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Abstract: The standard models for groups of interacting and moving indi-
viduals, (from cell biology to vertebrate population dynamics) are reaction-
diffusion models. They base on Brownian motion, which is characterized by
one single parameter (diffusion coefficient). In particular for moving bacte-
ria and (slime mold) amoebae, detailed information on individual movement
behavior is available (speed, run times, turn angle distributions). If such
information is entered into models for populations, then reaction-transport
equations or hyperbolic equations (telegraph equations, damped wave equa-
tions) result.

The goal of this review is to present some basic applications of transport
equations and hyperbolic systems and to illustrate the connections between
transport equations, hyperbolic models, and reaction-diffusion equations.
Applied to chemosensitive movement (chemotaxis) functional estimates for
the nonlinearities in the classical chemotaxis model (Patlak-Keller-Segel) can
be derived, based on the individual behavior of cells and attractants.

While reporting on traveling front problems, models with quiescent states,
and epidemic modeling in passing, a detailed review is given on two methods
of reduction for transport equations. First the construction of parabolic lim-
its (diffusion limits) for linear and non-linear transport equations and then
a moment closure method based on energy minimization principles. Closure
methods are studied for moment systems of any order, the lowest non-trivial
case (two-moment closure) leads to Cattaneo systems.

Keywords: Chemotaxis, transport equations, hyperbolic systems, Keller-
Segel model, telegraph equation, parabolic limit, moment closure

!University of Alberta, Mathematical and Statistical Sciences, Edmonton T6G 2G1,
Canada, thillenQ@Qualberta.ca, supported by ANumE and NSERC.

?Biomathemaytik, University of Tiibingen, Auf der Morgenstelle 10, D-72076 Tiibingen,
K.P.Hadeler @Quni-tuebingen.de, supported by ANumE.



1 Introduction

Hyperbolic models and transport equations are used in Mathematical Bi-
ology to model movement and growth of populations. For example certain
bacteria (like Escherichia coli or Salmonella typhimurium) show a very char-
acteristic movement pattern. Periods of straight runs alternate with periods
of random rotations which lead to reorientation of the cells ([4]). This be-
havior can be modeled by a wvelocity jump process, which in a continuum
formulation leads to a transport equation ([65]).

Transport models in one space dimension can be seen as hyperbolic sys-
tems. Moreover, in any space dimension, moment closure methods lead from
transport models to hyperbolic systems. In contrast to diffusion based mod-
els, transport models and hyperbolic systems do not show the unwanted
effect of infinitely fast propagation. Transport equations are based on de-
tailed information on turning rate, turning distribution and mean speed. The
relevant parameters can be extracted from the measurements of individual
paths.

Transport models for biological applications are closely related to trans-
port models in Physics, like semiconductor [49], radiation [50], and neutron
transport [42], as well as to thermodynamics [51] and the Boltzmann equa-
tion [7], [3]. In typical physical applications the directional changes of the
individual particles are driven by collisions. These collisions usually conserve
mass, momentum and energy, and hence the collision operator has a five-
dimensional null space. In a biological context only the total particle mass
is conserved. Otherwise the directional changes have to be treated as spon-
taneous (without collisions), and they do not necessarily preserve energy or
momentum. Hence the turning operator has a one-dimensional null space.
This difference becomes important if one uses functional analytic properties
of the operators involved (like spectral properties, stability, parabolic scaling
limits, asymptotic behavior etc.).

All moving species orient their movement on external information. For
bacteria the only source of information comes via their cell surface recep-
tors which collect information mainly on chemical cues. In chemotaxis, for
example, cells move towards high concentrations of a chemical attractant.
Experiments on chemotaxis measure either the behavior of the population
as a whole, e.g. in terms of densities (e.g. Woodward et al. [67]) or the
paths of individuals are followed with a video apparatus (Ford et al. [15]).
Of course the behavior of the population results from the movement of its
members. Mathematical modeling provides a way to relate the individual
and collective movement parameters, e.g. by forming parabolic limits.



The first mathematical model for chemotaxis is the Patlak-Keller-Segel
model (PKS), which is based on Brownian motion. It is known that the PKS
model shows all kinds of different patterns, e.g. standing waves, aggregation,
finite time blow-up, or spinodal decomposition patterns ([48]).

In this article we review hyperbolic models and transport equations to-
gether with their application to chemotaxis. We compare the resulting
chemotaxis models to the standard PKS-type models and we show that
in certain situations they have advantages while in others they are equally
applicable. Before describing non-linear chemotaxis models we first recall
simpler linear cases.

1.1 Correlated random walk in one-dimension

Movement in one space dimension with constant speed v and constant turn-
ing rate p can be described by a correlated random walk. The total pop-
ulation density u(t,z) is split as u = u™ + u~ into densities for right/left
moving part of the population, u™, ™, respectively. These are the variables
of the Goldstein-Kac model for correlated random walk ([19], [44]).
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This system can be transformed to an equivalent system for the total pop-

ulation density u and the population flux v = y(u* —u™):
_ 2 _
up + vz =0, vt + YUy = —pv. (2)

By eliminating the variable v (Kac’ trick) one obtains a telegraph equation
or damped wave equation.
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Note that the transition from (1) to (3) (which can be generalized to systems
with several dependent variables in any space dimension) is not completely
invertible ([24]).

If we let the parameters u and v go to infinity such that the quotient
72 /u converges to a number D > 0 then we formally obtain the parabolic
limit u; = Dug,;. Notice that in this linear case the transition is equivalent
to a scaling of space and time 7 = €2t and ¢ = ez with p and +y held constant.



1.2 The Linear Transport Equation

We denote the population density at time £ > 0, position z € IR", and
velocity v € V' C IR™ with p(t,z,v). We assume that the set of possible
velocities V' C IR" is bounded and symmetric (i.e. v € V = —v € V). Then
the linear transport model, which is based on a velocity jump process (see
e.g. Stroock [65] or Othmer et al. [53]) reads

%p(t,m,v) +v - Vp(t,z,v) = —pp(t,z,v) + u/T(v,'u')p(t,ac,v')dv'. (4)
Here y is the turning rate or turning frequency, and 7 = 1/p is the mean
run time. The kernel T'(v,v") describes the probability for the new velocity
v given the previous velocity v', hence [T (v,v")dv = 1.

The one dimensional Goldstein-Kac model (1) occurs as a special case in
one space dimension if we study (4) with v € {£~v} and T'(v,v') = 1/2.

1.3 Models with Reaction

Reaction diffusion equations are the standard models for spread in space and
interaction of particles, e.g. density-dependent birth and death processes
(e.g. Murray [52]). If the diffusion process is replaced by a more detailed
transport process, then reaction transport models result.

pitv-Vp=—pp+u [ T0.0)p(t2, o) + Fil,  (5)

where the functional F[p] describes the growth dynamics (see [23]).

Whereas in earlier papers on reaction transport equations (and on cor-
related random walk models with reactions) the nonlinearity has not been
further specified, later, with respect to ecological modeling, a clear distinc-
tion between production and removal events has been made. If, for example,
the newly produced individuals have a uniform distribution of velocities, then
the nonlinearity has the form

Flp] = %b(mo)m0 — g(m°)p,

with non-negative rates b(m?), g(m°). The total population density is de-
noted as

mO(t, z) :/Vp(t,a:,v) dv (6)

(we will use m? for moments later). This model preserves positivity. In the
isotropic case, where the non-linearity depends only on m®, F[p] = f(m?),



positivity can no longer be guaranteed if f changes sign. For isotropic and
non-isotropic models boundary value and spectral problems have been stud-
ied in [24]. The traveling front problems in the case of one space dimension
(which covers also the case of Cattaneo systems in any space dimension) have
been studied in a sequence of papers, where [25] gives the most detailed anal-
ysis. For the stability of hyperbolic fronts see also [18]. Schwetlick [61, 62]
has obtained rather general results on the minimal propagation speed in re-
action transport equations (which depends on space dimension in a natural
way) and on the existence of fronts.

1.4 Resting states

In reaction diffusion equations and related semilinear transport equations
the transport and the interaction processes run parallel. However, in many
realistic situations they alternate, either periodically or with random tran-
sitions. Periodically alternating actions lead to non-autonomous problems
([29]) while random transitions lead to a new class of reaction diffusion or
transport systems. Typical examples are systems derived from the Fisher
equation ([47], [28])

v = DAv— v+ yw
w = flw) —mnw+ o (7)

with f(w) = w(1 —w), describing a moving state v and an interacting state
w. This system is essentially equivalent to a formal wave equation with
nonlinear diffusion and with viscous damping (with 7 = 1/(y1 + 72) and

pi = T;)
Twy + (1 —7f(w))wy — 7DAw,
= p1DAw + paf(w) — TDAf(w). (8)

In this equation again a “parabolic limit” 7 — 0 can be taken which results
in another rescaled Fisher equation.

The wave operator in this problem, i.e., wy—p1 DAw+7DA f(w), shows a
transition from hyperbolic to elliptic for large 7. Models of this form also play
a role in the theory of infectious diseases, where the moving and sedentary
states correspond to long range and short range infections [26]. These phe-
nomena and connections suggest to study transport equations with sedentary
states in general [33]. The spectral theory as developed in Section 3 carries
over to transport equations with resting phases and diffusion limits can be
studied in that framework [33]. It turns out that a spatially dependent stop-
ping rate y2(z) leads, in the parabolic limit, to a drift term proportional to



V~s2(z). This describes a net drift towards favorable habitats (rich nutrition
or shelter).

In general it can be stated that introducing a resting state into a given
dynamics tends to remove oscillations, quite in contrast to a delay which
(together with negative feedback) tends to enhance oscillatory behavior, see
a forthcoming paper [27].

2 Models for Chemotaxis

If the movement of a population or an individual is biased by a chemical
signal the response is termed chemotazis (or more generally chemosensitive
movement). Models for chemotaxis have been successfully applied to bac-
teria, slime molds, skin pigmentation patterns, leukocytes and many other
examples.

As mentioned in the introduction the first model for chemosensitive
movement has been developed by Patlak [57] and Keller and Segel [45].
Patlak’s model is based on a detailed random walk description [57].

The Keller-Segel model in its general form consists of four coupled re-
action diffusion equations. In most cases it is reduced to two essential vari-
ables, the population density u(t,z) and the concentration of a chemical
signal v(t,z). The Keller-Segel model reads

ur = V(ki(u,v)Vu — ka(u,v)Vo) 9)
vy = keAv—k3(v)v +uf(v).

This system has been studied on unbounded and on bounded domains with
various boundary conditions (Dirichlet, Neumann, mixed). In two survey
articles, Horstmann [39, 40] gives an ample review of the many now available
analytical results, in particular on blow-up in finite time. In the case of
constant coefficient functions k1, ko, k3, and f it is known that the qualitative
behavior strongly depends on the space dimension. In 1-D the system has
globally existing solutions. The 2-D case in ambiguous and thresholds have
been found. If the total initial mass exceeds its threshold, then the solution
blows up in finite time. If the initial mass is below this threshold, then the
solution exists globally in time.

The blow-up solutions of the system (9) show the existence of a very
strong instability and a large aggregational force. In certain situations, how-
ever, it is desirable to obtain stable aggregation patterns, which do not blow
up in finite time. There are various mechanisms which prevent blow up.
These can be classified as follows:



1. Saturation effects in ko(u,v) occur very naturally if cell surface re-
ceptor kinetics is taken into account. Chemotaxis models with saturation
effects have been studied analytically and have been used in many appli-
cations (Othmer and Stevens [55], Biler [5], Rivero et al. [59], Ford et al.
[17)).

2. A wolume filling effect was introduced by Hillen and Painter [35, 56].
Here it is assumed that particles have a finite volume and that cells cannot
move into regions which are already filled by other cells. A simple version
of the volume filling method leads to a term ko(u,v) = xu(l — u). It was
shown analytically that this form of ko leads to globally existing solutions
in all space dimensions.

3. Quorum sensing occurs if the cells release an extra chemical which is
repulsive to other cells [35]. The resulting equation has two competing drift
terms, chemotactic attraction and quorum sensing repulsion. It is an open
mathematical problem to find general conditions such that solutions blow
up, or exist globally.

4. Also a finite sampling radius leads to global existence, at least in
2-D, as was shown by Hillen and Schmeiser [37]. Here it is assumed that
individuals measure the chemical substance on a disc with non-vanishing
radius (e.g. measurement around the cell surface membrane).

2.1 Hyperbolic Chemotaxis Models in 1-D

Here we describe a hyperbolic model for chemotaxis in one space dimen-
sion and outline the basic properties and results which are known to date.
The one dimensional model is applicable to data which have been collected
in highly symmetric “one-dimensional” experiments (e.g. Chen, Ford Cum-
mings [9], or Rivero [59]). Moreover, the study of the one-dimensional model
provides good insights into the analytical tools, which are important in 2 or
3 dimensions as well.

In experiments of Soll and Wessels [64], Fisher et al. [14], and others it
turns out that the speed and the turning rates of individuals do not depend
only on the concentration of the external signal S(¢,z) but also on temporal
and spatial variations Si(¢,z) and Sy(¢,z). The Goldstein-Kac model (1) is
easily extended to include chemotaxis effects:

ui + (1(S, 86, Se)ut)e = —pt(S, Sy, Se)ut + p (S, Si, Sp)u,
uy — (v(S, 8¢, Sz)u™)e = wpt(S, St Sz)ut — u= (S, St, Sz)u~,
7S = aSp + f(S,ut+u), >0,
ut(0,.) = u(jf, S(0,.) = So.

(10)



In this notation the rates y* are turning rates, whereas in (1) p is a stopping
rate and each direction will be chosen with probability of 1/2. The function
f(S,u™ +u~) describes production and decay of the external signal. System
(10) requires additional assumptions to ensure a well defined Cauchy prob-
lem, which does not allow for backward diffusion (for example through the
dependence on S;). A possible set of sufficient conditions is given in [36] or
in [41].

Special cases of (10) were studied or applied by Segel [63], Rivero et al.
[59], Greenberg and Alt [21], and Chen et al. [9, 8].

In [38] local and global existence of solutions has been proven for the
case of constant speed and for turning rates depending on S and S,. In
[36] global in time existence for v = y(S) has been shown, where the signal
distribution was assumed to be in quasi-equilibrium (7 = 0). The results
of [38] and [36] have been extended recently in [41] to include S; and Sy,
dependence in the turning rates and 7 # 0 for the case studied in [36].

2.2 The Parabolic Limit in 1-D

In this section we recall some of the results from [38], in particular the
scaling analysis which leads to a parabolic limit. Basically there are two
effects leading to chemotactic aggregation. Either particles slow down at
high concentration levels, or they turn less often if they move up a gradient.
Either effect is sufficient to produce aggregation.

To do the formal asymptotics we reformulate (10) in terms of the total
density v = u™ + v~ and the difference ¢ = uT — u":

ug + (v¢)z = 0,
g+ (e = —(uh —p)u+ (pt+p7)g, (11)
7St = aSge + [(S,u).

Similar to the analysis of the linear model (1), we can derive a telegraph
equation.

ug + hue — (Y(vu)z)z — (V" = p7)z + hag =0, (12)
with an auxiliary function

’yt(Sa St7 S:E)

— T B T (9 Q<
h(x,t) =M (S7 St7 SZ") +/j/ (S’ St’Sw) ’Y(S, St’SCC) .

(13)

We require that ~ does not depend explicitly on the space variable x. This
restriction on p*, is true for many applications. We give examples later.



We introduce a small scaling parameter € > 0 as

+
70 + _ Ho
y=, and T =5, (14)
where vy and uoi are of order 1 with respect to €. In this scaling we find
that "
h(t) = (::g ), with  ho = pg + ug — 270t (15)
and for ¢ — 0 we obtain
2 2
D=lim L =_ (16)

=0 h(t)  pd 4 pg

If we scale the corresponding telegraph equation accordingly then we obtain
for € — 0 the parabolic limit equation

up = (Dug —u®),, (17)

with a diffusion coefficient given by (16) and the chemotactic velocity ® given
by .
¢ = _M(J)F’YTOHE (70,:c + lim g(,U(J)r - M(?)) : (18)

A special case of this relation was derived and used in Rivero et al. [59] and
Segel [63].

If ® has the form ®(S,S;) = x(S)S; then (17) is the classical chemotaxis
model with chemotactic sensitivity x(S).

The chemotactic velocity (18) consists of two terms which can be inter-
preted independently:

1. Assume for now that v = y(S) > 0 and that the difference pj — pg is
of order €, for ¢ — 0, with some x > 1. Then p* —pu~ = O(¢" 2) and

Y0

Y Y- (19)
T
The limiting equation for chemosensitive movement (10) reads
0
Ut = (% (youz + ’Y(I)Swu)> . (20)
Mo T g =

In case that the population slows down at high concentrations of S,
7'(S) < 0, a net flow of the population in the direction of higher
concentrations of S occurs. This flow stabilizes aggregations.

If v/(S) > 0, i.e. if particles accelerate at high concentrations of S,
then the population will spread out.



2. If we assume that v = const. then the first term in (18) vanishes and
the chemotactic velocity is given by the difference in the turning rates.
We assume that this difference can be expanded as

ph—p = o1+ g,
with functions ¢4 (S, St, Sz), ©2(S, S, Sz). Hence the rescaled turning
rates satisfy ub" — o = EP1 +&%p,. and the chemotactic velocity reads
70

P=——7---¢1.
pg + g

For a linear function ¢; = ¢y(S)S; a PKS model is obtained

73 Yo
u = | ———uz + ———o(S)S U> : (21)
(uo“ruo S g+ s ).

The sign of the difference in turning rates determines the aggregation
behavior.

If S; > 0 and g < 0, then the part of the population moving up
the gradient, turns less often than the population moving downwards.
This behavior has been observed in bacteria.

If S; > 0 and g > 0, then the population moving up the gradient,
turns more often than the population moving downwards. Such be-
havior would destabilize aggregation.

Hence two effects lead to positive bias: When moving upward a sig-
nal gradient, individuals slow down, they lower their turning rate, or both.
These effects have also been found by Schnitzer [60] in a similar one-dimen-
sional hyperbolic model for bacterial movement, where memory effects have
been included.

3 Transport Models

There is a rich literature on transport models applied to populations. We
refer to the articles W. Alt [1, 2], Othmer, Dunbar and Alt [53], Chen et al.
[9], Dickinson and Tranquillo [12], Dickinson [11], and Hillen and Othmer
(34, 54].

In [34, 54] a general theory has been developed to obtain the parabolic
limit (diffusion limit) for a general transport equation which describes move-
ment of populations. We present the basic result in the following subsections.

10



In the case of chemosensitive movement in (4) the turning rate g and
the velocity distribution kernel T'(v,v") depend on the signal distribution
S(t,x), on its gradient V.S(t, ), or on other properties of S (e.g. non-local
dependence can be included).

w(S,VS,...), T(v,v') =T, 8,V8S,...) (22)

3.1 Basic Assumptions (T1)-(T4)

We consider (4) on © = IR". We assume that V' C IR" is compact and
symmetric such that v € V implies —v € V. Let K denote the cone of non-
negative functions in L?(V). We define the following operators on L?(V):

Tpv) = / T(v,v") T p(v) :/ T, v)p(v')dv
L = —p(I- T) '
where I denotes the identity. For the kernel T' we assume:
(T1) T(v,v") >0, [T(v,v')dv=1, and [ [T?(v,v")dv'dv < oo.

(T2) There exists some uy € K with ug # 0, some integer N and a constant
p > 0 such that for all (v,v") €V xV

uO(U) < TN(UIaU) < puo(v),
where the N-th iterate of T is

= /.../T(v,wl)T(wl,wz)---T(wN_l,fu')dwl...dwN_l.

(T3) |I71/¢1yr < 1, where (1)* denotes the orthogonal complement of the
subspace (1) C L?(V) of functions constant in v.

(T4) [, T(v,v")dv' = 1.

Under these assumptions the turning operator £ has the following Krein-
Rutman properties:

Theorem 1 Assume (T1)-(T4). Then
1. 0 is a simple eigenvalue of L with eigenfunction ¢(v) = 1.

2. There exists an orthogonal decomposition L*(V) = (1) @ (1)* and for
all € (1) we have

[vepd < —wlplitay), with vo = p(l - [Tl

11



3. Each eigenvalue A # 0 satisfies —2pu < Re A < —vy < 0, and there is
no other positive eigenfunction.

4o WLl gzevy,L2(vy) < 24
5. L restricted to (1) C L2(V) has a linear inverse F with norm

1
IF Nl 2y, yry < —-

V2
This theorem can be proven along the following lines, see [34]. From (T1) it
follows that 7 and 7* are compact Hilbert-Schmidt operators. Assumption
(T2) ensures that 7 is ug-positive in the sense of Krasnoselskii [46], hence
there exists a unique positive eigenfunction ¢(v) = 1. From (T4) we obtain
the orthogonal decomposition of L?(V). The assumption (T3) is essential.
It ensures that the turning operator is dissipative.

Assumption (T2) is general enough to include turn-angle distributions,
which are zero for larger turn-angles. If, for example, individuals choose new
velocities in an arc of 45° compared to the previous velocity, then the iterate
T* would be ug positive.

3.2 Parabolic Scaling

On typical experimental time periods (3 h E.coli) bacteria show many turns
per unit of time. We can identify three times scales the mean run time of
about 1 sec, drift-time scale of about 100 turns and the diffusion-time scale
of about 10000 individual turns. To reflect these scalings in the model we
choose the parabolic scaling with a small ¢ (¢ = 0.01 for the example above).

T=¢’ and ¢ =exr. (23)
We rescale equation (4), which gives
e2p; +ev- Vep = Lp. (24)

For k > 2 we consider an expansion of p:

k

p(Ta fa U) = Zpi(Ta 65 /U)ei + pk+1(7—a 65 U)gk_H :
1=0

If we collect terms of equal order in ¢ we get:

el 0 = Lpy,
el v Vpo = Lp1, (25)
g2 Por +v-Vpr = Lpog,

12



where the subscript ¢ on the nabla operator has been omitted. We use
the spectral properties of £ (Theorem 1). The order one equation gives
po = po(7,&). Hence pg is independent of v € V. Since V is assumed to
be symmetric, the solvability condition [v- Vpodv = 0 of the e'-equation is
satisfied. Hence p; = F(v-Vpy), where F is the pseudo-inverse of L restricted
to the space (1)1, as defined in Theorem 1. The solvability condition for the

g?-equation reads

/VPOT-}-U-Vpldv:O.

Using the representation of p; from above, a diffusion equation for pg is
obtained

P =V DV, pol&0) = [ plé.v,0)dv, (26)
with diffusion tensor D= —é / vFol dv. (27)
1%

The procedure can be continued to higher orders in ¢ and, as has been shown
in [34], the residuum of this approximation can be controlled:

Theorem 2 By induction a sequence of functions p; can be constructed such
that the sums qi = Ef:o e’p;j have the following property: For each 9 > 0
there is a constant Cy > 0 such that

||p(.’E, at) - Qk(xa 'at)||L2(V) <Cy €k+1
for all 9/e* < t < oo and each x € Q.

Hence the asymptotic behavior of solutions of (4) is described by the diffusion
equation in (26). The proof of this result uses an induction argument. In
particular property (T3) is important to show that the limiting equation in
(26) is parabolic.

3.3 The Diffusion Tensor D

In this section we derive conditions for the diffusion tensor in (27) to be
isotropic, i.e., to be a scalar multiple of the identity. We define the ezpected
velocity

o(v) = /T(U,U')U'd’u'. (28)

It follows from (T1) that [, 9(v)dv = 0. Moreover, if V' is symmetric with
respect to SO(n), then there exists a constant Ky such that

/ wldv =Kyl
1%
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(which can be seen by applying the left hand side onto two test-vectors
and using the divergence theorem). In the case of V = sS"~! we have
Ky = wys?/n.

In order to clarify the general situation we formulate the following three
properties.

(S1): There is an orthonormal basis {e1,...,ey} of R™ such that for
each i = 1,...,n the coordinate mappings m; : V. — IR, m;i(v) = v; are
eigenfunctions of L with common eigenvalue v € (—2pu,0).

(S2): There is a constant v € (—1,1) such that for each v € V the
expected velocity v(v) satisfies

v(v) - v

o(v) ||v  and 5(0) o] = .

(S3): There is a constant d > 0 such that D = d I,.

Theorem 3 Let (T1)-(T4) hold and assume that V is symmetric with re-
spect to SO(n). Then we have

(S1) <= (S2) = (S3)
whereby the constants v,y and d are related as follows.
v+ u Ky Ky
_—, d = == Q.

p wr  wp(l—7)

If T also satisfies (T5): There is a matriz M such that v(v) = Mv for all
v € V, then all three statements are equivalent.

This Theorem is proved in [34].

All statements are true if T has the symmetric form of T'(v,v") = t(jv—v'|)
(see also Alt [1]). We will give an example for non-isotropic diffusion in the
next section.

3.4 Application to Chemosensitive Movement

Let Ty and po denote turning kernel and turning rate in absence of any
chemical substance. In [54] we systematically study perturbations which
come form chemical cues of the form

T(’I),U,, S) = TO(U7U,) + 8kT(,U”U,a S)a ,u('u, S) = Ko + glﬂ‘(va’ula S)a

for k = 0,1 and ! = 1, where S denotes dependence on the function S and not
only on the local value S(¢, ), e.g. dependenceon S(t,z),VS(t,x), [ S(t,z)d=

14



etc. are included. Perturbations of higher order k,l > 2 will not affect the
parabolic limit equation. Perturbations of the turning rate uy of order one
(I = 0) do not fit into the framework developed here. But that case can be
handled in the theory of moment closure as illustrated in Section 5. There,
it is shown that also order one perturbations in the turning rate lead to
PKS-type models.

We omit the most general formulations as stated in [54] and just give
some illustrative examples, where the parabolic scaling applies. For all ex-
amples we restrict to fixed speed |v| = s,V = 58" and w = |V|.

Example 1: We assume that the probability of a change of velocity v’
to v depends on the angle between these two velocities.

1 a
T,'z—(l—-') ith a < n. 29
1(v,0) " +82(v v') wi a<n (29)
The ezpected velocity is v(v) = (a/n)v. The factor I = 14 is denoted as
persistence index (see Othmer et al. [53]). Theorem 3 applies and the first
order approximation pg(7, &) fulfills the isotropic diffusion equation

82

0
—po = dA with d=———. 30
ano pO’ l,l,('n/ _ a) ( )
The case a = 0 corresponds to random walk without directional persistence
. o s . 2

(44 = 0) and the corresponding diffusion constant is d = .

Example 2: We assume that an individual actively chooses directions
upward chemical gradients (positive taxis).

Ty(v,o/, ) = %(1 +ca(S)(v - VS)). (31)

Passing to the limit of small ¢ leads to a PKS-type model

0
500 = V(dVpo — pox(S)VS) (32)

with d = 2—2 and x(S) = %a(S).

Example 3 (Bacteria): For bacterial chemotaxis the velocity distri-
bution is constant T'(v,v') = % and the turning rate increases if individuals
move down the gradient and it decreases if they move upwards (chemokine-
sis)

p2(S) = po(1 — eb(8)(v - VS)). (33)
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Then for € — 0 a PKS-model follows
2 py = 9 (a¥ps — x(S)peVS) (34)
or

with d = Z—Z and x(S) = “;L—zb(S). This example directly applies to the
experiments of Ford et al. with E. coli bacteria ([16]). Further details are
given in [54].

Example 4 (Amoeba): For modeling chemotaxis in amoebae we com-
bine Examples 2 and 3, i.e., we put Ty(v,v") = To(v,v"), ua(S) = p2(S). The
scaling leads to additional effects in the chemotaxis term

2
S
x(8) = —(a(8) +b(5))- (35)
This case is also covered by the results of Patlak [57] and of Alt [1].
Example 5 (non-isotropic diffusion): We assume that a stream of
elongated bacteria such as myxobacteria is oriented in the direction n € IR™.

To describe alignment toward this stream we choose the turning kernel

Ts=r(v-n) n), |nl=1

If the actual direction v’ has a component in direction 7 (or —n), then this
component is enhanced and the particle orients itself in direction 7 (or —n,
respectively). If k is small enough then the diffusion limit is

0
5P = V - DVpy
-

with non-isotropic diffusion

52 ws? ws? -
D¢, 7)=— | I+ —kny (I — —KJ’]’I}) ;
Un n n

The diffusivity in the direction 1 or —7 is enhanced, whereas it has the
standard value s2/(un) in the orthogonal direction.

Example 6 (non-local gradient): A non local gradient, which might
be measured by amoeba along their surface, can be modeled by

n

v S(z,t) = o S(z + Ro,t) do, (36)

w()R Sn—1

where R > 0 is the effective sampling radius. If R — 0 then this expression
approximates the local gradient VS. For chemosensitive movement we treat
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the non-local gradient % S in exactly the same way as V.S in the previous
Examples 2,3 and 4.

Example 7 (directional derivative): Bacteria, for example, are too
small to measure chemical gradients along their body axis. They move
through a signal field and they measure the signal variation along their path.
Hence the turning rate should depend on the directional derivative:

0pyS =8 +v-VS.

In the parabolic scaling this law leads to 8,5 = €2S; + ev - V¢S. The time
derivative is of lower order compared to the gradient term. To leading order
we obtain the same limit as in Example 3.

4 The Moment Closure Method

One common approach in understanding the dynamic properties of reaction-
transport equations and of Boltzmann equations are moment methods [51].
By multiplication of (4) with powers of v and integration, one can derive an
infinite sequence of equations for the v-moments of p. In the equation for
the n—th moment the (n + 1)-st moment appears. To close the equations
for the first n moments, one needs an approximation of the (n + 1)-moment.
This “closure problem” is well known and widely discussed in transport
theory. Most authors use ad hoc arguments or regular expansions to close
the moment system (see e.g. [20] or [10]). Here we present a theory for
closing the moment equations which is based on a minimization principle.

For Boltzmann equations the closure problem has been treated in the
theory of Extended Thermodynamics (see e.g. Miller and Ruggeri [51]).
An entropy functional is maximized under the constraint of fixed first n
moments. It is assumed that the (n + 1)—st moment of the minimizer ap-
proximates the (n+1)-st moment of the true solution. This gives the desired
closure. It appears that theories for a large number of moments are capable
of approximating steep gradients and shocks [66].

For the transport equations for biological problems the negative L?(V)-
norm can be seen as an entropy as defined in thermodynamics (it satisfies an
H-Theorem, equation (39)). We close the moment system by maximizing the
negative L2-norm (i.e. minimizing the L?-norm) under the constraint of fixed
first n-moments. This minimization flattens oscillations, high frequencies in
space and time will be smoothed out and the global structure of the solution
is emphasized. We present this procedure here to close the system for the
first two moments (total population density and population flux). The closed
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system is a Cattaneo system, which is well known in heat transport theory.
In [32] we generalized this approach to close the moment system at any
order. We will summarize some results in a later section. Finally we apply
this method to the transport equation for chemosensitive movement.

4.1 A Minimization Principle

We demonstrate the moment closure method on the example of a velocity
jump process with fixed speed, but variable direction (Pearson walk [58]). In
this case V = sS"~! with s > 0 and w = |V| = s" lwy, where wy = |S" 1.
The turn angle distribution is assumed to be constant T'(v,v') = % As
presented in [32], the method developed here can be generalized to more
general kernels T' and more general velocity sets V.

The initial value problem for the linear transport equation reads

petv-Vp = u(%o—p>, (37)
p(0,z,v) = @ol(z,v). (38)

In [31] we proved the following H-Theorem:

Theorem 4
d 2 j 2
et )3+, ([ oot ydv) <o. (39)

The velocity-moments of p are defined by m®, where m® is defined by
(6) and the higher moments of p are denoted by

mi(t,z) = / vip(t, z,v) dv, i=1,...,n (40)
1%

mi(t,z) = / v p(t, z,v) dv, ,j=1,...,n. (41)
v

Note that m? is scalar, m’ is a vector and m¥ is a 2-tensor. We stress the
usual summation convention on repeated indices.

To derive the equations for the first two moments m° and m’ we integrate
(37) over V to obtain the conservation law

ml + 9;m? = 0. (42)
Multiplication of (37) with v* and integration gives

mi + 0ym = —pm'. (43)
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To close this system of two moment equations (42) and (43) we want to
replace m% (p). We derive a function umin (¢, z,v) which minimizes the L?(V)
norm ||u(t, z,.)||3 under the constraint that umi, has the same first moments
m® and m! as p has. Once we have such a function umi, we replace m¥ (p)
by 9 (1)

We introduce Lagrangian multipliers Ag € R and A; e Rfori=1,...,n
and minimize

H(u) ::%/V u?dv — Ay (/‘/udv—m())—Ai (/V'uiudfu—mi).

We obtain an explicit representation of the minimizer (see [31] for details)

1 n ;
Umin(t, T,v) = " (mo(t,z) + S—Z(Uim’(t,z))) . (44)
Remark:

1. It turns out that um,i, is the projection of p onto the linear subspace
(1,01, ...,0") C LA(V) .

2. If we minimize the functional

H,(u) :== %/V(u — a)2d1) — Ao (/V udvy — mo) —A; (/V viudy — m’) ,

for some arbitrary a € IR with the same constraints as above we arrive at the
same minimizer (44). For fixed a € IR the norm ||u(¢, z,.) — a||2 is a measure
of the oscillation around the level a. Hence, uy,j, minimizes oscillations.

3. The extremum wuyi, is indeed a minimum, since the second variation
of H is 6?H(u) =1 > 0.

To derive the moment closure we consider the second moment of the
minimizer Umin:

32

mY (Umin) = —mC I (45)
n
Now we close the system of the first two moments (42), (43) by assuming
that m(u) ~ m¥(p). Then, replacing m* in (43) together with (42) gives
a linear Cattaneo system

M) +0,M7 = 0,
o i ()
M} +£o,M° = —pM’,
with initial conditions
M°(0,.) =m°(0,.), M'(0,.) =m"0,.) (47)



We introduce capital letters to distinguish between the moments (m°, m?)

of p and the solutions (M, M?) of the Cattaneo system (46). Of course, if
m¥ (u) # m¥(p) then (M°, M?) # (m®, m?). The error which occurs in this
approximation can be controlled. For that purpose we define

ri=m’— M’ and ¢ :=m'— M
and an energy
es(r, q) == 1/ r2+ 2 glgdx (48)
s\ . 2 R™ 52 1 .
In [31] the following error estimate has been shown.

Theorem 5

2
s
es(r(t,.),q(t,.) < nbiﬂ vamOH%?([O,t}xIR”)’ (49)

with an appropriate constant by, > 0.

Cattaneo [6] used systems of the form (46) to model heat transport with
finite speed. Then M? is the temperature and (M*,..., M™) the heat flux
and the ratio d = s?/un is the effective diffusion constant (see Joseph,
Preziosi [43] or Gurtin, Pipkin [22] for the physical interpretations and [23],
or [30] for biological interpretation).

The derivation of the Cattaneo model from a moment closure approach
gives a new understanding of the role of the Cattaneo system in biological ap-
plications. The relevant parameters are related to the individual movement
behavior of the underlying species.

4.2 A Chemotaxis Model with Density Control

Hillen and Painter [35] have studied a diffusion based model for chemosensi-
tive movement where at high population densities the chemotaxis is turned
off and pure diffusion dominates. This model can be constructed (from a
transport equation) via a corresponding Cattaneo approximation. Solutions
exist globally and now blow-up occurs. As an example consider a turning
rate of the form

n

1(S,6,5) = pio (1 _ S—Qﬁ(mo)x(5)6v5> ,

where 3(m?) is a density dependent sensitivity. The function 3 is assumed
to have a zero at some m° > 0 and B(m) > 0 for 0 < m < m". With turning
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kernel T'(v,v') := w™'u(S,6,S) the moment closure procedure leads to a
Cattaneo model for chemosensitive movement with density control

M)+ o;M7 = 0
Mi+29M0 = —po (1- BB(MO)X(S)S:) M + B(MO)x(S) MO 3iS.
(50)
This model has been used in [13] to describe pattern formation in slime

molds and in bacteria. Moreover, a numerical scheme has been developed to
solve (50).

4.3 Higher Order Moment Closure

The higher order moment closure requires rigorous bookkeeping of all the
relevant tensor indices which cannot be included here. We refer to [32] for
details.

The H-Theorem (Theorem 4) of the previous section can be generalized
to turning kernels 7' which satisfy the general assumptions (7'1) — (7'4),
defined above. The higher order moment closure can be derived in the
framework of Lagrangian multipliers. It turns out that the steady states of
the two moment closure (Cattaneo system) and of the three moment closure
are determined by an elliptic equation (i.e., steady states of a corresponding
diffusion problem). We conjecture that this is the case for all higher order
moment closures.
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