaxis model (1) relevant to the analysis here.

For (1) on bounded domains it has been shown that the qualitative behaviour
of solutions depends strongly on the space dimension. An extensive review article
by D. Horstmann, [12], concerning (1) and related models provides greater detail,
here we summarise the essentials. In one space dimension, solutions exist globally, a
fact only recently proven (Osaki and Yagi [21], see also Hillen and Potapov [10] and
Horstmann and Winkler [13]). In Hillen and Potapov [10] numerical and asymptotic
arguments have been applied to demonstrate that solutions to (1) in one-dimension
typically form spikes. For two-dimensional domains, global existence depends on
a threshold: when the initial mass lies below the threshold solutions exist glob-
ally, while above the threshold solutions blow up in finite time (see references in
Horstmann [12], or the new book of Suzuki [32], and Dolbeault and Perthame [7]
for a recent result). Under the biologically relevant cases for aggregation to occur,
the initial conditions typically lie above this threshold — hence while the model
does predict aggregation, this takes the form of a finite time blow-up.

It is of interest to study biologically relevant and mathematically useful modi-
fications of the classical chemotaxis model (1) that prevent blow-up and allow for
global solutions. Several of these regularizations have been studied in the litera-
ture, including saturation effects (e.g. Othmer and Stevens [24], Rivero et al. [31],
Aida et al. [1]), volume filling (e.g. Painter and Hillen [25]), attraction-repulsion
mechanisms (e.g. Luca et al. [17] Renclawowicz and Hillen [30]), cell kinetics (e.g.
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Wrzosek [35]), nonlinear motility parameter and nonlinear chemotactic sensitivity
(e.g. Horstmann [11]), self similar solutions (e.g. Biler [4]), and non-local effects as
studied here. Nonlocal terms appear in the classical chemotaxis model (1) as well, if
for the signal equation the quasi steady state assumption is used. In that case, the
signal satisfies an elliptic equation, that can be solved using the Greens function for
the given domain Ω (see Biler [4]). Then s is expressed as convolution of the Greens
function with u, and hence leads to a nonlocal term in the first equation of (1).
This modeling differs significantly from the non-local term studied in this paper.
Here we assume cells measure their environment along their outer body membrane.
The non-local dependence directly relates to the physical realization of a cell. In
the Greens-function approach, the nonlocal effect stems from a instantaneous global
response of the signal s to the cell distribution u.

As seen for the classical chemotaxis model (1), typical non-trivial solutions form
very sharp and thin local maxima (spikes). These spikes remain bounded in 1-D
and blow up in n-D, n ≥ 2. For the volume filling model, for example, typical
patterns are of plateau-type (see Painter and Hillen [25], Dolak and Schmeiser [6]).
In Hillen [8] a classification of spikes versus plateaus is given, using the non-local
gradient (3). We show in this paper that solutions of (2) are global in time and
steady states are of plateau-type. We prove that the non-local chemotaxis model
(2) cannot have spike steady states.

The paper is organized as follows. In section 2 we derive the finite sampling radius
model from biological observations. We properly define the nonlocal gradient and
we show some basic properties of

◦
∇ρ. In section 3 we prove global in time existence

of solutions to the model (2) in any space dimension. The proof relies on the trace
theorem for the nonlocal gradient and the Nash estimate. In section 4 we employ
linear stability analysis to determine the conditions under which aggregation is
possible, we summarise the classification into spikes and plateaus from [8], and we
show that (2) cannot have spike steady states. Moreover, we construct approximate
plateau steady states. In section 5 we present numerical simulations for the non-
local model (2), illustrate the possibility of pattern formation and the dependence
on the sampling radius ρ > 0. In particular, we show numerically that as ρ → 0
the solutions become singular (blowup). A rigorous discussion of convergence of
solutions for ρ → 0 is not done in this paper. We close the paper with a discussion
section 6, where we discuss the significance of our results and give an outlook to
future research directions.

2. The Finite Sampling Radius. While details vary between systems, common
to all processes of chemosensitive movement is the detection and response to an
external signal. In cells, detection of the external chemoattractant typically occurs
through binding to specific membrane receptors, for example Rappel et al. [29]
demonstrate that cells polarize in a signal gradient by measuring the actual signal
concentration along their body membrane. Incorporating the “sampling radius” into
models for chemotaxis thus arises naturally from these considerations: at its most
intuitive level it could represent the movement response through signal detection
at the cell membrane. In practice, this sampling radius may be many times larger
than the physical extent of the cell: studies on the physics of chemoreception by
Purcell and Berg [3] indicate that the effective sampling volume depends on the
time taken for a signal to be processed by a cell, and for realistic parameter values
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in Dictyostelium this can swell the physical sampling volume by several times [23].
The actual sampling volume can also be affected by cell shape: migrating cells
extend a variety of cellular protrusions, including pseudopodia, lamellipodia and
filopodia, the latter extending up to 80-100 µm in length.

Such considerations led Othmer and Hillen [22] to propose the inclusion of a finite
sampling radius in a model, as defined in (3). In this section we demonstrate how
such models can be derived from two different approaches: the first, a phenomeno-
logical approach, considers its derivation from a force balance approach, while the
latter considers the derivation from a kinetic transport equation.

2.1. Derivation from Force Balance. Our phenomenological derivation for a
class of non-local models including (2) follows the approach in [27]. Macroscopic
movement equations derive from Newton’s law by considering the forces exerted by
a cell in multiple directions. We assume that the cell density, u(x, t) follows the
general conservation law

ut = −∇ · J ,

where J is the cell flux, comprising of both a diffusive component, modelling random
effects, and a guided component modelling the chemotactic response,

J = Jdiffusion + Jchemotaxis ,

where we take Jdiffusion = −Du∇u for simplicity. Following the approach of [27],
we propose a chemotactic flux of the form

Jchemotaxis = uφF ,

where φF represents the chemotactic velocity with motility coefficient φ (which
could incorporate effects due to other chemicals, ECM or cell interactions) and F
is the net force generated by the cell in response to the chemical environment. The
above follows directly from Newton’s law, assuming negligible inertia (reasonable
at the low speeds of cell migration) and that drag is proportional to velocity.

The mechanism for force generation varies greatly between cells. In ameoboidal
cells such as Dictyostelium and leukocytes, force is generated through the creation
of adhesive attachments at the cell membrane with the substrate/ECM; such cells
frequently extend pseudopods in multiple directions during movement, e.g. Varnum-
Finney et al. [34]. Under this assumption, a one-dimensional cell centred at x
and of radius ρ can generate forces in the positive/negative direction of magnitude
f± ≡ f(a(x± ρ)), where a represents the number of adhesive attachments made by
the cell. The net force is

F = f(a(x + ρ))− f(a(x− ρ)) ,

which, upon substituting into the flux gives,

J = −Duux + uφ(f(s(x + ρ))− f(s(x− ρ))).

Mass conservation thus takes the form

ut = Duuxx − (uφ(f(a(x + ρ))− f(a(x− ρ))))x .

The extension to higher dimensions is similar. The magnitude of the force in a di-
rection σ (|σ| = 1) will depend on the number of attachments made at the boundary
in that direction,

f(σ) = f(a(x + ρσ)).
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Summing over all directions to obtain the net force and substituting into the con-
servation equation, we obtain a non-local model for cell movement:

ut = Du∆u−∇ ·
(

uφ

∫

Sn−1
σf(a(x + ρσ))dσ

)
.

To apply the model to chemotactic-cell movement, we must consider the gen-
eration of force in response to an external signal. Here, in the interest of model
simplicity, we ignore many of the details; a comprehensive model could incorporate
any number of processes, including binding of chemoattractant to cell surface re-
ceptors, internal signalling, etc. We take the simplest assumption: the number of
focal attachments, and hence the force, generated along the membrane is directly
proportional to the local chemoattractant concentration, i.e.

f(a(x + ρσ)) ∝ b(x + ρσ) , (5)

where b represents the concentration of attractant-bound receptors. Under the
simple model for attractant-receptor binding (see Othmer and Stevens [24]), we
assume

b =
Ks

γ + s
(6)

Clearly, for sufficiently large γ, we can take b ∝ s, leading to the non-local model

ut = Du∆u−∇ ·
(

uφ

∫

Sn−1
σs(x + ρσ)dσ

)
,

st = Ds∆s + h(u, s).

With the scaling φ = χn
ωρ , we obtain the nonlocal system (2)-(3). This scaling is

chosen to permit direct comparison with the classical chemotaxis system (1).

2.2. Derivation from a Kinetic Transport Equation. The nonlocal model
can also be derived from a kinetic transport model, in which cells are assumed to
perform a velocity jump process. The nondimensionalized master equation then has
the form

ε2ft + εv · ∇f = T0(f) + εT1(f) ,

where f(x, v, t) is the distribution function of cells in the position-velocity phase
space, and the small dimensionless parameter ε results from a macroscopic diffu-
sion scaling. The left hand side of the equation models movement with constant
velocities, whereas the right hand side describes the velocity jumps. We consider a
dominating isotropic process, where all possible post-jump velocities have the same
probability:

T0(f)(x, v, t) =
1
|V |uf (x, t)− f(x, v, t) =

1
|V |

∫

V

[f(x, v′, t)− f(x, v, t)]dv′ .

Here V and |V | denote the set of all possible velocities (assumed to be rotationally
symmetric) and its measure, respectively. This is the simplest possible model. For
the second process, the cell measures the chemical concentration along a sphere
with radius ρ around its position x. Post-jump velocities with directions of higher
chemical concentration occur with higher probability. The turning operator is given
by

T1(f)(x, v, t) =∫

V

[
b

(
s

(
x + ρ

v

|v| , t
))

f(x, v′, t)− b

(
s

(
x + ρ

v′

|v′| , t
))

f(x, v, t)
]

dv′ ,
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where the rate b (s (x + ρv′/|v′|, t)) (b increasing) of jumping from velocity v to v′

could be modelled as proportional to the concentration of bound receptors as a
function of the extracellular signal s. A continuum model of Keller-Segel type can
be derived by the macroscopic limit ε → 0. We shall sketch the formal procedure.
More details and rigorous justifications can be found in [9], [22], [5].

Obviously, the limiting distribution function is independent from the velocity:
f0(x, v, t) = u(x, t)/|V | with the macroscopic cell density u, which is not determined
by the limiting equation T0(f0) = 0. After dividing the transport equation by ε, we
have

εft + v · ∇f = T0

(
f − f0

ε

)
+ T1(f) .

Denoting the limit of (f − f0)/ε by R, we obtain

R = −v · ∇f0 + T1(f0) + u1

Finally, division of the transport equation by ε2 and integration with respect to v
gives the conservation equation

(uf )t +∇ ·
∫

V

v
f − f0

ε
dv = 0 .

In the limit ε → 0, the convection-diffusion equation

ut +∇ · (−Du∇u + uvs) = 0 ,

is obtained. The diffusivity is given by Du = 1
n|V |

∫
V
|v|2dv, and the macroscopic

chemotactic velocity can be computed as

vs = χ

∫

Sn−1
σ b (s (x + ρσ, t)) dσ , (7)

where the constant χ results from the integral in the radial direction. For linear
b, the chemotactic velocity is proportional to the nonlocal approximation of the
gradient as in (2). In Section 5, numerical experiments are also carried out with a
nonlinear b, modelling saturation of bound receptors.

3. The Nonlocal Chemotaxis Model Prevents Blow-up. The main theoret-
ical result of this paper is global existence and uniform boundedness of solutions of
(2), posed on a domain Ω ⊂ Rn with smooth boundary, subject to initial conditions

u(x, 0) = uI(x) , s(x, 0) = sI(x) , x ∈ Ω , (8)

and zero flux boundary conditions

n · ∇s = n · (Dnu∇u− χu
◦
∇ρ s) = 0 , on ∂Ω , (9)

where n denotes the unit outward normal along ∂Ω. We allow the whole space case
Ω = Rn. If Ω has a boundary, it is assumed to be smooth, and ρ is assumed small
enough, such that

ωΩ(x) ≥ ω > 0 for all x ∈ Ω . (10)

We denote the Lp(Ω)-norm by ‖ · ‖p and start with a general lemma on convection-
diffusion equations.
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Lemma 1. Let the components of the vector field v : Ω×(0,∞) → Rn be uniformly
bounded, and let uI ∈ L∞(Ω) ∩ L1(Ω) satisfy uI ≥ 0. Then the solution of the
initial-boundary value problem

ut = ∇ · (∇u− uv) , u(t = 0) = uI , n · (∇u− uv) = 0 on ∂Ω ,

satisfies u ∈ L∞((0,∞)× Ω) and

sup
t
‖u‖∞ ≤ C(‖uI‖1, ‖uI‖∞, sup

t
‖v‖∞, n) .

Proof: We start with a formal computation. For 1 ≤ p < ∞, we obtain
d

dt
‖u‖p

p = 2(p− 1)
(
−2

p
‖∇(up/2)‖22 +

∫

Ω

up/2v · ∇(up/2) dx

)

≤ 2(p− 1)
(
−1

p
‖∇(up/2)‖22 +

p

4
sup

t
‖v‖2∞‖u‖p

p

)
. (11)

Now, similarly to [2] we use the Nash inequality [20]

‖f‖1+2/n
2 ≤ cn‖f‖2/n

1 ‖∇f‖2 ,

with f = up/2 and with the abbreviation zp(t) = ‖u(·, t)‖p
p:

dzp

dt
≤ 2(p− 1)zp


p

4
sup

t
‖v‖2∞ − z

2/n
p

pc2
nz

4/n
p/2


 . (12)

This will lead to a global-in-time bound for zp in terms of a bound for zp/2. The
strategy of the rest of the proof is to iteratively obtain bounds for z2k for all k ∈ IIN
and to show that these bounds are uniform in k such that the result of the lemma
follows by k →∞.

By interpolation, we have that

‖uI‖p ≤ ‖uI‖(p−1)/p
∞ ‖uI‖1/p

1 ≤ max{‖uI‖∞, ‖uI‖1} =: K .

We use induction to show that

z2k(t) ≤ Mk, (13)

where

Mk = max{K2k

, A2nkM2
k−1}, M0 = K,

and a k-independent constant

A := 2−n(sup
t
‖v‖∞cn)n.

Indeed, for k = 0 we use z1 ≤ K (as a consequence of conservation of mass) and
obtain from (12) that

dz2

dt
≤ 2z2

(
1
2

sup
t
‖v‖2∞ − z

2/n
2

2c2
nK4/n

)
. (14)

The right hand side of (14) has two zeroes, at z2 = 0 and z2 = 2nAK2. If the initial
condition z2(0) ≥ 2nAK2 then z2(t) ≤ z2(0) = ‖u(., 0)‖22 ≤ K2. If z2(0) ≤ 2nAK2

then z2(t) ≤ 2nAK2. Which proves the claim (13) for k = 1.
Now assume (13) holds for k − 1. Then

dz2k

dt
≤ 2(2k − 1)z2k

(
2k

4
sup

t
‖v‖2∞ − z

2/n

2k

2kc2
nM

4/n
k−1

)
. (15)
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The zeroes of the right hand side (15) are now 0 and A2nkM2
k−1. With the same

argument as above we conclude that

z2k(t) ≤ max{K2k

, A2nkM2
k−1}

which proves the claim (13).

Again by induction it is straightforward to show that

K2k ≤ 2knM2
k−1,

Hence with B = max{A, 1}, we may change the definition of the upper bounds to

Mk = B2knM2
k−1 , M0 = K .

The solution of this recursion is

Mk = B2k−12aknK2k

,

with ak = k +2ak−1, a0 = 0. Since ak = 2k+1− k− 2 < 2k+1 and B ≥ 1, we obtain
Mk ≤ (B4nK)2

k

and, thus, the uniform-in-k bound

sup
t
‖u‖2k ≤ 4n max{‖uI‖∞, ‖uI‖1} max

{
1, (sup

t
‖v‖∞cn/2)n

}
,

completing the proof.

Theorem 1. Let χ, ρ, Du, Ds, α, and β be positive constants, let the initial data
satisfy

uI ∈ L∞(Ω) ∩ L1(Ω) , sI ∈ W 1,q(Ω) ,

with 1 < q < n
n−1 , and, if Ω has a boundary, let (10) hold. Then (2), (8), (9) has

a global solution with

u ∈ L∞((0,∞)× Ω) ,

i.e., the cell density is uniformly bounded in position and time.

Proof: Local existence is a standard result, and global existence will be a conse-
quence of the estimates we shall derive.

By the assumptions on the initial data and mass conservation we have ‖u‖1 =
‖uI‖1. This implies (analogously to Hwang-Kang-Stevens [15]) that s is bounded
in W 1,q(Ω) uniformly in t. By the smoothness of ∂Ω, there exists an extension to
Rn bounded in W 1,q(Rn).

The sphere Sρ with centre in the origin and radius ρ is a smooth (n − 1)-
dimensional manifold. Therefore, by the standard result on traces, W 1,q(Rn) is
continuously embedded in W 1−1/q,q(Sρ) and, consequently, also in L1(Sρ) (by the
boundedness of Sρ). Therefore,

| ◦∇ρ f(x = 0)| ≤ c‖f‖W 1,q(Rn)

holds for the whole space definition (3) of
◦
∇ρ. The choice f(x) = s(x0 + x, t) and

the translation invariance of the W 1,q(Rn)-norm imply that ‖ ◦
∇ρ s‖∞ is bounded

uniformly in time, again for the definition (3) of the nonlocal gradient. This imme-
diately implies the same result for the nonlocal gradient as defined by (4), since the
measure ωΩ(x) is bounded away from zero.

Now the proof is completed by an application of the previous lemma.
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Remark 1. Almost the same proof can be used for a quasistationary model for
the chemoattractant, i.e., when the time derivative is cancelled in the s-equation.
Instead of the result for parabolic equations from [15] a corresponding result from
potential theory would have to be used. The assumption β > 0 on the decay of the
chemoattractant helps, but is possibly not essential.

4. Steady States. In this section we investigate steady states of the non local
chemotaxis model (2). We will show that steady states cannot have spike local
maxima and construct approximative plateau steady states.

Steady states of the non local model (2) satisfy the equations

0 = ∇ · (∇u− χu
◦
∇ρ s)

0 = Ds∆s + αu− βs,
(16)

4.1. Linear Stability Analysis in 1-D. To compare the stability properties of
the model (2) to those of the classical chemotaxis model (1) we perform a linear
stability analysis at the homogeneous steady state for the one-dimensional case of
(2).

A homogeneous steady state for system (16) is given by (ū, s̄) where s̄ = αū/β,
and ū is determined by the initial population density. Linearization of (2) in 1-D
at the steady state gives

ut = uxx − χū(
◦
∇ρ s)x

st = Dssxx + αu− βs,
(17)

We use Fourier transformation to obtain the characteristic equation between eigen-
values λ and modes k. The 1-D nonlocal gradient is

◦
∇ρ s =

1
2ρ

(s(x + ρ)− s(x− ρ))

while its Fourier transform is given by

F(
◦
∇ρ s) = i

sin(kρ)
ρ

F(s).

Transforming the linearized system (17), we find that the stability is determined by
the eigenvalues λ of the matrix

Ak :=

(
−k2 kχū sin(kρ)

ρ

α −Dsk
2 − β

)
.

The trace and determinant of Ak are

trAk = −k2(1 + Ds)− β < 0 detAk = k2(Dsk
2 + β)− αχūk

sin(kρ)
ρ

.

For k = 0 we find detA0 = 0. Hence, for k = 0 there exists an eigenvalue λ0 = 0,
which relates to the conservation property of (2). For a given total population we
obtain instability, if we find a mode k > 0 for which detAk < 0. This translates
into the condition

k(Dsk
2 + β) < αχū

sin(kρ)
ρ

. (18)

Note that for ρ → 0, we have sin(kρ)
ρ → k. Then (18) reduces to the necessary

condition for pattern formation in the classical chemotaxis model (1), i.e.

Dsk
2 + β < αχū. (19)
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Since for each ρ > 0, sin(kρ)
ρ < k, condition (18) for instability in the non-local

model is stronger than the corresponding condition (19) for the classical model. In
particular, given that (19) is satisfied, it is always possible to determine a bounded
ρc for which no pattern formation is possible for ρ > ρc. Since | sin(x)| ≤ 1 we can
explicitly calculate

ρc = sup
k>0

{
αχū

k(Dsk2 + β)

}
.

For example, if we study (2) with homogeneous Dirichlet boundary conditions on
an interval [0, L], then the supremum would be obtained for k = π/L.

4.2. Properties of the Non-Local Gradient. The nonlocal gradient (3) has the

properties that
◦
∇ρ s(x, t) = 0 for constant distribution s and that for differentiable

s(x) we have

lim
ρ→0

◦
∇ρ s(x) = ∇s(x).

It is rather useful to study the Taylor expansion of the non local gradient for
small ρ > 0. In Hillen [8] it is shown that

◦
∇ρ s(x) = ∇s(x) +

ρ2

2(2 + n)
∇(∆s(x)) +O(ρ4), (20)

where n is the space dimension and ∆ denotes, as usual, the Laplacian. Hence the
first correction term to ∇s is of third order.

It would be interesting to study rigorously the convergence of solutions of (2) for
ρ → 0. In which sense, if at all, do they converge to solutions of (1)? We will not
address this question here.

As shown in [8] the nonlocal gradient can be used to classify local maxima and
to distinguish spikes versus plateaus.

Definition 1. (from [8]) A local maximum x0 of f : U ⊂ Rn → R is called a

spike ⇐⇒ ∃ ρ∗ > 0 such that
◦
∇ρ

(∇f(x0)
)− Hess

(
f(x0)

)
is positive

definite for all 0 < ρ < ρ∗,

plateau ⇐⇒ ∃ ρ∗ > 0 such that
◦
∇ρ

(∇f(x0)
)− Hess

(
f(x0)

)
is negative

definite for all 0 < ρ < ρ∗.

Using the n-dimensional Taylor expansion we have proven in [8]

Theorem 2. Assume f ∈ C5(U) and Hess
(
∆f(x0)

)
is invertible. Then

x0 is a spike ⇐⇒ Hess
(
∆f(x0)

)
is positive definite,

x0 is a plateau ⇐⇒ Hess
(
∆f(x0)

)
is negative definite.
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4.3. No Spikes.

Theorem 3. Assume the steady state u(x), s(x) of (2) have a common local maxi-
mum. Then this maximum cannot be a spike.

Proof. We rewrite the first equation of (16) as

0 = ∇ · (∇u− χu∇s + χu(∇s− ◦
∇ρ s)).

Using a transformation introduced by Nanjundiah [19] we define

ψ = ue−χs.

Then we obtain

0 = ∇ · (∇ψeχs) + χ∇ · (u(∇s− ◦
∇ρ s))

= eχs
(
∆ψ + χ∇ψ · (2∇s− ◦

∇ρ s)

+χψ(∇s · (∇s− ◦
∇ρ s) +∇ · (∇s− ◦

∇ρ s))
)

(21)

Now we assume that u, s and ψ have a common local maximum at x0 ∈ M , i.e.

∇ψ(x0) = 0, ∆ψ(x0) < 0, ∇u(x0) = 0, ∆u(x0) < 0, ∇s(x0) = 0, ∆s(x0) < 0.

Then (21) evaluated at x0 reduces to

0 = ∆ψ + χψ(∆s−∇· ◦∇ρ s). (22)

If the local maximum is a spike as defined in Definition 1, then the matrix
◦
∇ρ (∇s(x0))−Hess(s(x0))

is positive definite. This implies in particular that

∆s(x0)−∇·
◦
∇ρ s(x0) < 0,

which together with ∆ψ(x0) < 0 gives a contradiction to (22). Hence x0 cannot be
a spike.

4.4. Approximate Plateaus. We saw in the previous subsection that steady state
solutions are not of spike type. Here we show that pattern formation still can occur
in form of plateau solutions. We were not successful to explicitly find plateau
solutions for the nonlocal model (16), we can, however, find approximate steady
states.

For ρ small enough the nonlocal gradient can be approximated as shown in (20).
We take the first two terms and define

φ(x) := s +
ρ2

2(2 + n)
∆s

Then the approximate steady states on a smooth bounded domain Ω satisfy the
fourth order equation

0 = ∇ · (∇u− χu∇φ)
0 = Ds∆s + αu− βs,

(23)

From this representation we see that the nonlocal gradient regularizes the same way
as a fourth order term does. We study

Ψ = ue−χφ
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and obtain

0 = (∆Ψ + χ∇Ψ · ∇φ)eχφ.

Hence Ψ satisfies a Hopf maximum principle, thus Ψ(x) must be constant.

Ψ(x) = Ψ.

Since Ψ = ue−χφ we find

u = Ψeχφ φ =
1
χ

(lnu− c), c = lnΨ.

The steady state system (23) becomes

s + ρ2

2(2+n)∆s = 1
χ (lnu− c)

Ds∆s = βs− αu,
(24)

We use the second equation of (24) to replace ∆s in the first equation, which gives

s
(
1 + βρ2

2(2+n)D

)
= αρ2

2(2+n)Du + 1
χ (ln u− c)

Ds∆s = βs− αu,
(25)

For convenience we introduce

κ :=
ρ2χ

2(2 + n)D

and we solve the first equation of (25) for s:

s =
ακu + ln u− c

χ + βκ
.

This expression for s is then used in the second equation of (24) to obtain a second
order equation for u:

∆u

(
ακ +

1
u

)
− (∇u)2

u2
=

β

D
ln u− c

D
− ακ

D
u. (26)

We study the one-dimensional case on an interval [0, l] with homogeneous Neumann
boundary conditions in more detail. In one space dimension equation (26) can be
written as a first order system

u′ = w

w′ = Dw2+βu2 ln u−cu2−αχu3

D(αχu2+u)

(27)

with boundary conditions

w(0) = 0 w(l) = 0.

The steady states of (27) satisfy w = 0 and u = 0 or

β ln u− c− αχu = 0. (28)

The equation (28) has zero, one or two roots. In a systematic analysis of all cases
(not shown here) it turns out that only the case of three roots gives non-trivial steady
states. In Figure 1 we show an example for D = 1, µ = 0.12, β = 1, ν = 1, κ = 10.
In Figure 1 (a) the vectorfield of (27) is shown and in Figure 1 (b) typical nontrivial
plateau steady states are shown in the phase plane.

Note that for ρ → 0 equation (28) becomes β ln u = c, hence it has exactly
one root at u = ψeβ . The third root diverges to ∞ and the plateau steady states
disappear.
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Figure 1. (a) The vectorfield for the case of three roots of the
equation (28). (b) Plateaus solutions appear as closed circles
around the third equilibrium point.

5. Numerical Results.

5.1. Numerical Method. We turn our attention to numerical solutions of the
non-local chemotaxis model. The right-hand sides of the system (2) are discretised
in conservative flux form, employing a second order central differencing scheme for
the diffusion terms and a high order upwinding method with a Koren flux limiting
function for the advective term. The conservative flux form is appropriate for the
diffusion-advection equation, as it ensures mass conservation ([14]). Flux limiting
allows higher order upwinding for the advective term, while maintaining positivity
of solutions. The direction for the upwinding depends on the sign of the non-local
term in the advective component, calculated at the boundary between adjacent
mesh points. In one dimension, it is thus necessary to calculate concentration data
at c(xb ± ρ), where xb denotes the midpoint between adjacent mesh points. We
approximate c(xb ± ρ) by linear interpolation using the nearest two mesh points.
The two-dimensional problem is solved analogously, yet determining the non-local
term now requires calculation of the integral on a circle of radius ρ, centred on the
mid-point between adjacent mesh points. We approximate this by discretising the
circle into a lattice of surface grid points, and employing linear interpolation from
the surrounding domain grid points to give cell/chemical densities at the surface
grid points. Time integration is carried out using an explicit trapezoidal scheme;
investigations into higher order schemes (e.g. 4th order Runge-Kutta) yielded lit-
tle difference. More efficient time integration techniques, for example applying
“operator-splitting” and using distinct methods (e.g. implicit, explicit) to each
right hand side term should be investigated in a more extensive numerical study.

For simplicity in calculating the non-local terms, we set periodic boundary con-
ditions; biologically relevant boundary conditions (e.g. Dirichlet or zero-flux) can
also be applied, yet one must pay appropriate attention to the non-local term near
the boundaries (see (4)) . To determine the approximate accuracy of the solver, a
series of test simulations were performed and compared against a “reference” solu-
tion computed on a highly refined grid. Calculations determined our scheme to be
approximately second order accurate in space.

5.2. Aggregation Results.

5.2.1. 1D Numerics. In Figure 2 we show the results of a typical simulation of
the 1D non-local model. Parameters have been selected such that the instability
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Figure 2. Evolving cell (solid) and chemical (dotted) profiles for
the 1D non-local model. The following parameters are chosen:
Du = Ds = α = β = 1.0, ρ = χ = 2.0 on a domain [0, 40] with
periodic boundary conditions. We initially set u(x, 0) = 1.0 and
a small random perturbation of the homogeneous steady state for
the chemical concentration. 401 mesh points are used for the grid.

condition, (18), is satisfied. The numerics demonstrate the formation of multiple
cell aggregations, which subsequently undergo a coarsening process until a single
peak remains. This behaviour is analogous to that observed in Keller-Segel type
models of chemotaxis (e.g. see [25]).

To demonstrate the effect of the sampling radius, we simulate the model over
a range of ρ. For ρ → 0, the non-local model reduces to the classical Keller-
Segel model (1) and we plot solutions for this case in Figure 3 (a) for comparison.
Numerical simulations at small ρ, Figure 3 (b) demonstrate a predictably close
match. Increasing the radius results in a lower peak/broader aggregation, (c)-
(f). It is possible to use condition (18) to determine the critical value for ρ above
which patterning is no longer possible. The lowest non-zero mode k satisfying the
boundary conditions is k = 2π/L, where L is the domain length. Substituting this,
together with the parameters listed in Figure 3, into (18) we determine ρc = 2.2552
to 4 d.p. This value is both confirmed by and validates the accuracy of the numerical
simulations: for ρc = 2.255 an aggregation (albeit small) eventually develops, Figure
3 (g), while an increase of ρc to 2.256 results in no pattern formation, (h).

5.2.2. 2D Numerics. We extend the numerical analysis to two dimensions. In 2D
the classical Keller-Segel model is known to exhibit finite time blow-up (for suitable
initial data). A typical scenario is shown in Figure 4 (a): already at T = 13.8
the cell density is highly concentrated, and the solution can no longer be computed
(numerical blow-up). In Figures 4 (b)-(e) we plot cell density profiles under different
ρ for the non-local model. The global existence result for the non-local model is
confirmed by the numerics: inclusion of a sampling radius prevents blow-up and
allows solutions to evolve to a heterogeneous steady state solution. The 2D numerics
parallel the 1D observations: decreasing ρ results in a concentrated solution and a
plot of the maximum density vs ρ appears consistent with convergence to a blow-up
solution as ρ → 0, Figure 4 (f). Increasing ρ results in a dispersed peak and above
some critical radius ρc aggregation is no longer possible Figure 4 (e) .
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Figure 3. Intermediate (dashed) and long term (solid) cell den-
sity profiles for the non-local model under various ρ: (a) ρ = 0,
corresponding to the classical Keller-Segel model, at times T = 30
and 200; (b) ρ = 0.1 at T = 30, 200; (c) ρ = 0.2 at T = 30, 200;
(d) ρ = 0.5 at T = 30, 200; (e) ρ = 1.0 at T = 40, 500; (f) ρ = 2.0
at T = 40, 500; (g) ρ = 2.255 at T = 1000, 200000; (h) ρ = 2.255
at T = 1000, 200000. Parameter values as for Figure 2 on a do-
main [0, 10] (201 mesh points). Initial conditions are u(x, 0) = 1.0,
v(x, 0) = 0.95 + 0.1 exp(−0.1(x− 5)2).

In Figure 5 we plot solutions on a larger initial domain; here initial conditions
consist of a random spatial perturbation from the homogeneous steady state. Sim-
ulations indicate pattern formation, with a number of cell aggregations emerging
at (roughly) equally spaced locations. Altering the sampling radius alters both the
density of the peak, but also the number of the aggregations to emerge.

5.3. Model Variations. The numerical results above confirm the earlier analysis:
critically, we observe global existence for the non-local model (2) with (3). This
formulation of the model relates to a precise set of assumptions stipulated during
the derivation. To indicate whether the inclusion of the non-local term allows global
existence for more general formulations, we numerically solve some model variants.

5.3.1. Incorporation of Receptor Binding. During the derivations of the model, lin-
ear functions were chosen to describe key processes for simplicity. More plausible,
nonlinear forms, can also be chosen; for example by taking a saturating dependence
on the signal concentration (i.e. of the form (6) in (5) or in (7)), we derive the
following non-local term:

∫

Sn−1
σ

s(x + Rσ, t)
k + s(x + Rσ, t)

dσ.

Replacing the integral term in equation 3 with the above still allows pattern forma-
tion, albeit with a less concentrated peak, Figure 6 (a).
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5.3.2. Non-Diffusing Scenarios. Tactic responses to non-diffusing substances can
occur in a number of instances. “Haptotaxis”, for example, describes cell movement
along gradients of adhesion molecules tightly bound to a rigid extracellular matrix.
Non-diffusing chemical species in classical chemotaxis models often create greater
numerical challenges: steeper gradients develop and blow-up can occur even in 1D.
Numerics indicate that the non-local term resolves such difficulties, and solutions
still appear to exist globally Figure 6 (b).

6. Discussion. In this paper we introduced a non-local gradient sensing term into
the classical chemotaxis equations. We have proven that solutions to the non local
model exist globally in time, on bounded and unbounded domains, independent of
the space dimension.

The explicit incorporation of a non-local sampling radius for the cell response
to its environment provides a new level of detail for describing cell migration in
response to external cues. In this paper, we have explored the general property of
solutions to the model including its ability to exhibit pattern formation, the global
existence of solutions and the nature of the steady states. We have seen that, as
ρ → 0, the solutions become higher and steeper and finally blow-up for ρ = 0. In
addition, plateau steady states cease to exist for ρ = 0.

Numerical simulations of the model indicated the global existence properties
of the non-local model may extend to even stronger cases than that determined
theoretically in Section 3. For example under zero-diffusion of the chemical species,
a case that leads to blow-up even in 1D for the classical chemotaxis model, steady
state patterns still develop (Figure 6 (b)). This result remains to be demonstrated
analytically.

While this paper has not had a specific biological application in mind, it is
necessary to consider the use of the model in specific biological processes. The
explicit incorporation of a non-local sampling radius, with its length scale of cell
diameters, limits the ability to perform numerical explorations at “truly macroscopic
scales” (for example, the size of large tissues/organs or Dictyostelium and bacteria
aggrgations). Thus, this model may be most appropriate at a “mesoscopic-level”
- i.e. where the length scales of movement are not “hugely” greater than the size
of individual cells, but when a macroscopic approach is still desirable. Two such
applications include the formation of vascular patterns, or the invasion of tumour
cells into surrounding tissue. An open question is thus raised as to whether it is
possible to derive fully macroscopic models (i.e. PDE models) which retain the
important characteristics of the non-local sampling radius. A clue to one approach
for this may lie in the Taylor Expansion of the non-local term, Equation (20). While
applying the first non-zero term in this expansion leads straight to the classical
Keller-Segel model, using the first two non-zero terms adds a fourth order dissipative
term.
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Figure 4. (a) Numerical simulation of the classical Keller-Segel
model (ρ = 0). Simulation shown at t = 13.8, just prior to “nu-
merical blow-up”. (b)-(e) Steady state cell density patterns for
the non-local model for increasing ρ: (b) ρ = 1.0, T = 100 (c)
ρ = 2.0, T = 150 (d) ρ = 2.5, T = 300, (e) ρ = 3.0, T = 300.
(f) Plot showing peak cell density as a function of ρ. Model pa-
rameters as for Figure 2 on the domain [0, 10] × [0, 10] (75 by
75 grid points used). Initial conditions are u(x, y, 0) = 1.0 and
s(x, y, 0) = 0.5+e−0.5((x−5)2+(y−5)2) on the domain [0, 10]× [0, 10].
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Figure 5. Top row: cell density evolution for ρ = 3.0 for (a)
t = 100, (b) t = 150 (c) t = 200. Bottom row: cell density evolution
for ρ = 6.0 for (d) t = 200, (e) t = 300 (f) t = 400. Parameters as
for figure 2 on the domain [0, 40]× [0, 40] (100 × 100 mesh points).
Initially we take n(x, y, 0) = 1 and a random perturbation about
the homogeneous chemical concentration.
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Figure 6. Asymptotic cell density for two model variations: (a)
“receptor-binding” non-local term; (b) non-diffusion of the chemi-
cal species. Model parameters and initial conditions as for Figure
2 except in (a) where χ = 8 and k = 1 and (b) where Ds = 0.
Simulations solved on a domain [0, 10]× [0, 10] with 51 by 51 grid
points.


