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Preface

The mathematical modeling of biological phenomena provides new insights into biolog-
ical processes. On the one hand mathematics and statistics help to understand and
describe experiments. In some cases they allow for predictions which can be tested
afterwards. On the other hand mathematical modeling allows a more global view to
identify basic principles and general mechanisms, which qualitatively explain the out-
come of many known experiments. Using different abstraction levels, fundamental truth
can be revealed for a whole class of phenomena, independently of the concrete data at
hand. Moreover the abstract results translate back to the experiments and they allow
for explanations and predictions.

This monograph deals with the analysis of mathematical models for spatial spread
and interactions of populations of (almost) identical individuals. Examples include
swarms of bacteria or slime molds. The models are used to study the phenomena of
chemotazis and aggregation. Chemotaxis describes the active orientation of individuals
or populations on chemical signals, which are produced by the population itself. In some
situations this mechanism leads to aggregation and spatial pattern formation. Emphasis
is given on the discussion of the relevance of transport models and advection-diffusion
models.

The four main chapters (Chapters 2-5) reflect four key ideas which focus on different
aspects of the modeling of spatial spread. In Chapter 2 I discuss the Cattaneo sys-
tem. The Cattaneo system has been introduced by C. Cattaneo in 1948 and it modifies
Fourier’s law such that heat propagation with finite speed can be modeled. However, at
present there is no stochastic process known which (in an appropriate limit) leads to the
Cattaneo system in more than one dimension. In Chapter 2 I derive the Cattaneo system
via a variational method from a transport equation. Then the Cattaneo system appears
as an approximation to a stochastic process and the error can be controlled. The Catta-
neo system is an appropriate model for spatial spread especially for short time ranges.
In Chapter 3 I generalize the approach from Chapter 2 to generate moment closures
for the moment equations of general transport models. Here the theory of Eztended
Thermodynamics acts as a guideline. The approach in Chapter 3 differs from the theory
of Extended Thermodynamics in the use of entropies and analytical properties of the
turning operator. Especially the proof of the existence of an entropy-maximizer has to
be modified. In Chapter 4 I discuss transport in connection to birth-death processes. 1



assume that birth events take place at rest only. Using singular perturbation methods
and matched asymptotic expansions I identify conditions such that reaction-diffusion
models are appropriate. In Chapter 5 I present a modification of the classical Patlak-
Keller-Segel model for chemosensitive movement which allows for global existence of
solutions. The local cell density regulates the chemotactic sensitivity. Above a certain
maximal cell density the chemical signal can no longer be detected. Global existence
in time is proved. This proof will appear in a joint paper with K. Painter [53], where
we added numerical simulations which show a variety of spot or labyrinthian spatial
patterns. Also merging of local maxima and coarsening has been observed in [53].

These four main parts are completed by an ample introduction (Chapter 1), where
biological motivation is given, the classical models are discussed and the relevant litera-
ture is presented.

I thank all colleagues and friends who supported and questioned my results. I am
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W. Weiss and I. Miller.
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research project.
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1 Introduction

1.1 Overview

It is a great challenge to the live sciences to understand the response of individuals and
communities to external stimuli. All species recognize signals from their surrounding
environment and they adapt their behavior according to it. Examples are orientation
towards light sources, the avoidance of harmful substances, foraging strategies, aggre-
gational tendencies in amoeba and strategies to find a sexual partner. Many of the
responses to different stimuli have been measured experimentally, which leads to a good
understanding of the biological phenomenon. The experiments can roughly be classi-
fied into two classes: (i) measurements of individual behavior and (ii) measurements
of population behavior. Of course the behavior of a population is determined by the
individual behavior of its members. It is far from obvious how the individual behavior
affects the collective behavior. Indeed these question is one of the leading questions for
mathematical biology today.

The mathematical modeling provides an excellent tool to connect the individual
behavior to the collective behavior. We will demonstrate this relation for birth death
processes and random walks in Chapter 4 and for the chemotaxis problem in the last
section of this introduction (Chemotaxis describes the active orientation of individuals
along chemical signals and we give the biological background in Section 1.2).

One advantage of mathematical modeling is that basic models can be derived from
specific experiments (e.g. the response of E.coli to fucose) and they are often applicable
to many similar problems (e.g. response of Dictyostelium discoideum to cAMP). Another
advantage of modeling is that a good model covers the phenomena where one is interested
in. The model can be reduced without destroying the qualitative properties and a simpler
model follows. It becomes a mathematical object on its own and powerful analytical and
numerical methods can be applied to gain non trivial results. One gets insight into the
phenomenon itself (e.g. aggregation) independently of its biological realization. The
mathematical results translate back to the original biological problem and predictions
can be given and can be tested.

In cases, where an external chemical signal guides the individual movement behavior
the response is called chemotazis and chemokinesis. We discuss the differences of chemo-
taxis and chemokinesis in Section 1.2. For chemotaxis and chemokinesis a mathematical



1 Introduction

discipline on its own has evolved. Starting with the Patlak-Keller-Segel model (PKS),
which bases on Brownian motion, results on aggregation and finite time blow-up have
been achieved. We summarize known results for the PKS model and for alternative
models in this Introduction. In the last chapter (Chapter 5) we present a version of
the PKS model which allows for pattern formation, pattern interaction and for global
existence.

Whereas the PKS model bases on diffusion, another class of models bases on cor-
related random walk assumptions, which lead to nonlinear transport equations. The
main part of this text focuses on transport models for chemotaxis and for birth-death
processes. Two methods will be presented which allow to reduce the transport equations
to simpler models. From a multi scale analysis we obtain diffusion based models. We
will explain, that transport models base on the individual movement behavior whereas
diffusion models are population models. The question of individual versus collective
translates into the connection of transport models to diffusion based models. For chemo-
taxis this connection has been studied in detail in [52, 87]. In Chapter 4 we consider
birth-death processes. The parabolic limit method leads to a reaction-diffusion equation
which describes the outer solution in terms of singular perturbation theory. We consider
inner solutions and matching as well.

Another technique to reduce a full kinetic transport model is the moment closure
method. The moment closure leads to hyperbolic sub-models. In the two-moment case
the reduced models depend on Cattaneos law of heat conduction. We will illustrate the
moment closure method in Chapters 2 and 3 and we discuss applications to birth-death
processes and to chemosensitive movement.

1.1.1 Velocity Jump Processes and Transport Equations

As observed in experiments with bacteria (see e.g. Adler [2], Dahlquist, Lovely, Koshland
[24], or Berg and Brown [12]), bacteria have a characteristic movement behavior. They
move in a certain direction with an almost constant speed (run). Suddenly they stop
and choose a new direction (tumble) to continue movement. The tumbling intervals are
short compared to the mean run times. This type of individual movement pattern can be
modeled by a stochastic process which is called velocity jump process (see Stroock [111]).
The characteristic parameters are mean runtime, turning distribution and mean speed.
Stroock showed how a transport equation (see (1.1) below) for the spatial distribution
of one particle can be derived from such a velocity jump process.

In Hillen and Othmer [52, 87] the transport model (1.1) has been studied systemati-
cally with respect to different forms of biases; possible limit equations (of PKS-type) and
relations between the relevant parameters have been considered. Let p(¢,z,v) denote
the population density at time ¢t > 0 at spatial position x € IR"™ with velocity v € IR".
Most important are space dimensions of n = 1,2,3, the theory however works for all
n € IN. We assume that individuals choose any direction with bounded velocity. We
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denote the set of possible velocities as V', where we assume V C IR" is bounded and
symmetric (i.e. v € V = —v € V). Then the linear transport model, which bases on a
velocity jump process (see e.g. Stroock [111] or Othmer et al. [86]) reads

0
SiP(t:2,0) + 0 Vp(t2,0) = —pp(t,z,0) + 1 [ T(0,0)p(t 2,00, (1)
where p is the turning rate or turning frequency, hence 7 = i is the mean run time and
T(v,v") is the probability kernel for the new velocity v given the previous velocity was
v'. Of course

/T(U,v')dv =1

to ensure particle conservation.

From a mathematical point of view the use of transport models for populations is not
rigorously justified. The transport model has been derived for a one-particle distribution
function (Stroock [111]). If individuals move independently transport models are still
suitable. If, however, there are correlations between individuals, which might come
from birth-death interactions or from alignment or chemosensitive movement, then the
verification of transport models from stochastic processes, even in 1-D, is an active field
of mathematical research. The same holds for diffusion based models. Here we assume
that transport equations are at least as good for populations as diffusion models.

If motion is modeled by a diffusion process and birth and death should be included
then reaction-diffusion models result (see e.g. Murray [79]). Similarly for transport
models we obtain reaction-transport models. Depending on concrete experiments the
reactions may depend on the actual velocity of the particle, hence a nonlinear reaction-
transport equation reads ([46])

pit o Vp=—pp+p [ T(o,0)plt,5,0)d0" + f(v,p,m0), (1.2)

where the total population density is denoted as
mO(t,z) = / p(t, z,v) dv.
v

In the isotropic case the nonlinearity f depends on the total population density m° only.
Reaction-transport models of this form have been studied by Hadeler [47, 48] and by
Schwetlick [101, 102]. In Chapter 4 we will assume that individuals give birth at rest
only. In the parabolic limit a reaction-diffusion model follows with effective birth and
death rates.

Transport equations appear in physics as models for dilute gases, i.e. Boltzmann
equations (see e.g. Cercignani, Illner and Pulvirenti [18], Bellomo [10] or Babovsky [7]),
in neutron transport theory (see e.g. Jorgens [60]), as models for radiation transport (see
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e.g. Mihalas and Weibel-Mihalas [76])) or in semiconductor theory (see e.g. Markowich
et al. [74]). In the cases of gases and neutrons reorientation results from collisions of
two particles (collisions of more than two particles at exactly one instant are negligible),
hence the right hand side of the transport equation (1.2) has a specific quadratic de-
pendence on p ([18]). In case of radiation transport the right hand side of (1.2) consists
of a linear absorbing term and the Planck function, which describes emission of radia-
tion. In physical applications some quantities are conserved, among these are energy,
momentum and mass. In biological applications the only conserved quantity is the total
particle number (in case of no birth or death reactions). Nevertheless the rich theory on
Boltzmann equations and the variety of available methods serves as a tool book for the
study of (1.2).

1.1.2 The Moment Closure Method

One common feature in understanding the dynamic properties of reaction-transport
equations and of Boltzmann equations are moment methods. By multiplication of (1.1)
with powers of v and integration one can derive an infinite sequence of equations for
the v-moments of p. As a matter of fact in the equation for the n—th moment the
(n+1)-st moment appears. To close the equations for the first n moments one needs an
approximation of the (n+ 1)-moment. This “closure problem” is well known and widely
discussed in transport theory. Most authors use ad hoc arguments or regular expansions
to close the moment system (see e.g. [3] or [92]). Here we present a theory for closing
the moment equations, which bases on a minimization principle.

For Boltzmann equations the closure problem has been treated in the theory of
Extended Thermodynamics (see e.g. Miiller and Ruggeri [77]). An entropy functional is
maximized under the constraint of fixed first n moments. One assumes that the (n+1)—
st moment of the minimizer approximates the (n + 1)-st moment of the true solution.
This gives the desired closure. It appears that theories for a large number of moments
are capable to approximate steep gradients and shocks [116].

In a biological context the negative L?(V)-norm can be seen as an entropy as defined
in thermodynamics. We close the moment system by minimizing the L?-norm under the
constraint of fixed first n-moments. This minimization flattens oscillations, details and
high oscillations: high frequencies in space and time will be smoothed out and the global
structure of the solution is emphasized. We introduce this procedure in Chapter 2 to
close the system for the first two moments (total population density and population flux).
The closed system is a Cattaneo system, which is well known in heat transport theory
(see the next section). Later we generalize this approach to close the moment system
at any order and we discuss the 3-moment closure in more detail. Finally we apply
this method to the transport equation for chemosensitive movement and to reaction-
transport equations.

10



1.2 Chemosensitive Movement

1.1.3 Cattaneo’s Law

The Cattaneo system has the following form

u; + Vo =

(1.3)
T +dVu+v = 0,

where u(t,z) € IR and v(t,z) € IR" are functions of space z € © C IR™ and time
t > 0. The diffusion constant d and the time constant 7 are positive. There are two
interpretations of this system. First it appears to describe heat transport with finite
speed, or heat transport in media with memory ([61, 44]). Then u is the temperature
and v is the heat flux. Second it can be seen as a generalization of a correlated random
walk ([46]). Then u is the population density and v the population flux. The Cattaneo
law (second equation in (1.3)) has been used by Cattaneo [17] to describe heat transport
with finite speed. It has been known to Maxwell [75] who cast out the time derivative,
because it “... may be neglected, as the rate of conduction will rapidly establish itself.”
For 7 = 0 Cattaneo’s law becomes Fourier’s law. For 7 # 0 the flux is not directly
proportional to the temperature gradient, it adapts with a time constant of 7. The
Cattaneo system directly leads to a damped wave equation

Tuy +u = DAu,

which for 7 — 0 formally converges to the heat equation (see the review article of
Joseph and Preziosi [61] on heat transport or Hillen [51] on the Cattaneo system). It
can also be motivated in terms of heat propagation in media with memory (Gurtin
and Pipkin [44]), where the influence of the past decays exponentially. This property
is important for biological species, since memory and adaptation effects play a role in
many sensory processes. In Section 2.6.2 we show that the Cattaneo law appears as
gradient flux of an exponentially weighted Dirichlet integral. The connections of the
Cattaneo system to biological applications has first been considered by Hadeler [46].
The derivation presented here (Chapter 2) gives a new understanding of the role of the
Cattaneo system in biological applications. Moreover, the relevant parameters are now
related to the individual movement behavior of the underlying species.

1.2 Chemosensitive Movement

In this section we give a summary of mathematical models for chemotaxis, chemokinesis
and related responses. At the beginning we briefly recall the phenomena of chemotaxis
and chemokinesis and we give several examples. We introduce the notion of chemosen-
sitive movement and we discuss definitions which have been used throughout the litera-
ture, starting with the book of Fraenkel and Gunn [37] from 1940’s. The best known and

11
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widely used model for chemotaxis is the Patlak-Keller-Segel (PKS) model (also called
Keller-Segel model), which has been introduced by Patlak in 1953 [92] and by Keller and
Segel in 1970 [64]. The parameters of the Patlak-Keller-Segel equations are the motility
d and the chemotactic sensitivity x which can be derived from the measuring of mean
squared displacement and mean drift velocity. It turns out that in some situations these
parameters are too abstract and hard to estimate from experiments. It seems to be
better to work with individual speed, directions of movement, distribution of directional
changes and turning frequencies. Hence transport-models for chemosensitive movement
appear naturally.

1.2.1 Taxis and Kinesis

The movement behavior of most species is guided by external signals: amoeba move
upwards chemical gradients, insects orient towards light sources, the smell of a sexual
partner makes it favorable to choose a certain direction. Some species are able to extract
directed information from its surrounding (e.g. gradient of chemical) others are too small
to sense chemical gradients and they turn more often, when they move in an unfavorable
direction. Both behaviors lead to orientation towards the source of a chemical, but
the mechanisms have been distinguished into chemotaxis (for directed movement) and
chemokinesis (for undirected movement). If the movement is towards or away from the
source of stimulus we call it positive or negative bias, respectively.

The distinction of chemotaxis versus chemokinesis is by far not straightforward and
we denote responses to chemical stimuli in general by chemosensitive movement. This
includes chemokinesis, chemotaxis and responses to non-local information as well. Some
of the most studied species for chemosensitive movement are bacteria (e.g. E. coli), slime
molds (e.g. Dictyostelium discoideum), or leukocytes.

Observations in several experiments where kinesis and taxis are not strictly separated
have caused an elaborate discussion among scientists on what kinesis and taxis are.

Fraenkel and Gunn [37] were the first who gave definitions of these phenomena. For
kinesis they state: “Undirected locomotory reactions in which the speed of movement or
the frequency of turning depend on the intensity of the stimulus” ([37] p.10), whereas
“the term taxis is used today for directed orientation reactions. (...) We use the word
only for reactions in which the movement is straight towards or away from the source of
stimulation” ([37], p.10). These definitions do not include directed movement with a net
angle with respect to the straight line towards the source. For such behavior Fraenkel
and Gunn use transverse orientations (p.10). In later definitions this behavior falls into
the notion of taxis.

Especially for chemical stimuli Keller et al. define as follows: “Chemokinesis. A
reaction by which the speed or frequency of locomotion of cells and/or the frequency and
magnitude of turning (change of direction) of cells or organisms moving at random is
determined by substances in the environment. ” ([66]), whereas “Chemotazis: A reaction

12



1.2 Chemosensitive Movement

by which the direction of locomotion of cells or organisms is determined by substances
in their environment.” ([66]).

From these definitions it becomes clear that an undirected information causes kinesis
and a directed information causes taxis. However, there are undecided cases. As pointed
out by Dunn [31], the same stimulus and the same receptor kinetics can lead to directed
or undirected changes in the individual movement patterns. On the other hand a directed
information can be obtained if an individual cell moves through a spatial gradient to
obtain a time varying signal distribution. Here the distinction of taxis and kinesis is
not straightforward. A special section in Lecture Notes in Biomathematics 98 [5] is
devoted to that discussion. Especially the articles of Dunn and Doucet and of Alt and
Tranquillo try to solve this controversy. It was not the aim of these authors to define
a unique way of how to use the words taxis or kinesis, it is a collection of common-use
nomenclature. Their intention was to inspire further discussions. Surprisingly, Vicker
writes in his introduction to that chapter of [5] that “one way out of this biological
and clinical monotony appears to have come, somewhat surprisingly, from mathematical
analysis.” ([5], p. 472). Up to date kinesis and taxis and also undecided cases have been
observed for many species in many experiments. We think that a unifying definition,
which does not rely on special species, specific receptor kinetics etc. can be obtained
only in a theoretical or mathematical way.

Dunn and Doucet for example define kinesis and taxis from a more global view: “..
the distinction between tazis and kinesis depends on whether positional or directional
information respectively is transfered from the stimulus field to the response field.” ([31],
p.12). A similar definition is given by Tranquillo and Alt ([5], p.516).

The definitions of Dunn, Doucet and of Alt and Tranquillo are very useful and
cover most known examples. Here, however, we prefer to formalize further. Of course
in a single experiment it is important to know how the signal is transduced through
the chemical network and how this causes movement changes. On a more global and
abstract level however, the distinction of taxis and kinesis is no longer needed. We prefer
to summarize these effects into the notion of chemosensitive movement. This includes
responses to undirected, directed or even non-local external information from one or
more chemical cues. This point of view allows to systematically study different forms of
biases and responses within a common theoretical framework.

1.2.2 The Classical Patlak-Keller-Segel Model

The earliest model for chemosensitive movement has been developed by Patlak [92] and
Keller and Segel [64]. Here we give a brief derivation of the PKS model. We assume that
in absence of any external signal the spread of a population density (¢, z) is described
by the diffusion equation

ut = dAu, (1.4)

13
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where d > 0 is the diffusion constant. We define the net flux as j = —dVu. If there is
some external signal S we just assume that it results in a chemotactic velocity 8. Then
the flux is

j = —dVu + pu.

To be more specific, we assume that the chemotactic velocity 8 has the direction of the
gradient VS and that the sensitivity x to the gradient depends on the signal concentra-
tion S(t,z). Then

B =x(S)VS.

We use this modified flux in (1.4) to obtain the parabolic chemotazis equation
ur = V(dVu — x(S)VSu). (1.5)

If x(S) is positive, which means that the chemotactic velocity is in direction of the
gradient, we call it positive bias, whereas xy < 0 is called negative bias. In earlier papers it
is also called positive or negative taxis. We mentioned that we also include chemokinesis
and other mechanisms. Hence we avoid ”taxis” here.

Depending on the species at hand, the external signal is produced by the individuals
and decays, which is described by a nonlinear function f(S,u). We assume that the
spatial spread of the external signal is driven by diffusion. Then the full system for u
and S reads

uw = V(dVu—ux(S)VS),

(1.6)
7Si = alAS+ f(S,u).

The time constant 0 < 7 < 1 indicates that the spatial spread of the organisms u and
the signal S are on different time scales. The case of 7 = 0 corresponds to a quasi-steady
state assumption for the signal distribution.

This system has first been derived by Patlak [92] from a position jump process. Since
the early work of Patlak is difficult to read, model (1.6) has become well known as the
Keller-Segel model for chemotaxis. Here we presented the derivation of Keller and Segel
[64] for (1.6).

The PKS model has been used in many applications to study aggregation or pattern
formation (see e.g. Murray [79], Okubo [85], Keller and Segel [65]). The model has
been criticized, though. First, the movement process of the population is modeled by
diffusion. However for bacteria it is known that they move along straight lines, suddenly
stop to choose a new direction and then continue moving in the new direction. This is not
a Brownian motion, it is a velocity jump process, which we will describe later in detail.
Second the diffusion terms in (1.6) allow for infinite fast propagation of information,
which is an undesired property. Finally, the relevant parameters like diffusion constants
d, o and chemotactic sensitivity x are not directly related to the individual movement
pattern of the species. They can be measured only indirectly (see e.g. Tranquillo [5],

14



1.2 Chemosensitive Movement

Segel [103] or Ford [36]). In this context it is useful to study alternative models, like
hyperbolic equations and transport models (see the following sections).

As we have shown in [52] the parabolic system (1.6) describes the long time asymp-
totics of solutions of transport models ([78], [52]). Which means that if we wait long
enough the description of an experiment with (1.6) is as good as with a transport equa-
tion. This explains the success of parabolic models so far.

The first rigorous derivation of the Keller-Segel system from an interacting stochas-

tic many particle system has been given by Stevens [109]. The position of each particle
fulfills a stochastic differential equation, where e.g. the chemotactic sensitivity of each
particle depends on the other particles in a certain neighborhood around it. In the limit,
when population size tends to infinity, this range of interaction is rescaled in a moderate
way.
A related approach to formally derive the Keller-Segel model starts with a simplified
version of a cellular automaton model for the gliding and aggregation of myxobacteria,
presented in Stevens [108], [110]. Like the slime mold amoebae, these bacteria aggregate
under starvation conditions. With the automaton, especially the slime trail following of
the myxobacteria is simulated. The basic mechanism behind the automaton model for
the slime trail following is related to a self-attracting reinforced random walk described
by Davis [26]. He proved that a single particle, which moves on an integer grid, localizes
on one point if an attractive reinforced non-diffusing substance is produced super lin-
early and does not localize, if the substance is produced only linearly (compare [26] for
the exact conditions). The approximating parabolic chemotaxis-system translates this
localization behavior into a finite time blowup.

1.2.3 Theoretical Results on the PKS Model

Since the PKS model is designed to describe the behavior of bacteria and bacteria
aggregates, the question arises whether or not these model is able to show aggregation.
Intensive theoretical research uncovered exact conditions for aggregations and for blow
up (see e.g. Childress and Percus [22, 21], Jager and Luckhaus [59], Nagai [80], Gajewski
and Zacharias [38], Senba [104], Rascle and Ziti [96], Herrero and Velazquez [50, 49],
Othmer and Stevens [89] or Levine and Sleeman [71]). Following the definitions given in
Othmer and Stevens, aggregation denotes a global existing solution which has a unique
global maximum, whereas blow up denotes a solution with a maximum that grows to
infinity in finite time. After blow up has occured the model is no longer appropriate.
That is the reason that several authors denote the blow up scenario with chemotactic
collapse.

The possibility of blow-up has been shown to depend strongly on space dimension.
For x = const. and linear reproduction, f(u,S) = yu — S, finite time blow-up never
occurs in 1-D (unless there is no diffusion of the attractant, S), but can always occur in
n-D for n > 3. The 2-D case is ambiguous and thresholds 6,,4 for radially symmetric
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solutions and O4om = Oraq/2 for solutions in smooth domains have been found. If the
initial distribution exceeds its threshold, then the solution blows up in finite time. When
the initial mass is below its threshold, the solution exists globally. An interior blow up
point is supported by a mass of exactly 8;,4, a boundary blow up has half of this mass.
Horstmann considers the case, where the total mass is inbetween these thresholds. He
shows that in these cases blow up occurs only at the boundary [58, 57]. Senba and
Suzuki [105] consider stationary solutions and they use the above thresholds to estimate
the number of blow-up points. The number of possible blow-up points is limited by the
total mass divided by Ogom.

Global existence below these thresholds has been proven using a Lyapunov functional
in Gajewski, Zacharias [38], Nagai, Senba and Yoshida [83] and Biler [13]. The Lyapunov
technique has been generalized to obtain similar thresholds for chemotactic sensitivities
x(S) given by a primitive ¢(S) = [ x(S) which is strictly sub-linear (see [14]). This
includes functional forms of ¢(S) = log S, $(S) = S?, for 0 < p < 1 or equally bounded
functions ¢(S) (see Nagai et al. [84, 81, 82], Biler [14]). Post [95] considers chemotactic
velocities with saturation in S and linear in 4. Using a modification of the Lyapunov
function from [38], global existence of solutions was shown. Horstmann [56] gave suffi-
cient conditions for reaction-diffusion systems in general, such that a Lyapunov function
of the above form exists.

A version of the PKS model, that allows for global existence in any space dimension,
will be discussed in Chapter 5. There we assume that the individuals sense the local cell
density (e.g. E.coli releases a quorum sensing molecule), and the chemotactic sensitivity
is reduced or vanishes at high population densities.

1.3 Hyperbolic Models in 1-D

It is fairly useful to study models for chemosensitive movement in one space dimension
first. This provides good insights into basic phenomena, which also become important in
2 or 3 dimensions. Furthermore some experimental situations can be formally reduced
to a one dimensional problem, e.g. experiments in a cylindrical test chamber where the
medium is homogeneous in each cross section (see Chen, Ford, Cummings [19]).

1.3.1 The Goldstein-Kac Model

Before we state the full hyperbolic model for chemotaxis in one space dimension (1.10) we
illustrate some basic modeling ideas with a simpler model, the Goldstein-Kac model for a
correlated random walk ([40], [62]). It is assumed that the total population density u(t, z)
can be split into densities for right/left moving part of the population, u*, respectively.
Of course u = u™ +u~. We assume that the individuals move with constant speed v > 0
and that they stop according to a Poisson process with rate y > 0, independently of
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each other. The resting period is short and they reverse direction with probability 1/2.
The Goldstein-Kac model for this correlated random walk reads:
uf 4t = B —ut)
P T el T (L7)

i —yuy = Bt —uo),
where lower case indices denote partial derivatives with respect to that variable. This
model is a special case of (1.1) for two velocities v € {7} in one space dimension and
with T'(v,v') = 3.

In terms of the total population density u and the population flow v = ut — u~
system (1.7) is equivalent to

u+yvy = 0
t T YVz (1.8)
Vg +yur = —uv.

Using Kac’s trick we obtain an equation for u alone: Differentiate the first equation
with respect to time and the second equation with respect to space and eliminate the

v-variable. Then u satisfies a telegraph equation
1 72
—Ugt + Up = ——Ugg- (1.9)
p p
A diffusion equation u; = Dug, follows formally by considering a limit of high turning
rates yu — oo and large speed v — oo in such a way that

2
D =lim = < oo.
7

This special scaling is called parabolic limit. It can be shown that a time and space
scaling of 7 = €2t and ¢ = ex with fixed -y, 4 leads to the same limit for ¢ — 0 ([52]).

1.3.2 Chemosensitive Movement in 1-D

Now we come back to chemosensitive movement. Due to recent experiments by e.g. Soll
and Wessels [107] or Fisher et al. [33] and others [68, 11] it turned out that in general
the speed and the turning rates of individuals depend not only on the magnitude of an
external signal S(¢, ) but on temporal and spatial variations Sy(¢,z) and S;(t, z) as well.
Depending on the situation at hand, the signal can be produced and decay in time. This
will be described by a function f(S,u" +u~). Then a modification of the Goldstein-Kac
model (1.7) gives the following hyperbolic model for chemosensitive movement in one
space dimension:

wf + (V(S, 80, Se)ut)e = —pt(S, 8y, Sp)ut + u (S, Si, Sp)u”,
uy — (Y8, St, Se)u™ ) = pt(S, 8, Sx)ut — pu= (8, S, S)u,
78y = aSg + f(S,ut +u7), >0,
ut(0,.) = uoi, S(0,.) = Sp.

(1.10)
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Here the rates p* are turning rates, whereas in (1.7) p is a stopping rate and each
direction will be chosen with probability of 0.5.

Segel [103] has considered a hyperbolic model of type (1.10) without the equation for
S. He studied a given increasing attractant concentration and constant particle speed
7y, constant turning rate p~, and u depending on the gradient of S in characteristic
direction. The external stimulus S is assumed to decay with a constant rate. His model
has been used by Rivero et al. [97] to describe experiments with flagellated bacteria and
with leukocytes.
Greenberg and Alt [41] consider the special case of (1.10), where the speed is constant,
with special choice of the turning rates, and f is linear. They pose the problem of
existence of solutions for their hyperbolic model and use it to motivate a non local PKS
model.
The hyperbolic model proposed in (1.10) allows more general dependencies in the turning
rates and the velocity, and it compares with the experiments of Soll ([106]).
Chen et al. [20, 19] considered a model of the above type to describe experimental data
for the movement of E. coli bacteria. In their model the bacterial speed is close to
constant and the turning frequency depends on the temporal gradient of the external
signal. Consequently the bacteria “feel” spatial gradients by moving through them. The
model is put into relation with a one dimensional projection of a 3-D model by Alt [4],
which we discuss later.
The connection of the hyperbolic model (1.10) to the PKS model ([64]) opens a wide field
of interesting questions concerning scaling and modeling of crucial parameters. Some
of them have been answered in [52, 87]. For the special case of constant speed and
for turning rates depending on S and S; we have proven local and global existence of
solutions in L* in [55]. To achieve an abstract existence result for dependence on S;
a more detailed analysis is required. Without S; dependence the preservation of total
population size suffices to show existence of weak solutions in L*°. To control S; stronger
pre-assumptions are required. If the speed depends on S or its gradients we expect the
formation of steep gradients. This case has been considered in [54]. There we showed
global in time existence for v = y(S), where we assumed that the signal distribution is
in quasi-equilibrium (7 = 0). Then, with a vanishing-viscosity method we obtain local
and global existence.

1.3.3 The Parabolic Limit in 1-D

In this section we consider the parabolic limit for the full hyperbolic model for chemosen-
sitive movement (1.10). The mathematical details are presented in [55]. One first derives
an equivalent system for u = vt +u~ and v = vt —u~. From this a general telegraph
equation (1.9) can be derived. The resulting telegraph equation is independent of v only
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if we assume that the auxiliary function

fyt(Sa St7 SZE)

h(t) := ut (S, S, Se) + 1~ (S, St, Sz) — 2
() /1’( t ) /1’( t ) 'Y(S;Stasw)

(1.11)
does not depend on the spatial position z. Of course this is a restriction to the parameters
p*, v which, however, is satisfied for many examples. We give examples in the next
subsection.

Since here v and p* are functions of S(¢,7) we can not just pass to the limit of
v, pEt — 00. We introduce an additional dimensionless small parameter ¢ > 0 and set

+
y=2, and u*t="0 (1.12)
13 3
where vy and uoi are of order 1 with respect to e. Then the auxiliarry function A scales
as
ho(t
h(t) = Og ), with  ho = ud + pg — 220t (1.13)
€ Yo
and for ¢ — 0 we obtain
7 %
D = lim = (1.14)

£—0 h(t) - ,ua' + pg ’
We introduce this scaling in the corresponding telegraph equation (see [55] for deatils)
and for ¢ — 0 we formally obtain the following limit equation of PKS type:

ug = (Dug — xuSy),

with diffusion parameter given by (1.14) and chemotactic sensitivity x given by

Y0 ol )
Sy =——7F"—"— lim — - . 1.15
XSe =~ (0 + i G5 i) (1.15)

A similar relation has also been found by Rivero et al. [97].
Since the chemotactic sensitivity consists of two terms we can identify two effects
which lead to positive or negative biases.

1. We consider v = v(S) > 0 and we assume, that the difference uj — g is of order
e®, for ¢ — 0, with some x > 1, then u™ — = = O(¢® ?) and

Yo /
XSz = ———7S. (1.16)
’ g + o ’

and the limiting equation for chemosensitive movement reads

= (0 s o)) (117)
Mo t i w
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If 4/(S) < 0, which means that the population slows down at high concentrations
of S, then a net flow of the population in direction of higher concentrations of S
follows, which is a positive bias.

If 4/(S) > 0, which means that higher concentrations of S enhance the speed, then
the population has a stronger tendency to spread out than compared to simple
diffusion. This causes a negative bias. Hence the population glides in direction of
decreasing concentrations S.

2. Now we assume that v = const. and that the difference in turning has an expansion
as

pt = =e"tor + o,

with appropriate functions ¢1(S,St, Sz), p2(S, St, Sz). This means pf — py =
ep1 + €2py. Then the chemotactic sensitivity is given by

Y0

XSz = ——/——— 1.
’ po + Mo

Moreover, if we assume linearity in S;, e.g. @1 = ¢o(5)S; then a PKS model
follows

2

Y0 Yo

up = — Uy + —0(S)S. u) ) (1.18)
<u0++uo T ng o )

Here the swarming or aggregation behavior depends exactly on the sign of the
difference between the turning frequencies.

If S; > 0 and ¢y < 0, then the right moving population, which is moving up
the gradient, turns less often than the left moving one, which is moving down the
gradient. This is the basic behavior also observed in experiments with bacteria.

If S; > 0 and ¢y > 0, then the right moving population, which is moving up the
gradient again, turns more often than the left moving one. This behavior enhances
the spreading out of the total population.

Hence two effects lead to positive bias: When moving upwards a signal gradient individ-
uals slow down, they lower their turning rate, or both. These effects have also been found

by Schnitzer [99] in a similar one-dimensional hyperbolic model for bacterial movement,
where memory effects have been included.

1.4 Transport Models for Chemosensitive Movement

In Stroock [111] and in Keller [63] a transport equation has first been proposed for bac-
terial chemotaxis. Soll and Voss (in [107]) showed how the movement rules of “run”

20



1.4 Transport Models for Chemosensitive Movement

and “tumble” can also be applied to movement behavior of slime mold amoeba like Dic-
tyostelium discoideum. W. Alt studied a transport equation for amoeba-chemotaxis in
two papers [3, 4]. He assumed specific movement and signal detection rules and he used
the run length as another state variable. In case of constant run length the model of
Stroock or Keller follows from Alt’s transport equation. Alt uses singular perturbation
methods to derive a diffusion equation of PKS-type. In Othmer, Dunbar and Alt [86]
different forms of random movement for biological species are compared; position jump
processes, velocity jump processes and diffusion models. Chen et al. [20] study pertur-
bation expansions and projections of Alt’s equation, which reduce to a special case of the
one dimensional hyperbolic model for chemosensitive movement discussed above (1.10).
Griinbaum [43] generalized Stroock’s model to incorporate internal dynamics. Then the
chemical network of signal recognition, transduction pathway and adaptation processes
can be incorporated into the model. His analysis bases on specific scaling assumptions,
but the mathematical methods need further justifications. An overview of results and
known facts related to internal dynamics and chemical pathways is presented in a sur-
vey article of Othmer and Schaap [88]. Dickinson and Tranquillo [28] and Dickinson [27]
study perturbation expansions of a stochastic velocity jump process with external bias
due to chemotaxis. We will compare their results to the results of [52, 87| later in a
discussion section (Section 1.4.5).

The diffusion approximation of transport models is a well known technique in many
physical applications. We will summerize known results from neutron transport, kinetic
theory of gases, radiation transport and stochastic processes in Section 1.4.5. For a
detailed comparison it is better to first present the methods we used in [52, 87].

In the case of chemosensitive movement in (1.1) the turning rate x4 and the velocity
distribution kernel T'(v,v') may depend on the signal distribution S(¢,z), its gradient
VS(t,x) or on other properties of S (e.g. non-local dependence can be included).

p=u(S,V8S,...), T(,v')=T(v,,8VS,...) (1.19)

There are many experimental data available, where the dependence of turning rates u
and velocity distribution 7" on concentrations or spatial or temporal gradients have been
measured (e.g. Berg and Brown [11], Soll and Wessels [106, 107], Fisher, Merkl, Gerisch
[33], Tani and Naitoh [112], Vicker [115], Macnab [72] to name but a few). See also the
Dicty-home-page: http://dicty.cmb.nwu.edu/dicty/dicty.html.

In [52, 87] we consider general transport models for chemosensitive movement based
on (1.1) and (1.19). A theory has been derived to generate a diffusion limit from a
multi-scale analysis, which generalized the work of Alt [3, 4]. The long time asymptotics
of solutions of the transport model for chemosensitive movement are given in certain sit-
uations by a PKS-model. With this analysis a very natural connection of the parameters
of the transport model (turning rate y, velocity distribution T') to the parameters of the
PKS-model (motility d, chemotactic sensitivity x) has been found. We briefly recall the
main results of [52, 87):
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1.4.1 Basic Assumptions (T1)-(T4)

In [52] the linear transport equation (1.1) is considered in Q@ = IR™. It is assumed that
the set of velocities V' C IR" is compact and symmetric such that v € V implies —v € V.
Let K denote the cone of non-negative functions in L?(V'). Define the following operators
on L2(V):

Tpv) = / T(v,v")p(z,,t)dv’, T p(v) = / T v)p(z,v',t)dv,
L = —‘;(I -7, '
where I denotes the identity. We state the following assumptions on the kernel T'.
(T1) T(v,v") >0, [T(v,v')dv=1, and [ [T?(v,v")dv'dv < c0.

(T2) There exist some uy € K with uy #Z 0, some integer N and a constant p > 0 such
that for all (v,v') € V xV

up(v) < TN(v',v) < puo(v),
where the N-th iterate of T is

TN (v,0") := /.../T(fu,wl)T(wl,wg)---T(wN_l,v')dwl...dwN_l.
(T3) |Tll¢1yr < 1, where (1)* denotes the orthogonal complement of the subspace
(1) C L?(V) of functions constant in v.
(T4) [, T(v,v")dv' =1.
The turning operator has the following properties:
Proposition 1.1 Assume (T1)-(T4). Then
1. 0 is a simple eigenvalue of L with eigenfunction ¢(v) = 1.

2. There exist an orthogonal decomposition L*(V) = (1) ® (1) and for all 4 € (1)*
we have

[ 6eido < —villplagyy, with o= (1= [ Tlye).

3. Each eigenvalue A # 0 satisfies —2u < Re A < —vy < 0, and there is no other
positive eigenfunction.

4- 1Ll zzevy,e2vyy < 2
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5. L restricted to (1) C L?(V) has a linear inverse F with norm
|7 <
LEOHMWF) = 3,

The proof for is given in [52]. In (T1) we state that 7 and 7* are compact Hilbert-
Schmidt operators. Assumption (T2) ensures that 7 is up-positive in the sense of Kras-
noselskii [69]. There exists a unique positive eigenfunction ¢(v) = 1. The assumption
(T2) generalizes the corresponding assumption (T2) in [52] and it allows to include turn-
angle distributions, which are zero for larger turn-angles. If, for example, individuals
choose new velocities in an arc of 45° compared to the previous velocity, then the iterate
T* would be ug positive. With assumption (T4) we obtain the orthogonal decomposition
of L2(V'). Property (T3) represents the dissipative character of the transport model and
this condition becomes important to show that the limit equation, which we will derive,
indeed is parabolic.

1.4.2 The Parabolic Scaling

It is well known that transport equations and more general transport processes lead in
some appropriate limit to diffusion models (see Section 1.4.5). Two interpretations lead
to the diffusion limit. Either the turning rate and the velocity are large or time and
space scale are chosen so that in the limit the quotient 2/t stays bounded.

For some species (e.g. for E.coli) it appears that per unit of time there are many
directional changes with a small net displacement. This behavior can be classified into
three time scales: the mean run time 1/u, the drift-time scale of about 100 individual
turns and a diffusion-time scale of about 10000 individual turns. These scales can be
modeled using the parabolic scaling

T=¢’ and €£=ex (1.20)

for a small parameter ¢ (~ 10~2). We transform equation (1.1) accordingly and for k& > 2
we consider an expansion of p:

k
p(T,f,’U) = sz'(T,&,’U)Ei +pk+1(7-1£,lu)€k+1'
=0

When we collect terms of equal order in ¢, we arrive at a sequence of systems for the
unknown functions pg, p1, po, - - --

Theorem 1.2 Let (T1)-(T4) be true and let F denote the pseudo inverse from Proposi-
tion 1.1. For k > 2 we define a sequence of functions po(&,7), p1(&,v,7), --., pp(&v,7)
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as follows:
(al) po solves the parabolic limit equation
Po,r — V. (Dvpﬂ) = Oa p0(£,0) = /Vp(f,’l),O)d’U-

1
with diffusion tensor D= ——/ vFol dv.
w Jv

(a2) for each 1 < j <k let / pi(&,v,7)dv = 0.
14
(a3) for each 2 < j < k let / vp;(€,v,T)dv =0,
14
(a4) p1(&v,7) == F(v - Vpo(§,T)).
(a5) pj(f,’l),T) = .7:(])]',2’7— +uv- ijfl)a f’u’f‘ 2 < .] < k.

Then for each 9 > 0 there is a constant Cy > 0 with the property that the sum

k
a =Y &'p;
j=0

satisfies
Ip(z, -, 1) — aqr(z, -, t)lL2 vy < C ekt

for all 9/e* < t < 0o and each x € ).

Hence the asymptotic behavior of solutions of (1.1) is described by the diffusion equation
n (al). The proof of this result uses an induction argument. Especially property (T3)
is important to show that the limit equation in (al) is parabolic.

In Chapter 4 we will generalize this result to transport models with birth-death terms
for approximations of order 2. A complete proof is given in that chapter.

1.4.3 The Diffusion Tensor D
It appears that in the limit the diffusion is described by a diffusion tensor D. We will

show under which conditions this tensor is isotropic, i.e. it is a scalar multiple of the
identity. We define the ezpected velocity
B(v) = / T(v, o' )v'dv. (1.21)

With assumption (T1) it follows that [, ¥(v)dv = 0. Moreover we assume that V is
symmetric with respect to SO(n). Then there exists a constant Ky such that

/ wldv =Kyl
v
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(which can be seen by applying the left hand side onto two test-vectors and using the
divergence theorem). In case of V = sS™"~! we have Ky = wys?/n.
We compare three statements:

(S1): There is an orthonormal basis {e1,...,e,} of R™ such that for each i =1,...,n
the coordinate mappings m; : V. — IR, mi(v) = v; are eigenfunctions of L with
common eigenvalue v € (—2u,0).

(S2): There is a constant v € (—1,1) such that for each v € V the expected velocity v(v)

satisfies
o(v) v

v(v) ||v and O =1.

(S3): There is a constant d > 0 such that the diffusion matriz is given by D = d I,,.

Theorem 1.3 Let (T1)-(T4) hold and assume that V is symmetric with respect to
SO(n). Then we have
(S1) <= (S52) = (S3).

The constants v,y and d are related as follows.
v+ pu

Ky Ky
’)/ = ; d = -
p wv  wp(l—7)

If T also satisfies (T5): There is a matrizc M such that v(v) = Mv for all v € V, then
all three statements are equivalent.

This Theorem is proven in [52].
If T has the symmetric form of 7'(v, v") = t(Juv—v'|) then the diffusion limit is isotropic
(see also Alt [3]).

1.4.4 Application to Chemosensitive Movement

Let Ty and pg denote turning kernel and turning rate in absence of any chemical sub-
stance. In [87] we systematically study perturbations which come form chemical cues of
the form

~ A A

T(v,',8) = To(v,") + " T1(v,0",8),  p(v,8) = po +e€'pi(v, 0, 5),

for Kk =0,1 and [ = 1, where S denotes dependence on the function S and not only on
the local value S(t,z), e.g. dependence on S(t,z),VS(t,z), [ S(t, z)dz etc are included.
Perturbations of higher order k,l > 2 will not affect the parabolic limit equation. Per-
turbations of the turning rate po of order one (I = 0) do not fit into the framework
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developed here. But that case can be handled in the theory of moment closure as illus-
trated in Chapter 2 in Section 2.5.1. There it is shown that also order one perturbations
in the turning rate lead to PKS-type models.

We omit the most general formulations as stated in [87] and we prefer to give some
illustrative examples, where the parabolic scaling applies. For all examples we restrict
to fixed speed |[v| = 5,V = 88" ! and w = |V|.

Example 1: To get used to the method and the notations we start with a simple
biased random walk without chemical signal. We assume that the probability of a change
of velocity v' to v depends on the angle between these two velocities.

1
Ti(v,0") = — (1 + %(’U : v')) with a < n. (1.22)
w s
It is easy to check that the expected velocity is
(v) = /U’Tl(’l),’l)l)d’l)l =2y (1.23)
n

The factor { = 1, is denoted as persistence index (see Othmer et al. [86]).

Theorem 1.3 applies and the first order approximation po(7,¢) fulfills the isotropic dif-
fusion equation

0
—po = dA 1.24
g dApo (1.24)
with
8 (1.25)
d = . .
p(n — a)

The case of a = 0 corresponds to random walk without persistence and the corresponding

diffusion constant is )

d= (1.26)

u_n.
We have checked that a perturbation of lower order T'(v,v') = L(1+ &% (v-v')) does
not effect the limit equation at all and (1.24) results with (1.26).

Example 2: Here we consider chemosensitive movement and we assume that an
individual actively chooses directions upward chemical gradients (positive taxis). Then
the angle of new velocity v and signal gradient V.S is an important variable and we
assume

1
Ty(v,0',S) = a(1+5a(S)(v-VS)). (1.27)
Passing to the limit of small ¢ leads to a PKS-type model
2 = V (dVpo — pox(S)VS) (1.28)
or
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3 82 — 82
with d = 7= and x(S) = 5-a(5).

Example 3 (Bacteria): For bacterial chemotaxis the velocity distribution appears
to be independent of signal gradients. But the turning rate increases if individuals move
down the gradient and it decreases if they move upwards. Hence we assume T'(v,v') = L

and ?
p2(S) = po(1 — eb(S)(v - VS)) (1.29)
Then a PKS-model follows
0
5-p0 =V (dVp0 —x(S)poV'S) (1.30)
.
with d = S—; and x(S) = % (S) This example directly applies to the experiments of

Ford et al. with E. coli bacteria ([36, 35, 34, 16]). We illustrated the details in [87].

Example 4 (Amoeba): If we consider amoebae-chemotaxis we obtain both, change
of turning rate as in Example 3 and the active choice of preferred directions as modeled
in Example 2. A combination of both

T4(Ua UI) = T2(Ua Ul)a U4(S) = HZ(S)

just leads to additional effects in the chemotaxis term

82

x(8) = —(a(S) +b(5)). (1.31)
This case is also covered by the results of Patlak [92] and of Alt [3].

For general situations it turned out in [52],[87] that the diffusion limit is non isotropic.
We give one example.

Example 5 (non-isotropic diffusion): We assume that a stream of elongated
bacteria such as myxobacteria is oriented in the direction € IR". To describe alignment
towards this stream we choose the turning kernel

Ts=n(w-n) n), [nl=1

If the actual direction v’ is in the direction 1 or —7, then there is an increased probability
to choose a new velocity v in the direction n or —7, respectively. If x is small enough
then the diffusion limit is

0
5.P0 = VDVpy
-
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with non-isotropic diffusion

32 U)S2 U)S2 -1
D, 1) = N I+ —, (I— T*ﬂm) ,

The diffusivity in the direction n or —7 is enhanced, whereas it has the standard value
s2/(Aon) in the orthogonal direction.

Example 6 (non-local gradient): A non local gradient, which might be measured
by amoeba along their surface, can be modeled by

o n

S (z,t) = o S(z + Ro,t) do, (1.32)

UJ()R gn—1

where R > 0 is the effective sampling radius. If R — 0 then this expression approximates

the local gradient VS. For chemosensitive movement we treat the non-local gradient fé
in exactly the same way as we used V.S in the previous Examples 2,3 and 4.

Example 7 (directional derivative): Bacteria, for example, are too small to
measure chemical gradients along their body axis. They move through a signal field
and they measure the signal variation along their path. Hence the turning rate should
depend on the directional derivative:

0yS =85 +v-VS.

In the parabolic scaling this leads to 8,5 = €25, + v - V¢S. The time derivative is of
lower order compared to the gradient term. Hence to first order we obtain the same
limit as in Example 3.

1.4.5 Diffusion Limits of Transport Equations

The approximation of a transport equation with its diffusion limit is a classical method in
many physical applications. This ranges from the kinetic theory of gases and thermody-
namics over neutron transport theory to radiation transport models. We will summarize
the relevant literature later in this section. First we will discuss the literature concerned
with biological applications. The results of Alt [3, 4] , Schnitzer [99], Chen et al. [20],
Othmer, Dunbar, Alt [86] and Griinbaum [43] have been mentioned in the introduction
of this Section 1.4.

Dickinson and Tranquillo [28] and Dickinson [27] divide the movement process of the
population into three subprocesses, each characterized by its own time scale. Locomotion,
the fastest time scale, describes inter-cellular pathways; translocation is the scale of
individual movement and the slowest time scale, migration characterizes the movement
of the whole population. The authors consider a stochastic process which includes linear
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1.4 Transport Models for Chemosensitive Movement

transport, reorientations, diffusion in velocity and rotations. They use the method of
adiabatic elimination of fast variables (see Gardiner [39]) to derive the corresponding
Smoluchovski equation. The Smoluchovski equation is a drift-diffusion model, which
depends on the scaling parameter. The method of Dickinson et al. differs from our
approach presented here in many ways. The adiabatic scaling corresponds in our notation
to a choice of T = et, € = ez, which leads to a diffusion limit depending on €. If one scales
the time variable of the drift-diffusion limit accordingly (7 = ¢7) then the diffusion limit
follows. On the other hand a perturbation expansion in (7,¢) would lead to an elliptic
limit equation (see [52]). The connection of the adiabatic scaling to the parabolic scaling
has to be checked in more detail. For now we denote the adiabatic scaling (et,ex) by (i)
and the parabolic scaling (¢, ex) by (ii).

It turns out that both methods are present in different areas of physical applications.
In neutron transport theory the diffusion limit is used to describe reactor kinetics. In
Habetler and Matkowsky [45] the diffusion limit has been related to singular perturbation
theory. It is assumed that the mean free path is small compared to a typical length of
the experiment at hand. This identifies a small parameter for singular perturbation
analysis and it leads to method (i). Some more recent articles of Banasiak and Mika [9]
or Banasiak [8] use the parabolic scaling (ii) for neutron transport.

For radiation transport a comprehensive source is given by Mihalas and Weibel-
Mihalas [76]. A most recent publication is a preprint of Klar and Schmeiser [67], who
use the parabolic scaling (ii). They study the diffusion limit as an outer expansion in a
singular perturbation analysis.

For the Boltzmann equation in kinetic theory of gases the diffusion limit is known
in connection with hydrodynamical limits (see Cercignani et al. [18]). In Babovsky [7]
the two methods, (i) and (ii), for deriving a diffusion limit from a linearized Boltzmann
equation are illustrated. It turns out that the first (i) is better suited for stochastic
differential equations, whereas the second method (ii) is better for singular perturbation
theory and partial differential equations. Bellomo considers Boltzmann equations for
applications in biology, such as tumor growth and epidemiology [10].

From a mathematical point of view there are estimates for the accuracy of the dif-
fusion approximation. First of all in a paper of Papanicolaou [91] the diffusion approx-
imation of the backward transport equation has been studied and estimates have been
derived. Similar results have been derived by many authors for different applications and
we found a good summary in Dautray and Lions [25]. In Dautray and Lions a singular
perturbation method has been used, which bases on the parabolic scaling (ii). Estimates
of the accuracy of the diffusion approximation include the initial layer as well. The stan-
dard procedure is to show that solutions of transport equations can be approximated by
solutions of appropriate diffusion models. We will demonstrate this method in Chapter
4 for a transport model with birth-death processes and resting phases.

The discussion of diffusion limits is also well known in the field of stochastic processes.
The central limit theorem and Donsker’s theorem for martingales refer to the property
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that under certain conditions a stochastic process approximates Brownian motion (see
Durrett [32] for details).

In all of the above studies it turned out that they are not directly applicable to
problems which come from biology. In case of Boltzmann equations there is conservation
of mass, momentum and energy, whereas for populations we have at most conservation
of the total particle number. This translates into different functional analytic properties
of the turning operator. The kernel of the turning operator for the Boltzmann equation
is five dimensional, which corresponds to the Maxwellian distributions. The kernel for
biological applications is one dimensional, which corresponds to particle conservation.
In neutron transport theory, or in radiation transport most authors consider symmetric
kernel. In case of chemosensitive movement however, we find an anisotropy in direction
of the signal gradient. Other authors assume strictly positive turning kernel, which we
relaxed into condition (T2).

Overall we think that the set of conditions given above, (T1)-(T4), represents a quite
general sufficient set of conditions such that the diffusion limit for biological applications
can be obtained in a clear and transparent way.
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2 The Cattaneo Approximation

We consider the moment closure approach to transport equations. We present
a method which allows to close the first two moment equations. The closure
leads to semilinear Cattaneo systems, which are closely related to damped
wave equations. We derive estimates for the residuum. The method is used
to study a transport model for chemosensitive movement. We show that the
2-moment approximation is a Cattaneo model for chemosensitive movement,
which in a parabolic limit converges (formally) to the classical PKS equa-
tion. In a discussion section we show how to derive boundary conditions for
the Cattaneo approrimation, we illustrate that the Cattaneo system is the
gradient flow of a weighted Dirichlet integral and we show simulations.

2.1 Introduction

Here we consider the equations of the first two moments (m°,m?), i € {1,...,n} of p,
where m0 is defined by (3.8) and the higher moments of p are denoted by

mi(t,z) = / v'p(t, z,v) dv, 1=1,...,n (2.1)
1%

mi(t,z) = / vl p(t, z,v) dv, i,7=1,...,n. (2.2)
1%

Note that m? is scalar, m’ is a vector and m* is a 2-tensor. Here we use upper case
indices for the components of velocity v = (v',...,v")T. Since in Chapter 3 we will
generalize this approach to higher moments we use the tensor notation of m?, m¥ and
all other tensors. All indices run from 1 to n and we use the summation convention for
repeated upper and lower case indices.

For constant turn angle distribution T'(v,v") we will show that the negative of the
L?(V)-norm is an entropy for (1.1). We minimize the L?(V)-norm under the constraint
of fixed moments m® and m’. Then we assume that the second moment Mm% (um,) of
the minimizer uy;, approximates the second moment m®(p). This leads to a closed
hyperbolic system (2.13) for an approximate density M° and an approximate flow M.
Since the resulting system is known from heat transport theory as the Cattaneo system
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2 The Cattaneo Approximation

0 0

we call it Cattaneo approzimation to (m®, m*). We derive an error estimate for (m?, m*)—
(M° M%) in L?(IR™) in Theorem 2.7. This estimate motivates the use of Cattaneo
systems as models for the movement of microorganisms like bacteria or amoeba (see
Remark 2.4).

The approximation method presented here can also be interpreted in the sense that
minimizing of the L?(V)-norm minimizes oscillations (see Remark 2.1). Qualitatively the
approximate solution is smoother than the true solution. High frequencies are damped
and envelopes of the particle distribution are formed. Tt turns out that the minimizer is
the orthogonal projection of p onto the n + 1-dimensional subspace of L?(V') spanned by
the functions 1,v',...,v™. Schnitzer [99] derived a Cattaneo model for chemosensitive
movement ((5.12) in [99]) with the ad hoc assumption that the density can be expanded
as p = po(t, z) +v'p;(t, z). The minimizing procedure developed here gives a justification
of his ansatz.

Since our estimates are valid for all times (in the linear case) the Cattaneo approxima-
tion can be used to approximate the transport model for all times whereas the parabolic
approximations are valid for large times only (see the discussion in Section 6).

In context of the moment closure method presented here the Cattaneo approximation
is the first nontrivial approximation to the transport process. If we fix the zero’s moment
m?® only and minimize the L?(V)-norm then the minimizer is simply the mean density
with respect to velocity v. It does not depend on v and ¢ and the equilibrium distributions
result (see Remark 2.2). Generalizations to higher closure levels, general sets of velocities
V and general kernel T are given in the next chapter (Chapter 3).

In case of one spatial dimension with only two velocities +s the even moments are
proportional to the zero-moment and the odd moments are proportional to the first
moment. Hence the first two moment equations are closed by itself and the 1-D Cattaneo
system is equivalent to the 1-D transport equation ([86, 46]).

For Boltzmann equations the moment closure problem has been studied intensively
in the theory of Extended Thermodynamics [77]. In that context there is a physical
entropy and it is maximized to close the moment system. Up to now there is no rigorous
criterion for the accuracy of the closed moment system as an approximation to the
Boltzmann equation. Error estimates of the type shown here (Theorem 2.7) have not
been derived for the Boltzmann equation. Qur estimates base on the boundedness of the
space of velocities, V. In case of Boltzmann equation this space is not a priori bounded.
The most important first moment approximations to the Boltzmann equation are the
Euler equations and the Navier-Stokes equations ([77]). Here the Cattaneo system (2.13)
ranges at the same level as the Euler equations.

The Cattaneo system of heat transport also appears in the theory of extended ther-
modynamics. There it ranges inbetween the Navier-Stokes-Fourier model and the 13
moment model. In this context the Cattaneo law is not appropriate since one would
have to neglect some terms in the 13 moment system, which might have the same order
in magnitude than other remaining terms (see Miiller and Ruggeri [77] for details).
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Application to chemosensitive movement and to reaction transport equations are
given at the end of this Chapter. In case of chemosensitive movement we use our method
to close the first moment equations and obtain a Cattaneo system for chemosensitive
movement. Then we consider appropriate scaling of speed and turning rate (parabolic
limit) to arrive at the well known and well studied PKS equation [64]. In this framework
we are able to handle order one perturbations of the turning rate due to chemical cues.
This was not possible with the parabolic scaling, as illustrated in the previous Section 1.4.

In Section 2.2 we present the minimizing principle for the linear transport equa-
tion (1.1) for equally distributed turn angle distribution 7'(v,v') =const. We calculate
the minimizer uy,;, which motivates the Cattaneo approximation (2.13) for (M°, M?).
In Section 2.3 we consider the L?(V)-norm of the true solution p and compare it to
the norm of the minimizer 4y, (Theorem 2.4). An L?(IR™)-estimate is derived for
(m% m?) — (M°, M*) in Theorem 2.7. In Section 2.4 we generalize the moment closure
method to nonlinear reaction transport equations (1.2), again with equally distributed
kernel T'. A nonlinear Cattaneo system (2.33) follows, which has been studied in detail
in [51]. In Section 2.5 we introduce a prototype model for chemosensitive movement
based on a transport equation (1.1). We show that under natural assumptions the 2-
moment approximation is a Cattaneo model for chemosensitive movement (2.41) which
in a parabolic limit converges (formally) to the classical PKS equations ([64]). In the
discussion section (Section 2.6) we show that the moment closure method presented
here can be used to find appropriate boundary conditions for the Cattaneo system on
bounded domains. Moreover we show that the Cattaneo system is the minimizing flux
of a weighted Dirichlet integral. Finally we show simulations of the Cattaneo model for
chemosensitive movement, which have been developed in collaboration with Y. Dolak
[30].

2.2 A Minimization Principle and L?-Projections

We consider a transport equation which corresponds to a velocity jump process with
fixed speed, but variable direction (Pearson walk [94]). In this case V = sS"~! with
s > 0 and we denote w = |V| = 8™ lwy, where wy = |S™ !|. The turn angle distribution
is assumed to be constant T'(v,v') = % The method developed here will be generalized
to more general kernel 7' and more general velocity sets V in Chapter 3.

The initial value problem for the linear transport equation reads

mO
ptt+v-Vp = H(U—p> ) (2.3)
p(oamav) = (p()(LE,’U). (24)
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2 The Cattaneo Approximation

The shift operator ® := —v -V on L2(IR" x V) with domain
D(®) = {¢ € L*(R" x V) : ¢(.,v) € H'(R")}

is skew-adjoint. Hence it generates a strongly continuous unitary group on L?(IR" x V)
(see Dautray, Lions [25] and Pazy [93]: Stones Theorem). The right hand side of (2.3)
is bounded, therefore the linear transport equation (2.3) defines a strongly continuous
solution group on L2(IR" x V). For ¢y € D(®) solutions p(t,z,v) exist in

X = C([0,00), L*(IR™ x V)) N C([0, 00), D(®)). (2.5)

A detailed existence theory on transport and reaction-transport equations on bounded
domains is given in Schwetlick [100].

Later we will use the L?-norm to carry out the moment closure. Hence in this context
it is natural to work in L? spaces. For other applications the L!-theory is preferred, since
the total particle number is preserved by the linear transport equation (see e.g. [8] for
neutron transport).

To derive the equations for the first two moments m® and m! we integrate (2.3) over
V' to obtain the conservation law

my + 9;m? = 0. (2.6)

Multiplication of (2.3) with v* and integration gives

. . . 0 . .
/fuzptdu = —/v“vjajpdv+u%/vldv—u/v’pdfu.

From the symmetry of V = sS™~! it follows that [v‘dv = 0. Hence
mi + 8;m" = —pm'. (2.7

To close this system of two moment equations (2.6) and (2.7) we want to replace m® (p).
We derive a function wmin (¢, z,v) which minimizes the L?(V) norm |u(t,z,.)||3 under
the constraint that umin, has the same first moments m° and m’ as p has. We will show
in (2.17) that this norm is an entropy in the sense of thermodynamics. Once we have
such a function uy;, we replace m¥(p) by m¥ (umiy).

We introduce Lagrangian multipliers Ag € IR and A; € IR for ¢ = 1,...,n and define

1 ) .
H(u) :zi/qudv—Ao(/Vudv—mO)—Ai (/Vvludv—mz).

The Euler-Lagrange equation ( first variation) of H(u) reads u — Ag — A;v* = 0, which
gives .
u = Ag + A;0°. (28)

We use the constraints to determine Ag and A;:
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2.2 A Minimization Principle and L?-Projections

moz/ud'u:/ Aodv—k/viAidfu.
14 Vv 14

We have [i, v'dvA; = 0 hence

0
m
A= — 2.9
=2 (29)
2.
mt = / viudy = / v*Aodv —l—/ o' (Ajv7)dv
1% 1% 1%
The first integral vanishes. To evaluate the second integral note that
/ ool do = ﬂIn,
Sn—1 n
where I,, denotes the n x n identity matrix. Hence
52
/ vl dv = / (s0)(so)Ts" tdo = w=—TI,. (2.10)
|4 gn—1 n
It follows that A; is given by
Ai = m
i = Em .
Then from (2.8) we get an explicit representation of the minimizer
1 0 n i
Umin (t, Z,v) = —(m (t,z) + 2 (vim'(t,x)) ) . (2.11)

Remark 2.1 1. Let (1,v',...,0") C L?>(V) denote the subspace generated by the

constant functions and linear functions. Let I denote the orthogonal projection to

this subspace
1 n ;
M¢(v) = " /qﬁ(v')dv' + a2 /vggb(v')dv' A

It turns out that the minimizer Uy, in (2.11) satisfies Uiy, = lp for each (t,z) €
R* x R".

2. If we minimize the functional

H,(u) :== %/V(u — a)de — Ay (/V udv — mo) —A; </V viudy — m’) ,

for some arbitrary a € IR with the same constraints as above we arrive at the same
minimizer (2.11). For fized a € IR the norm ||u(t,z,.) — al|2 is a measure of the

oscillation around the level a. Hence Uy, minimizes oscillations with respect to
every given level.
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2 The Cattaneo Approximation

3. The extremum uUmin 1S indeed a minimum, since the second variation of H is
§?H(u) =1 > 0.

To finally derive the moment closure we consider the second moment of the minimizer

Umin*:

mY (Umin) = /V V'V Umin (¢, 2, v)dv
1 . n .
= — [ v'o'mPdv+ — [ v'viv,domt
2
w Sy ws? Jy

g2

0
= — I 2.12
nm , ( )

where (2.10) has been used, and because the tensor [;, v'v’vj, dv vanishes (see the fol-
lowing Lemma).

Lemma 2.1 For all vectors a,b,c € IR™ we have
/V(via,-)(vjbj)(vkck)dv = 0.
Proof: Using the divergence theorem on the ball Bs(0) € IR" gives
[ wadwitrands = [ vlaiwb)ter)do

0 :
= ——(a;(v7b;) (vFer,) ) dW
3 [, o o @D W)
= s ((aibi)ck/ R AW + (aici)bj/ vde)
B(0) Bs(0)
= 0,
where here dv describes the surface element on V' and dW the volume element on B;(0).
a
We have chosen umin such that m®(u) = m%(p) and m'(u) = mZ(p) Now we close the
system of the first two moments (2.6), (2.7) by assuming that m" (u) = m"(p). Then,
replacing m% in (2.7) together with (2.6) gives a linear Cattaneo system
Mto + 8jM i = 0,

. . 2.13
Mj+£28M° = —uM’, (213)

with initial conditions

M°0,.) =m°0,.), MY0,.) =m"(0,.). (2.14)
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We introduce capital letters to distinguish between the moments (m°, m?) of p and the

solutions (MY, M?) of the Cattaneo system (2.13). Of course, if m%(u) # m*(p) then
(M° M*) # (m® m?). In the next Section we consider errors between i, and p and
between (M, M%) and (m°, m?).

We will study solutions of the Cattaneo approximation (2.13) also in L2-spaces.
In [51] the Cattaneo system has been studied in L?(f2) with homogeneous Dirichlet
or Neumann boundary conditions. Existence was shown using Stones theorem for skew
adjoint generators (see Pazy [93]). The same argument applies on an unbounded domain.
Using a simple scaling of the space coordinates the generator of the Cattaneo system
(2.13) has the form

0 -0, --- —0y
-0, 0

G = .
-0, 0

with domain
D(G) = {(¢°,...,¢") € L2R™)"' : 9;¢°,0i¢" € L*(R™), i = 1,...,n}

The operator G is skew adjoint. Therefore it is dissipative, the spectrum belongs to the
imaginary axis and it generates an unitary group on (L2(IR"))"*!. Since the Cattaneo
approximation (2.13) is linear we have global existence:

Lemma 2.2 For each (¢°, ") € D(G) there exists a unique global solution (M°, M*) of
(2.13) with

(M°, M*) € C'((=00,00), L*(R")""1) N C°((~00,0), D(G)),
with M°(0) = ¢° and M*(0) = ¢'.

Remark 2.2 The minimizer Umin(t, z,v) given by (2.11) is the first nontrivial approz-
imation to p(t,z,v) in the following sense: If we only fix the first moment m° then
minimizing the L*>(V)-norm leads to

1
Umin(t, z,v) = ;mo(t,x).

Then Uy, s the projection of p onto the space of functions constant in v. The first
moment of this minimizer Ui, vanishes and it follows from the conservation law (2.6)
that the corresponding moment closure is simply

M) =o.

To develop a sequence of approximating functions (@min, Umin, - - -) one can derive equa-
tions for higher moments and fix more and more moments in the minimizing procedure.
We will do this in the following Chapter 3.

37



2 The Cattaneo Approximation

2.3 Error Estimates

2.3.1 Estimate of u,;, Versus p

The L?(V)-norm of the minimizer (2.11) is

2 1 L i)’
|tmin(t, )|l = o2 J, \™ +S_2('Uim) dv
_ 1 02 4 9 o, g ) i)2 d
= =/ (m°)” +2m S—Z(vzm)+s—4(vzm v

1 nws?
= = (w(mo)2 + pr m’mi> ,
1 .
-2 ((m0)2 + S%mm) , (2.15)

which of course is the L? norm of p restricted to the subspace (1,v!,...,9") (see Remark
2.1).
For the L?-norm of p we have

2/ ppt dv
1%
. mo
= —2/ v’ ipd'u—2u/ p2dfu—i—2u/ p—dv,
1% 174 VvV W

which leads to the balance equation

d
Enp(ta z, )H%

d , 20
5Pt 2, N3 + 8;F (p) = —2ullp(t, =, .)[I3 + ;(mo)z(t,w) (2.16)
with energy flow
F(p) :/ v? pldv.
14

Moreover, the negative L?(V)-norm satisfies an H-Theorem, i.e., it is an entropy for
equation (2.3):

Proposition 2.3

d .

2 lIp(t, )5 + 0;F (p) < 0. (2.17)
Proof: The right hand side of (2.16) can be written as

. 9, 28, 0y2 _ . 2 l 2
2ullp(t, z, )3 + —(m")" = 2pu p>dv + pdv
w v w \Jv

m\”
= —2u/ (p——) dv
v w
0.
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We denote the square of the L?-norm on IR” x V by

Ew) = [ lIp(t,z,)3do

and we abbreviate
£° :/ /p(O,x,v)Zdv dz.
nJy

Theorem 2.4 Let p(t,z,v) € X denote the solution of (2.3), (2.4) and let umin(t, z,v)
denote the minimizer constructed in (2.11). Then for allt > 0

0 < E(p(t)) — Eult)) < ™€ + % ( sup [[m®(9,.)|3 (1—e72) — [m°(t, .)||%) :

0<9<t
(2.18)
Proof: We integrate the balance equation (2.16) over IR" and observe that
d 2,0 2
— = -2 - I5- 2.1
CE() = ~2Ep) + 2 (1, )3 (219)
Hence 0 ;
E(t) = ¢ 211g* + L / &2 [0 (9, ) | 29. (2.20)
0

Since Umin is a minimizer we have ||umin(t, z,.)|2 < ||p(¢,z,.)||2. From (2.15) we obtain

ECumin) = - (1m0 + G l0m! (6, m (1, )B)

Then with (2.20) it follows that
0<&(p) = E(u) = (1) + (IT) + (111

with
(I) = e 2tgh
(1) = (s [ D, )30~ 1, 3)
(I11) = —5lm'(t, )., m" ()3

The first term (I) tends to zero exponentially for ¢ — co. The third term (III) is non-
positive. We consider the second term (II) in more detail. For this let y(¢) := ||m°(%,.)||3.

t t
2#/ e_QM(t_S)y(s)ds < (Sup y(ﬁ))zu/ e 21(t=3) g
0 0<9<t 0

( sup y(ﬁ)) (1 — 672#75)

0<9<t
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2 The Cattaneo Approximation

Putting all this together we arrive at (2.18). O

Remark 2.3 1. The right hand side of (2.18) is bounded by £9+ 1 supg<y< ||m° (9, .)l5-
If in addition we know that |m°(t,.)||2 is not decreasing in time, then the right hand
side converges to zero for t — oc.

2. It follows from (2.17) and from (2.19) that €(p) tends to zero in L?*(IR™ x V) for
t — oo. Hence solutions converge to zero, which was to be expected by a dissipative
system on the whole of R"™.

2.3.2 Estimates of the True Moments (m°,m’) Versus the Solution of the
Cattaneo System (M° M*)

We define
r=m’—M° and ¢ :=m'— M.

From the moment equations (2.6), (2.7) and from the Cattaneo system (2.13) it follows
that

ri+ 04 = 0, (2.21)

2
gi +pg’ +—Om = 9i(m"(u) —m"(p)), (2.22)
r(0,.) = 0, ¢‘(0,.) = 0. (2.23)

Integration of the first equation (2.21) gives % J rdz = 0, hence due to the initial condi-
tions (2.23) it follows that

/ (m® — MO)(t, 2)de = 0. (2.24)

Integration of the second equation (2.22) gives % [q¢'dz = —p [ ¢'dz, for i = 1,...,n,
then from the initial conditions (2.23) it follows that

/ (m' — M)(t,z)dz =0, fori=1,...,n. (2.25)
We aim to estimate r and ¢*, i = 1,...,7n in terms of m¥ (u) —m¥ (p). For this we define
an energy
1 2, M
es('ra Q) = 5/ T+ 9% dz, (226)
R" s

which is the L?- norm in space, where the speed s appears as a parameter.
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Lemma 2.5 Solutions (r,q) of (2.21)-(2.23) satisfy the energy estimate

2us2 / / M) (9 (m (u) — m (p)) ) dwd.

Proof: We differentiate the energy with respect to time. With Young’s inequality we
get

es(r(t,.),q(t,

no
Ees(n q = /m+ S—Qqui dx
= /—330'7 + 545 | —pa = —0r + Gi(m7 (u) —m”(p)) | dw
=—y/q%w+/—ﬂmww>wmwm
3 2
< —u/ —q'gidz + 2/ —q'qid / 8;(m”" (u m”(p))) dz
_ v 7t ji
< peslra) 450 [ (B ) - m ()
With Gronwall’s Lemma the assertion follows. O

Lemma 2.6 For all (t,z) € [0,00) x IR"™ we have

() =mI @) o)y < basmO(ta),
[Da (7 (W) = mI (p) (L 2)]z < bus? Dam(t,)]

where Dy, denotes partial derivative with respect to a € {t,z1,...,z,} and the constant
by, is given in (2.29).

Proof: Remember that m* (u) = 371—251'7' m0 = %(5” Jyy p(t, z,v)dv, hence we can write
m(w) ~ m(p) = [ Bil,p(t,,0)dv,

with the n X n matrix

Bny = —1I, —vv,
n

)

with entries

b = B, = 59 — v,
’ n

If ¢ = j then by = % — (v")2. Since s = |v] > (v')? we have £ — s? <" < 52 Hence

i -1
b%| < s?, for n=1, and [b"|< $22 , forn > 2. (2.27)
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2 The Cattaneo Approximation

If i # j then b = —v'v?. Since —3((v)? + (1v/)?) < vivd < L((v))% + (v7)?) it follows
that
6] < 5 (2.28)

For now we denote the vector-norms in IR" by |.|]2 and |.|. Then we have for n > 2
that )
n

|Bn,v|2 < \/E|Bn,v|oo < \/ﬁ(n - 1)7
and the same estimate | By, ,| < bys? with b, = 1 for n = 1. Then for each vector ( € R"
we have

s =: b,s> (2.29)

|(m (w) = mY (p)) (1, 2)¢l2 = ‘/ Blolemid],

bs”|m° (¢, )] ["]2-

The same lines apply for D, (m¥ (u) — m%(p)). O

Together with Lemma 2.5 we arrive at the following result:
Theorem 2.7 The solution (r,q) of (2.21)-(2.23) satisfies for each t > 0

2
S
es(r(t,.),q(t,.) < nbi—u IV2m®|72 0.4 xmm)- (2.30)

Remark 2.4 1. Here the L? norm of the differences in the first two moments is
estimated by the norm of Vm°. If the gradient of m® is small, we obtain a good
approzimation. Some experimental setups for bacteria are designed for shallow gra-
dients (see e.g. Chen et al. [20]). Patlak [92] derived the classical PKS-model for
chemosensitive movement under the assumption, that on an average distance trav-
eled by particles between turns, the change in particle distribution — hence |[Vm0||
- is small.

2. In contrast to parabolic approzimations the estimate (2.30) is valid for all times
t > 0. This motivates to use the Cattaneo model for small times and parabolic
models for longer times and asymptotics.

2.4 The Nonlinear Case: Reaction Transport Equations

Here we consider the nonlinear reaction transport equation:

0
m
pt‘*'UVp:N(j_p) +f(vapam0)’ (231)
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2.4 The Nonlinear Case: Reaction Transport Equations

where f describes birth, death and interaction of particles. Reaction transport equations
as models for biological populations have been derived by Othmer, Dunbar, Alt [86] and
Hadeler [46]. In Chapter 4 we introduce and discuss a more detailed model, which
accounts for the fact, that birth occurs while the mother is at rest. If the resting period
is short compared to periods of movement then the above model is appropriate.

We choose f such that the reaction transport equation (2.31) admits a solution
semigroup in L?(IR™ x V). This surely is the case if f is continuous and linearly bounded

in p. Again we formulate the equations for the first moments m°, m’ and m¥.
m? + 8jmj = g
mi+0;mY = —pm' + k'

with the v-moments of f
o(t.a) = [ fo.pm®) v, W(ta) = [ o flo,pm)do.
v v

To find an appropriate expression for m*, we again minimize the L?(V)-norm with
the same constraints as in the previous sections. Hence we continue with the mini-
mum (2.11). Again the second moment of the minimizer um;, is given by (2.12) and a
semilinear Cattaneo system follows

M$+8ij = G

2l S (2.32)
M+ 2M° = —uM'+ H',

where now
Glt:o) = [ f@.UMY)dv,  H'(to) = [ o' f(0,0.%) do,
1% 1%

with .
_ 0, ™/ ari
U= a(M + SQ(UZMZ)).

In case of reactions, which are independent of the actual velocity, f = f(m"), we have
H = /vif(MO)du —0 and G= /f(MO)dv — w f(MO).

Then a semilinear Cattaneo system follows which has been studied qualitatively in [51]:

M + 0; M7 wf(M°)

. _ 2.33
Mj+2M° = —uM'. (2:33)
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2 The Cattaneo Approximation

2.5 Transport Equations for Chemosensitive Movement

The two independent parameters in the general velocity jump process (1.1) are the
turning rate p and the kernel T', which describes the probability of changing from velocity
v’ into velocity v. As mentioned earlier, in case of bacterial chemotaxis it has been
observed in experiments, that bacteria significantly change their turning rate in response
to external stimuli, but they do not change their turn angle distribution ([11]). Hence we
modify the turning rate to derive a model for chemosensitive movement. As in the 1-D
model considered in Hillen, Stevens [55] and Hillen, Rohde, Lutscher [54], the turning
rate should depend on the velocity v, on the concentration of the external signal S and
on its gradient VS
= ,U/('Ua S, VS )

It is, however, clear that bacteria are too small to measure concentration gradients along
their body axis. They measure gradients while moving through them. Then the turning
rate depends not directly on V.S but on the directional derivative

0p8 := S +v-VS.

An assumption which has also been used by Alt [4] and by Griinbaum [42] (To see that
0y S is the correct term consider a Taylor series expansion of the difference in the signal
concentrations at (z,t) and at (z + vAt,t + At) for a small time increment At). If the
chemical concentration equilibrates fast compared to the movement of the species then
S(t,x) would be close to equilibrium in each time step and we can assume 6,5 = v-VS.
This quasi-steady state assumption for the signal has been used e.g. by Jager and
Luckhaus [59] or by Nagai, Senba, Yoshida [83] for the PKS-model. Here we continue
to consider the full characteristic derivative 6,S. It will turn out that in the parabolic
scaling the Si-term is of lower order and it vanishes for the parabolic limit equation. We
assume

= p(S,6,5). (2.34)

We choose a kernel K (v,v') in such a way that the total particle number is preserved.
This can be achieved with K (v,v") = u(S, 6y S)T (v,v") with [, T(v,v")dv = 1. Then
the transport equation for chemosensitive movement reads

pr+v-Vp=—u(S,8,5) p(v) + /V w(S, 6y S) T(v,v") p(v')dv'. (2.35)

Restricted to 1-D with two speeds +s the model considered by Hillen and Stevens follows

([55))-

To become more specific and to have an explicit prototype we consider

14(8,08) = po(1 — a(8)d,S) (2.36)
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2.5 'Transport Equations for Chemosensitive Movement

with some constant pg > 0 and an appropriate function a(S). We will write « instead of
a(S) throughout the following calculations. We assume moreover that T'(v,v') = 1/w,
then a prototype model for chemosensitive movement reads

pr+v-Vp=—uo(l—ad,S)p)+ %/ (1 — by S)p(v') dv'. (2.37)
1%

2.5.1 A Cattaneo Model for Chemosensitive Movement
Using the notation of the moments m® and m* we can write (2.37) equivalently as
_ Ho (0 0 i
pr+v-Vp=—puo(l—a(S;+v-VS)) p(v) + o (m —am’S; — am Bz-S) . (2.38)
To derive the equations for the first two moments we integrate (2.38) and obtain
ml + 9;m? = 0. (2.39)
Multiplication of (2.38) with v* and integration gives
mi+ 9ymY = —po(1 — aSy)m® + poa 8;S m". (2.40)
Again with (2.12) the corresponding Cattaneo system for chemosensitive movement reads
MY +o;MI = 0
i t 5 ' 0 iy s? 0 (2.41)
M} + ;&M = —uo(l—aSy)M"+ o 0;S M".

To obtain a parabolic limit we divide the second equation of (2.41) by po and consider
the limit of

§2
to, s >00, a—0, — = D<oo, poa—x <oo.
Hom

Note that x depends on S via «(S). We divide the second equation of (2.41) by po and
in the above limit the Si-term vanishes. Formally the second equation of (2.41) becomes

M' = —-Do;M° + Dx(S)M°VS. (2.42)
Hence the limiting equation is the PKS model (1.5):
MP = DV(VM° — x(S)M°VS).

Remark 2.5 1. The prototype chemotazis model (2.37) leads to the well-known Keller-
Segel model in two steps: First closure of the first two moment equations to get
the Cattaneo approzimation (2.41) and then passing to the parabolic limit for large
speeds and large turning rates.
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2 The Cattaneo Approximation

2. As shown by Patlak [92] or Alt [}] and also in [52] one can directly scale the trans-
port equation to derive the parabolic limit (1.5) (see Chapter 1). If we use the
expression for M in (2.42) to calculate the minimizer u given in (2.11) we arrive
at an ad hoc assumption which was made by Patlak or Alt. In the framework of
moment closure the assumption of Patlak and Alt can be justified a posteriori.

2.5.2 A Chemotaxis Model with Density Control

In the last Chapter 5 a parabolic chemotaxis model with density control is introduced.
The density control leads to the effect that at high population densities the chemotaxis
is turned off and pure diffusion dominates. Solutions exist globally and now blow-up
occurs. The model in Chapter 5 can be constructed from a transport equation via a
corresponding Cattaneo approximation. We consider a turning rate of the form

n

(S,8,) i= o (1= ZAmOX(S)5,5)

where 8(m?) is a density dependent sensitivity. The function 3 is assumed to have a
zero at some M’ > 0 and B(m) > 0 for 0 < m < mO® (see the details in Chapter 5).
With turning kernel T'(v,v') := w1 u(S, 6,+S) the moment closure procedure leads to a
Cattaneo model for chemosensitive movement with density control

Mto + 8]-Mj =0
U . (2.43)
M+ 5 oM = —po (1= BA(MO)X(S)S;) M’ + B(MO)x(S) M° ;5.

The parabolic limit of this equation is the model which will be studied in Chapter 5 in
detail.

2.6 Discussion

Since the closure problem is well known in transport theory there are a large number of
heuristic arguments based on logical insight or scaling properties to close the first two
moment equations for m® and m’. Here minimizing of an appropriate energy motivates
the choice of the approximation to the second moment m% (p). This method is directly
generalizable to equations for arbitrarily high moments (m® m?,...,m*%). We will
present this in the following chapter.

The Cattaneo approximation developed here gives a new model for applications which
can be used to understand the behavior of biological systems for short times without
using the full transport equation. It is well known that at large times the transport
equation and the Cattaneo system behave as their parabolic limit. This explains the
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2.6 Discussion

success of reaction diffusion equations in mathematical biology. However, there is no
doubt that for small or intermediate values of time the diffusion model is inaccurate. For
those time ranges the Cattaneo approximation helps to understand the dynamic behavior
of the biological system. The relevant parameters of the Cattaneo approximation can
be estimated directly from experiments.

2.6.1 Boundary Conditions

The use of this method for bounded domains with boundary conditions has to be consid-
ered carefully. It is not obvious, how boundary conditions for transport models translate
into boundary conditions of the Cattaneo approximation. We will give two examples for
a bounded domain 2 € IR" with smooth boundary 9f). For z € 02 we denote the outer
normal by n(z). We assume V is symmetric with respect to SO(n) and at each x € 02
we split V into inward and outward pointing velocities:

Vo(z)={veV: vun(z) <0}, VT(z):={veV: vuni(z) >0}

a) Dirichlet boundary conditions: The homogeneous Dirichlet boundary condi-
tion for the transport equation (2.3) reads

p(t,z,v) =0, VzedQ, veV (z).

We stipulate that the energy minimizer upyi, constructed in (2.11) satisfies the same
boundary condition, then

mO(t,x) + "o mi(t,z) =0, Vzed, veV (z).

s2
We integrate this boundary condition along V'~ and obtain

2 .
m0 = %ﬂ nim', with Kk, = vdv - ey, (2.44)
s? w {veVwl>0}

where e; denotes the first unit vector in an orthonormal basis of IR" and w = |V| as
usual. Hence the Dirichlet boundary conditions of the Cattaneo approximation are given
by
n 2K :

M = ——nM". (2.45)
§? w
This condition has been suggested by Hadeler [46] and it has been used in [51] for a
nonlinear Cattaneo system. It is remarkable that the Dirichlet condition appears in
form of a Robin condition for the Cattaneo system. Note that in the parabolic scaling of
s — 00, 1 — oo with s2/u < oo the homogeneous Dirichlet boundary condition M°% = 0

follows.
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2 The Cattaneo Approximation

b) Neumann boundary conditions: General reflection boundary conditions for
the transport model (2.3) have the following form:

p(t,x,v) = /+ B(v,v)p(t,z,v)dv', YveV™,
1%

with a nonnegative symmetric kernel B with [;,_ B(v,v")dv = [, B(v,v")dv' = 1. We
assume the same boundary condition to hold for the minimizer uy;,, which leads to

1 ; 1 j
- (mo + %viml) = B(v,v")— (mo + %vgml) dv', YveV™,
w S v+ w 8

hence

vym' = . B(v,v')vidv'mt, YveV™. (2.46)
14

In case of pure physical reflection an outgoing velocity v' € V7T is reflected into the
inward going velocity v = r(v') := v’ — 2(n;v")n. In this case the kernel B is given by

B(v,v'") = dg(v —r(v')), v e VT,o e V™.
Condition (2.46) reduces to
vm’ = (vi — 2(17Z~Ui)77i) mt, VYveV™
Since on V'~ we have nv* # 0 it follows that
nm' =0, on 0Q.

Hence the corresponding Neumann boundary condition for the Cattaneo approximation

reads .
M = 0. (2.47)

Also this boundary condition has been suggested in Hadelers article [46].

2.6.2 Memory Effects

Gurtin and Pipkin ([44]) show that the Cattaneo system appears if the medium under
consideration remembers its history with exponentially decay backwards in time. This
interpretation can be extended to the following fact:

Lemma 2.8 The Cattaneo system (2.13) is the minimizing flux of the exponentially
weighted Dirichlet integral

D rt
J(u) := Z/o /Qe*%(t*s) |Vu|*dzds.
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2.6 Discussion

Proof: The minimizing flux of J is given by the solution of
Ut = —V]

with
t
j= 2/ e~ (=9 Wy ds.
T Jo

Hence j satisfies the Cattaneo law:

Tjy = —j + DVu.

2.6.3 Numerical Simulations

For illustration purposes we show some numerical simulations of the Cattaneo model for
chemosensitive movement with density control (2.43), which are part of ongoing research.
The simulations in 1 — D are related to the model (1.10) which has been studied in [55]
and [54].

In Figures 1 and 2 we consider an interval of length [ = 1 and we assume that the
species move with constant speed 4 = 0.2. The turning rates y* are density dependent
as discussed in Section 2.5.2:

2 +
pE(S, VS, ut +u7) = (;—D F Bt + u_)X(S)VS> :
with effective diffusion coefficient D = 0.036. The super-index + indicates to take the
positive part. The density-sensitivity function § and the chemotactic sensitivity x are
given as f(u) =1 —wu and x(S) = 1/(1 + S). The parameters for the signal equation in
(1.10) are 7 = 1, = 4-10 % and the reproduction term is f(S,u™+u ") = —aS+ut+u .
For simulations we use a Godunov-scheme (see [55] and [54]). In Fig.1 we show the long
time behavior in the case of not degrading signal (a = 0), whereas in Fig.2 we assume
that there is a small decay rate of a = 0.001. The initial conditions in both runs are
random perturbations of 0.3% of the constant level u* = 0.3 and S is assumed to be
initially constant at a low level of Sy = 0.5.
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2 The Cattaneo Approximation

10 12
2 a8 374 6 8
1572 0 timelog 17 2 0 timelog

Fig.1: Long-time evolution of the Fig.2: Long-time evolution of u
total particle density v = ut + u~ with degradation of S.

in a time-logarithmic plot without

degradation of S.

The simulation in Fig.1 shows a transient development of patterns, which eventually
decays to the homogeneous steady state. This is in good agreement with observations
on bacteria as shown by Tyson et al. [114]. The second simulation (with decay of S)
shows the same initial patterns, which eventually coarsen, and a global pattern remains.
The transient behavior in Fig.1 can be explained by a linear stability analysis of homo-
geneous solutions. We carry this out for a # 0 (otherwise we would not have a non-zero
stationary equilibrium for S). The calculations are straightforward and it turns out that
a stationary homogeneous solution (@t,%~,S) with @t = @~ is linearly unstable, if

y(m?a +a) < 2aTB(2aT)x(S). (2.48)

This condition can be used to understand the transient behavior for a = 0. The chemo-
tactic sensitivity x(S) has been chosen to converge to 0 as S — co. Hence in the begin-
ning of the simulation of Fig.1 the homogeneous solution is linearly unstable, whereas
later, when S increases drastically, the chemotaxis term fades out, the diffusion domi-
nates and the homogeneous steady state becomes linearly stable.

In two space dimensions we developed a numerical scheme for the Cattaneo model
for chemosensitive movement (2.43) in collaboration with Y. Dolak. The algorithm bases
on a Lax-Wendroff scheme (the details can be found in [30]). Here we show a typical
time evolution for randomly chosen initial data with constant y and § = 1 —wu (for exact
parameter values see [30]):
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Fig.3: Typical time evolution. Particle density shown for ¢t = 1,150 and 500.

One clearly observes merging local maxima and coarsening of the pattern. The dynamics
of these patterns and the underlying bifurcations have to be studied further.
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3 Moment Closure

In this chapter we carry out the moment closure for an arbitrary finite num-
ber of moments. We generalize the H-Theorem of the previous section for
kernel T which satisfy the basic assumptions (T1)-(T4) given earlier (The-
orem 3.6). With use of a variational principle we show that the closure can
be obtained by minimizing the L?(V)-norm with constraints. The Cattaneo
closure is a special case for two moments and we explicitly calculate the three
moment closure for two space dimensions. It turns out that the steady states
of the two and three moment systems are determined by the steady states of
a corresponding diffusion problem.

3.1 Notations and Basic Assumptions

We consider a compact set of velocities V' C IR". In some cases we assume symmetry
of V but then we will state it explicitely. On V x V we consider distribution kernels
T(v,v") with the properties (T1)-(T4) defined in Section 1.4.1. Moreover we assume
that
(T5) For each v’ € V there exists a moment generating function for T'(., v").
Assumption (T5) ensures that the v-moments of the kernel 7" are bounded and that

the distribution T'(.,v") can be generated from its moments (see Billingsley [15]).
We define the velocity moments of a distribution function p(¢, z,v) as

m(t,z) = /p(t,w,'u)dv

mi(t,z) = /vip(t,:c,'u)dv, ie{l,...,n}
mh-k () = /fuil vt p(t,z,v)de, keIN,  (ig,...,0) € {1,...,n}*.

We use tensor notation, which means that m? % denotes the (i1,...,i})-component
of a k-tensor. Since we are working in Euclidean spaces IR™, we use both sub and super
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3 Moment Closure

indices and we stress the summation convention, which means that we always consider
a sum on repeated indices, e.g.

i R = Z Aj, . iym'tte,
(15esig ) E{L,...,n}E

A

For fixed k € IN we denote the tuple of all tensor indices for tensors of lower or equal
order than k£ by

a = (0,1,2,0,m,(1,1),(1,2),.., (nn),....
(1), (). (3.1)

—— ———

k times k times

The index-vector oy has the length

k
lag| = an =: Nj.
=0

Then m* denotes a vector of length N}, of all moments of order < k:

o - 0 1 2 n 11 12 nn
m* = (m?m',m* ... om",m m o m™

.., ml...l, L ’mnn) . (32)

We use this notation for products of velocity components as well. If we define v'1~% =
v* ... 9" then it makes sense to write v®t.

3.1.1 The Velocity Tensors

For later use we define
'(7““'“" = /'UZI I ’Uzkd’l)

and now we consider V = sS"~!. It is clear that 1° = [dv = w = wys" ™!, with
wo = |S™ 1|, and that o* = [o'dv = 0. Moreover we give explicit formulas for the
velocity tensors 9''~* for odd and even order.

Lemma 3.1 1. If kK € IN is odd, then

gt =0, for all iy,...,i € {1,...,n}.

2. If k € IN is even, then there is a constant ¢, > 0 such that

ik = ghtn—lo ( Z §ti1bia ,,,5ijk1iz‘k> ) (3.3)
P(

01 yeenyik)
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where the set of all pairs of indices out of (i1,...,1x) is defined as

Plivs--wvie) = { ((jurign)se s (gyrize)) :
(v, d2ts - k=1, 0k} € {1, ., K},
with {j1, gk} = {1, .k} }.
The constants ¢y are given by

wo Ck—2
Cco) = W co=—, ¢ =——"—, for k>4.
0=wo, =" Gk k—2+n’f >

Proof: 1.: Let (i1,...,4) € {1,...,n}*. In case of k odd we split V into VT and V~

defined by . )
V+;:{1;6V:U“>O}, Vii={veV:v" <0}

Then for each v € VT we have —v € V~. Since the set of {v* = 0} C V is a set of
measure zero we get

gt = / "otk dy 4+ "tk dy
v+ V-
= / (—1)kv't .- dy + vtk
_ V-
= 0,
since k is assumed odd.

2.: In the case of k even we use an induction argument and the divergence theorem
on the ball Bs(0) in IR™.
k=0:9" = wys" L.
k = 2: For any two vectors a',a? € IR" we obtain

11 %is i1 i
= s/ %(al’ilaz ’Ui2)d’U
v |v] "

_ i1 2 i
= S/BS(O) Oy;, (@ " azv" )dv

= 3/ dv a"" a3, 6
B;(0)

al algh®? = / (a} v a2 v*?)dv
v

Now we have
n n

1B,(0)] = s"|Bi(0)] == Oyvidy = oiotdo
n Bl(O) n Jsn-1
S'IL
= —wp-
n
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Then we get
aj az, o' = "t Oazl1 aj, 6%,
n
which shows that
gitiz = g1 X ginia, (3.4)
n
Since in the case k = 2 the set of pairs P(i1,i2) for 1,42 € {1,...,n} reduces to

Plivyia) = {(ijriz) : L do} € {1,2) with {1, 5o} = {1,2}}
= {(i,12)},

we obtain

Z Slirtia — §hist2

P(i1,i2)
and (3.4) is (3.3) for k = 2.

k — 2 — k: Assume (3.3) holds for k£ — 2. For any vectors a',...,a* € IR" we have

1 k mitedr,  _ 1,1 k ik
aj, - 05,0 = (a;,v" ... a; v"*)dv
v
Yir L (2 42 ik
= s |'u| (aizv .ak U )dv

= S/BS( ) 'Uzl (H a”v )
= s/ dv a'™ Z a; 5:: H aélvil dv
s(0) 1=2,l%r
= sab™ Z a;, ::/ H %U” dv. (3.5)
r=2

+(0) j=2 127

To exclude one entry from a tuple we will now use the notation for [ <r < k,1 < k

(il+1, ..,ik), if r :l,
(‘il, . aik)\{r} = (Zl, BTy g1y - Zk) ifl<r< k,
(Zl Zk 1) ifr=k.

With use of this notation we study the integral term in (3.5) separately. We will use the
assumption that (3.3) holds for k£ — 2.

/ H a”v” dv
Bg(

0) 1=2,1r
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S k .
= / / H aél v" | dvdo
0 JoSrmt\ 1o 1sr

S . .
k—2+n—1 2 k S . )
= /0 ok—2tn Ck—2 (ai2 ce aik)\{r} E Stirtie . §Yk-3Yk-2 do
P((i1,58k )\ {r})

Sk—2—|—n

= ka_Q (CL%2 . af’“)\{r} Z 51']'1 ijz L (5ijk73ijk—2 '
P((i1e-stk )\ {r})

Using this equality in (3.5) we finally get

1 k i1..ip
aj, ... Q; 0

i
_ o kn-1_ Ck—2 ol in k i i i
= gt P +n & Zazr(su (( Giy - ak)\{r} Z Otz | §'ik—3"k 2)

= P((i1,- ik )\ {r})

sktrn=le, ( Z 81tz ...6ijklijk) .
P(i15eesik)
Example for P(iq,...,i4):
Plir,via) = {((51555)s (g, 32))
{1, 42}, {ds, da} € {1,2,3,4}%, with {j1, ja, j3, ja} = {1,2,3,4}}
= {((i1,2), (i3,1)), ((i1,3), (i2,14)) , (i1, 8a), (in,i3) ) } - (3.6)

In case of n = 2 with polar representation v = s(cos 6, sinf) we explicitly calculate, e.g.

1111 2m 4 ™ 1122 2 2 2 T
v :/ cos 0d0 =3—, v :/ cos“fsin” 0df = —,
0 4 0 4

P4
71222 = / cos sin® 0d6 = 0.
0

3.1.2 Symmetry of the Moments and the Velocity Tensors

Lemma 3.2 The tensors m" %, and v**~* are invariant with respect to exchange of
two indices.

This follows directly from the definitions of mf % and "%, For later use we will
introduce an operator for change of two indices. For 1 <r <[ <k, 1 < k we define

/1 O T S TR P e T RRTR L/ IR MU 7
And we allow 7,; to act on tensors and vectors as well, i.e.

Ur,la“"'lk .— aﬂr,l(ll---lk)’ etc..
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3 Moment Closure

3.2 Moment Closure for the General Linear Model

The general linear transport equation for a particle density p(t,z,v) at time ¢ > 0 at
spatial position z € IR™ and with velocity v € V reads

pt(t,!E,’U) -|—’U]8Jp(t,l‘,’l)) = —/j,p(t,il,',’l)) +:us T(’U,’Ul)p(t’l"’ul)d’ul
= —w(I-T)p (3.7)
= Lop-

Since we assume (T1)-(T5) for the kernel 7', the turning operator £y has the properties
as summarized in Proposition 1.1.

3.2.1 Moment Equations

We derive the system of moment equations by multiplying with combinations of v*! - - - v’
and integrate along V: Integration of (3.7) leads, with [ T'(v,v")dv = 1, to a conservation
law for the particle number:

my + 9;m? = 0. (3.8)

For higher order moment equations we use the following abbreviation. Let the T'-
modulated moments of p(t, z,v) be denoted by

wh = // 0" T (v,v")p(t, z,v")dv' dv. (3.9)

Using this definition, multiplication of equation (3.7) by v* and integration leads to

mi+omY = —pum! —I—u// (v,v")dv p(t,z,v")dv'
= p(w' —mb) (3.10)

and analogously we get for the l-moment, [ < k :
mil...’il _|_ ajmllll] — H('U)“Zl _ m’il...il)' (311)

Finally, for all ¥ € IN we have the system of moments which consists of equations (3.8),

(3.10) and (3.11) for all [ < k. In the highest order equation for m* % the divergence of
the next higher moment m/t %/ appears, hence the system is not closed. If, moreover,

the T-modulated moments depend on moments of p of order > k, then these higher
moments appear as well. We will show that in some important cases the T-modulated
moments of order k are linear functions of p-moments of order less or equal £ (Lemma
3.5). We give two examples first:
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3.2 Moment Closure for the General Linear Model

Example 3.3 1. Assume T'(v,v") = 1/w describes uniform choice of any direction.
Then

,l—)’tlzk 0

w’L]_...’Lk — m”.

W

2. Assume, for example, that T'(v,v") = 6(v—2") (which is not included in our general
hypotheses, but illustrates possible dependencies). Then

Wik = itk
Since we aim to close the moment system (3.8), (3.10) and (3.11) with respect to the
k-th order moment we distinguish two cases:

Definition 3.4 The system of moments (3.8), (3.10) and (8.11) is called [-quasi closed
for somel € IN,1 <[ <k, if all T-modulated moments of order less or equal | depend
on p only via the moments of p of order less or equal I, but not higher, i.e.

w = w*(m™).
The moment systems in both examples in Example 3.3 are [-quasi closed for each
leIN,l > 1.
If the moment system is not k-quasi closed then we have to use the minimization

procedure below to find good approximations for w* as well.

Lemma 3.5 1. If w"% depends on some moments of p it is a linear function of
these.

2. System (3.8), (3.10) and (3.11) is l-quasi closed if and only if the moments of
T(v,v') are linear in v'™, i.e. for each v € V there exists a linear mapping R(v) :
RN — RN such that

/vakT(v,v')dv = (R(v)v'™) (3.12)

a "
Proof:
1. We write

,wil---il — /Qzlzl (’U’)p(UI)d’Ul, with Q’il---il (UI) — /’Uil . "UilT(’U,UI)d’U,.

Now assume w® = w (m® ) for some j € IN. Then for two functions p,q € L2(V)
and ¢y € IR we have

w (eom? +mi’) = [ QW) (o) + q(v') !

Qg Qg
= cqw™ (mp]) + w™ (mq]) .
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3 Moment Closure

2. We assume that the moment system is [ quasi closed. Since w® is a linear function
in m®, we can find a linear map R(v) : RM — RM with

w = (R(v)ym®),, = / (R p(v')),,, dv. (3.13)

On the other hand
wY = //UO"T(U, v )p(v')dv',
which equals (3.13) if and only if

/

This is true only if

(Rv'™),, — /va’T(v,v')dfu] p(v')dv' =0, forall pe L3(V).

(Rv'™),, = /’UalT(’U,’UI)d’U.

O
Besides the examples shown above we get a k-quasi closed moment system if 7" has the
form

T(v,v") = ap(v) + a;(v)v" + ... + a0 ... 0™ (3.14)

for some [ < k and bounded integrable coefficients aq, (v).

Note. If a system of moments is [-quasi closed it needs not to be k-quasi closed for
k>1.

3.2.2 Minimizing the L?>-Norm

First we show that the negative L?-norm is an entropy for the general transport model
(3.7). We denote the L?(V)-norm by

E(u) ::/%Zdv

and the corresponding flux by

2

F(u) := /’U %dv.
Theorem 3.6 (H-Theorem) Assume (T1)-(T4). Solutions p(t,z,v) € X ( X defined
in (2.5)) of the linear transport equation (1.1) satisfy

d i
EE(p) + 0;F(p) < 0.
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3.2 Moment Closure for the General Linear Model

Proof:
—E(p) = /p(—vjajp+£op)dv

— —aij(p) +/p[,0pdv.

In Proposition 1.1 it has been shown that on (1)1 the operator Ly satisfies

[ pLopdv < ~pall.
For p(t,z,.) € (1) we have [ pLopdv = 0. Hence the entropy estimate follows. O

For now we fix (¢,z) as a parameter and consider the dependence on v. For functions
in L2(V) we aim to minimize the functional E(u) with constraints of given moments
m“ of order less or equal k:

G(u) =0, with G(u) = /vaku(v)dv — mk,

Note that oy, defines a multi-index such that G : L?(V) — RN+,
For minimization of £ under the constraint G = 0 we use the framework of La-
grangian multipliers as presented e.g. in Zeidler [117]. If ug is a minimizer, then

B(up) : (V) = R : b / wo (v) () dv
G'(up) : L2(V) — IRN* . h— /v""“h(v)dv.

Theorem 3.7 Assume Umin 1S a minimizer, then there exist Lagrangian multipliers
Ao, € RY* such that all ¢ € L2(V) satisfy

Fl(umm)¢ + Aak Gl(umm)¢ =0,
where the summation convention is applied for Aq,G'(Umin)®, since G'(Umin)d € RNk,

Proof: For the existence of Lagrangian multipliers we have to check two conditions (see
Zeidler [117])

(i) For each h € L?(V) with G'(umin)h = 0 there exists a curve @(s) such that @' (0)
and @ is admissible, which means that @ is differentiable at s = 0 and G(u(s)) =
for s € (—¢,¢) for some € > 0.

h
0
(ii) The range R(G'(umin)) is closed.
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3 Moment Closure

We first check (i): Consider k € L?(V) with G'(tmin)h = 0. Then
/vakh(v)dv = 0%, (3.15)

which means that the first £ moments of h vanish identically (here 0% denotes the zero
of IRMk.) We define a curve

(v, s) == p(v) + h(v)s
which satisfies 5
%ﬂ(v,O) = h(v)
and
G(u(v,s)) = /'Uakp('u)dv +/v°"°h(v)d'u s — m*

= 0%,
with use of (3.15). Then (v, s) is admissible, i.e. It is tangential to relative minima
of the functional E. Then indeed for each h € L*(V) with G'(umpin)h = 0 there is an
admissible curve % and condition (i) is satisfied.

Condition (ii) is immediate in this case. Since G’(upiy,) is a linear mapping into a finite
dimensional space, its range is closed. O

From Theorem 3.7 it follows that for all ¢ € L2(V) we get

/umin(v)¢(v)dv + Aak ’Uak(}s(’l)) dv =0.
Hence the integrand vanishes pointwise and the minimizer satisfies:
Umin = —Nq, 7. (3.16)

The first £ moments of the minimizer uyj, are given by the constraints G(upin) = 0,
hence we obtain for [ < k (i1,...,4) € {1,...,n}

mil...il — _/Uil . ’UilAak'l_)ak dv. (317)

This is a linear system for the Lagrangian multiplier A,,. Since from Theorem 3.7 we
know that this multiplier exists it must be a linear function of the first & moments.
Hence there is a N, X Ng-matrix B with

Ay

= (Bm®*) (3.18)

k (7
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3.2 Moment Closure for the General Linear Model

With use of the notion of the velocity tensor 7' introduced above we can write the
linear system (3.17) in explicit form.

mb = —A()’UO — qujj — .. — Ajlu.jk’ﬁ]l'"“
v =T 500 _ . Y R 12
m' = —Agt" — AV e =Ny G0 (3.19)

In case of V = sS"~! the odd velocity tensors vanish identically (see Lemma 3.1), and
the system decouples into two independent systems for odd and even multipliers.
If K € IN is even and V = sS™~! then we obtain for the even indices

0 — _ A0 _ A, mi1j2 _ A miedk
m° = —Ag0° — Ajj,V oo = A D
t1t2  — __A.af1t2 AL . mt192]172 I R SR LY
m = —Ag¥ Ajy g, 0020002 — = A 0t Tk
(3.20)
and for the odd indices
N Y Y U TR
mt = Ao — o= Ay O TR
(3.21)
mitik—1 — _Ajﬁil---ik—lj - = Ajlmjk_l/l_)il---ik—ljl---jk—l_

In case of k odd and V = 55" ! we obtain the following two decoupled systems. For
the even indices:

0 — _ A0 A pitedk—1
m’ = —Agu e = Aj 0
(3.22)
mil---ikfl — _AO,I—)il...ik,1 - = A]l ]k l,l—)il...ikflj]_...jkfl
and for the odd indices
T At AL . 01Tk
mt = Ajv coo = NG
(3.23)
18k — A Labledg] _ . B S % I 13
m = Ajv e = Ay G0 .

We will use these equations to consider explicit examples later.
The above systems of equations are invariant under exchange of pairs of indices.
Hence it follows that
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3 Moment Closure

Lemma 3.8 The Lagrangian multipliers A"% are symmetric with respect to exchange
of indices.

Now we proceed with the general notion of (3.17) to find the general moment closure.

3.2.3 Moment Closure

We consider the unknown (k + 1)-st moment of umi,. Using (3.18), we get
/’Uil ---vi’““umin(v)dv = —/vil ---vi’““Aakvak dv
= —(Bm%),, /’Uil < L%k gy
= —m** [ yh ---'ui’““('uakBT)akdv

Hence the (k + 1)-st moment of umin is a linear combination of the lower order moments
of the form

itk _/ oy (v) do __,4“ Tt *k (3.24)
with mappings ,Aa,;" :IRM — TR given by
u Bk41 ._/ ViR ( OkaT)ak dv. (3.25)

The next step to obtain the moment closure is to assume that the highest moment
mftk+1 of p(t, z,v) has approximately the same relation to the lower order moments as
Umin has, and to replace m® -/ in (3.11) with (3.24). Since this is an approximation we
switch notation to capital letters M~ to distinguish from the original (exact) values
le ) .

In case where the system (3.8), (3.10) and (3.11) is k-quasi closed (see Def. 3.4 and
Lemma 3.5) we obtain the following closed system:

Mto + aij =0
Mj+O;M¥ = pfu’ — M)
o o o o (3.26)
Mtzl...ll + Bjle...zlj — u(wzl...zl _ Mll...zl)
MtZle + aj (Aél,;"iijak) — M(wil"'ik _ Mil---ik)’

with w* = w* (M%) as given in Lemma 3.5.
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3.2 Moment Closure for the General Linear Model

If the moment system is not k-quasi closed, then the terms w® - in (3.11) depend
on the original distribution as well. Hence we also assume that they are appropriately
approximated by using the minimizer umy;, instead of p. This way they will depend on
moments of order less or equal k. We carry out this approximation in equation (3.11)
and obtain a closed system for approximations to the first & moments:

Mto+6ij =0
M§+6jMU = u(Wi—Mi)

Mtil...il —i—ajMil"'i”t = (Wit — pfiein) (3:27)
Mtz'l...ik +0; (Aal’;..iijak). = p(Witein — pfieir),
where for 1 <[ < k we have approzimated T-modulated moments
Wit = / / v - T (0,0 U (8, 2, v ) dv' dv (3.28)
vJv
with an approzimative minimizer
U(t,z,v) := =g, vg, (3.29)
where the approrimated multiplier are
Lo, = (BM%*)q,, (3.30)

and B is given by (3.18).

Note that the system (3.27)-(3.30) indeed defines a closed system for M.

3.2.4 The Three-Moment Equations

In case of k = 3 and n = 2 and V = sS' we study the above procedure explicitly to
find a closed system for the first three moments M°, M® M2 4, iy € {1,2}. The
3-moment system reads:

md+0,m’ = 0
mi+0;mY = p(w' —mb), i=1,2 (3.31)
mir 4 oymhl = p(wh® — miie) 1,49 = 1,2.
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3 Moment Closure

We use systems (3.22) and (3.23) to find expressions for the Lagrangian multipliers
Ao, Ai, Ajyi,- In the present case system (3.23) for odd indices is

()= ) (n) 532
Now, with use of Lemma 3.1, we obtain, with wy = |S!| = 2,

gl = 2 = &, 72 — 72! — 0.
Then (3.32) is immediately solved with

Aj=——m!, fori=1,2. (3.33)

The system (3.22) for the even indices reads in this case:

mO ,50 ’511 1712 ’521 ’522 AO
mll 1—)11 ,51111 1—)1112 1—)1121 ,51122 All
m12 — _ 1712 ,51211 171212 ,51221 ,51222 A12 . (334)
m21 1—)21 1—]2111 1—)2112 1—)2121 1—]2122 A21
m22 ,522 ’52211 ,52212 ,52221 ’52222 A22

Again we use Lemma 3.1 to obtain explicit values for the velocity tensors. Especially in
(3.6) we explicitely calculated the four-velocity tensor. In the present case the relevant
constant is ¢4 = 7. Then the matrix in (3.34) is given by

3 3

2 s°m 0 0 s°7w
3t 3a 0 0 «
0 0 aa 0 with o = s52.
0 0 a a 0 4
st a 0 0 3o«

Hence the equations for the mixed indices decouple and due to symmetry (see Lemmata
3.2, 3.8) we have m!2 = m?! and Aj3 = Ag;. Then it follows from (3.34) that

2
Ag = Ayy = ——m'2. 3.35
12 21 357rm ( )

The remaining system for Ag, A1; and Ags reads

m? s2r s3m s« Ag
ml | == 7 3a « Aqq
m?? st a 3« Aoo
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3.2 Moment Closure for the General Linear Model

We denote the above matrix by J and observe that
det(J) = %sn £ 0.

Hence J is invertible and we get

A() mO
Ay | =-T1] m!t |, (3.36)
A22 m22

When we denote J~' = (aij); jeq1,2,3} then formula (3.18) can be written explicitly as

AO a11 0 0 a19 0 0 13 mO

Ay 0 (ms3)7! 0 0 0 0 0 m!

As 0 0 (7rs3)_1 0 0 0 0 m?

A11 = — a1 0 0 a9 0 0 Qa23 mll

Ao 0 0 0 0 2(ws®) ! 2(ns%)"t 0 m!?

Aoy 0 0 0 0 2(ms®)7! 2(xs®)7t 0 m?2!

Ao 31 0 0 o392 0 0 o33 m??
(3.37)

Finally the minimizer uy;, given in (3.16) reads

Umin — —AO — Aj’Uj — Ajljz’l)jlvh. (338)

3.2.5 Closure of the 3-Moment Equations

To close the system (3.31) for the first three moments m®, m?, m¥ we consider the third
moment of the minimizer umin, given in (3.38). For 41,42,i3 € {1,2} we obtain, with
using the representation of v:

m'"?" (umin) = /v“v”v“‘umindv

A .mf19283 _ A 1192935 _ A . . .,01%92137172
Ao Ao Aj v

_ % (ml,ailiﬂgl n m21—)i1i2i32) .
Then, with (3.6), we get
mM (upin) = % (3am1) = %szm1
2 (uin) = 12 (i) = M2 (i) = %mQ
22 (umin) = M2 (i) = 12 (Umin) = %ml
M2 (umin) = Z 2m2.
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3 Moment Closure

The linear forms A%%% defined in (3.25) are given by

A" = (0,352/4,0,0,0,0,0)

A2 _ g121 _ 4211 (0,0, 52/4,0,0,0,0)

A122 = A%12 = 4220 = (0,52/4,0,0,0,0,0)
A?2 = (0,0,352/4,0,0,0,0),

which are linear forms for the vector m® = (m% m!, m?, m'', m'2, m2!, m??)T.

The crucial term in (3.31) is Bjmilm. For the moments of umi, we get

2

mM (umin) + Oom™ 2 (umin) = SZ (3817”1 + 82m2)
52

31m121(umin) + 82m122(umin) = 7 (81m2 + (92m1>
52

81m211(umin) + 82m212(umin) = 7 (81m2 + anl)
52

nm* (umin) + 0om??? (umin) = i <81m1 + 382m2) .

Again we choose capital letters M?, M*, M to finally close the moment system

M)+ 9;M7 = 0
Mtl 4 alMll 4 82M12 — M(wl _ Ml)
M2+ 0, M* + 0,M?2 = u(W? - M?)
M 4 2 (3, MY 4+ 8,M2) = p(W' — M) (3.39)
Mt12 + % (81M2 -|-82M1) _ M(W12 _ M12)
MP' + 5 (M2 + 9, M) = p(W? — M)
MP + 5 (0 MY +30,M?) = p(W2— M2),
with
Wit = / / v T (0, 0"\ U (8, z, v )dv'.
vJv
The approximative minimizer is
U(t,z,v) := —Tg — Tjo! — T}, j,07 07 (3.40)

and the approximated multipliers are given by (3.37) with capital M®* instead of m®>.
It is clear that if system (3.31) is 2-quasi closed then we obtain (3.39) with w2
instead of W 2.

We consider some special cases:
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3.2 Moment Closure for the General Linear Model

1. Assume T'(v,v") = %, with w = |[sS!| = 27s. Then the moment system is 2-quasi

closed (see Example 3.3) and we have

w® = M.
2ms
Hence
w’ = MO, w' =w' =0,
52
wll:w”:EMO w? = w?l = 0.

Then the closed moment system reads

Mt0+8ij =0

M{+0;M¥ = —puM'  i=1,2
M+ 5 (30 M+ 0,M?) = p (MO — M) (.41)
Mt12+%(81M2+82M1) = —uM*? .
M2+ & (M? + M) = —puM?
M2+ 5 (M +30,M%) = p(5M°—M?2).

2. We consider a scaling limit for large turning rate g — oo but finite speed s < co.
Then formally the last four equations of (3.41) become

M1 = M2 = 8—22M0, M2 = M? =0 (3.42)
The whole system (3.41) reduces to
M +0;M7 = 0
M} + %&MO = —uM,

which is exactly the two moment - or Cattaneo - approximation (2.13).

Remark 3.1 The scaling considered here corresponds to the Chapman-Enskog
scaling of the Boltzmann equation

8(pt + ’va) = Q(pap)a

where @) denotes the collision operator and the mean free path is assumed to be
small = O(e). For the Boltzmann equation this scaling leads to the Navier-Stokes
or Euler equations if the medium is compressible or incompressible, respectively.
Here the Cattaneo approximation ranges on the same level.
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3 Moment Closure

3. It is important to investigate the classical parabolic limit. As shown earlier there
are two ways to obtain the parabolic limit for transport equations. One is a
parameter scaling of s — oo, — oo such that % — D < oo, the other is to
consider scaled space and time variables T = €2t and ¢ = ez. It is easily checked
that the first limit is not appropriate for the study of (3.41), since an additional
factor of s? appears in the equations for M'' and M?2. It is however useful to
study the scaling of 7 = €2t and ¢ = ex. In these new coordinates the system
(3.41) reads:

e2M? +e0; MY = 0

e2ME+ed; MY = —uM?, i=1,2
MM+ e (3hM' + 8 M?) = p(5M°—MM) (3.43)
EMP? 4 e (M2 + pM') = —pM"™
M +e5 (M? + M) = —pM?!
M2 4 o5 (0 M! +30,M?) = p (5 MO — M?2).

Then the 0-order approximation to the last four equations is again (3.42). Hence
again we obtain a Cattaneo system, but with scaled variables.
M2 +ed;MI = 0

. . 3.4
EM: +e5M° = —uM'. (344)

The first equation of (3.44) is equivalent with M? = —BjMTj. To obtain an expres-
sion for MTJ we write the second equation as
i

. 8? M
€M,,; + EOZMO = —,Lt?,

which formally gives for £ small:

Mi 2
M2 o,
€ 2u
This finally leads to the diffusion limit
2
S .
M? = ﬂaia’MO. (3.45)

3.3 Steady States

For dissipative processes steady states are typical candidates for limit sets. Moreover
the study of steady states for different levels of moment closure helps to get insight
into the relation of different closures. Here we consider the example of constant speed

V =s-5"1 in two dimensions with uniformly distributed velocities T'(v,v') = 1.
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3.3 Steady States

3.3.1 Cattaneo-Approximation

The system for steady states of the Cattaneo approximation (2.13) is

. 2 .
OMI =0, oM =-MI for j=1,2
2p

We introduce the second equation into the first and arrive at the Laplace equation
s? ; s?
—AM"=0, and M!=-_-9;M° (3.46)
2u 2u

which describes exactly the steady states of the corresponding heat equation My =
27 MO
21 -

3.3.2 The Three-Moment Closure

The system for stationary solutions of (3.41) is

M +,M* = 0 (3.47)
oM + oM = —pM? (3.48)
M + 0,M?? = —pM? (3.49)
5 1 2 5” 0 11
Z(?,alM + M = u T M- M (3.50)
2
%(81M2+82M1) = —uM2 = M (3.51)
ﬁ 1 2y _ f 0 _ as22
T (OMT +30,M%) = p| M- M ). (3.52)

We solve (3.50)-(3.52) for M¥ i,j = 1,2 and introduce these into (3.48) and (3.49),
respectively.

2 2 2
o (S—MO — 2 (30,.M*! + BQMZ)) — 0y <S—(81M2 + 82M1)) = —uM!
2 4u i
82 82 32
—O1 | — (O M? + MY | +0 | =M° — — (O, M +30,M?)| = —uM>.
4u 2 i

Rearrangement leads to

2 2 2
2 (30101 + 0aB0) M + 2 (8105 + B0 M2 = M+ 9, M°
4 du 2

32

2 2
2 (010 + 00 MY + (8,0, + 3020,) M2 = M2+ >-9,M°.
4p 4u 2
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3 Moment Closure

We solve this system explicitly using Fourier transformation. If (£1,&2) denote the dual

parameters of (z1,z), then the transformed system reads, with for now d = %
2 2yl r2 o, 8 y
d(—3¢& — &E)M' — 2d&6M° = puM' + 5(—¢§1)M0
2
26 &M +d(-€) 3N = ub' + T (i) M.
We write this as a linear equation
LF = —z'fMO & (3.53)
2 & |’ '
with L = (M', M?)T and
po( h-dBE+E)  —2dag
—2d&:1&2 —p — d(F + 383)
We find for the determinant that
detF = i + 4pd (€] + €3)° + 3d° (&1 + )7, (3.54)

which is positive for each (£1,&2) € IR? and p > 0. Hence (3.53) is uniquely solvable for
each (£1,&) € IR?. The solution is given by

MY\ _ S p+dE@+8) o0 [ &
( 7 ) =iy aar M ( & ) ' (3:35)

Fourier transformation of the first equation (3.47) gives —i&1 M! — i&;M? = 0. Using
(3.55) this reduces to the Laplace equation

—(& +&)M° =0. (3.56)

Then (M, M?) are given by (3.55) and we can finally calculate the remaining functions
from (3.50), (3.51) and (3.52)

MY = SMO— £ (30, M + 0, M?)
M? = M*=—2(0,M?+0,M") (3.57)
M2 = SMO— £ (M +30,M?).

Lemma 3.9 The steady states of the three moment problem for (MO,Mi,Mij)i7j€{172}
are given as follows
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3.3 Steady States

1. M%(z) solves the Laplace equation AM®(z) = 0 on IR? with [ M°(x)dz = N.
2. (MY, M?) are given from Fourier transformation of (3.55).
3. (M"); jeq1,9} are given by (3.57).

Remark 3.2 1. The steady states of the moments are obtained from the stationary
solutions of a corresponding diffusion equation: MY = AMP.

2. The same construction works for the nonlinear problem with
M)+ 9; M7 = f(MO).

Then the steady states of the three moment systems are related to a semilinear
elliptic problem of the form
cAM® = f(MO)

with an appropriate diffusion constant ¢ > 0.

3. The author believes that at any level of moment closure the stationary solution can
be constructed from the elliptic equation AM® = 0. This, however, needs further
ezxploration.
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4 Resting Phase Dynamics

In this Section we consider birth-death processes in connection with transport
equations. The question is, how to model the interactions of birth/death and
the random walk process. It is obvious that these processes are not indepen-
dent in general.

At a stimulating discussion with L. Edelstein-Keshet, K.P. Hadeler, H. Oth-
mer and others at a meeting at the IMA in Minneapolis, USA in May 99
we discussed how to design a model for animals that stop moving when they
give birth. A reproduction term of the form: “an individual moving with
velocity v gives birth to an individual moving with velocity v'”, which we call
instantaneous-birth, seems unrealistic; or at least too simple. In this Chapter
we consider a model where particles rest to give birth. We introduce a rest-
ing phase v where birth takes place. If reproductions and deaths occur on a
slower time scale than the random walk, a singular perturbation analysis leads
in o parabolic limit to reaction diffusion equations. We show that the inner
solution relazes to a homogeneous distribution and that the outer erpansion
is well described by a reaction-diffusion model with effective birth and death
rates. We match inner and outer erpansions and we prove that in the lin-
ear case the long time asymptotics are approzximated by the outer expansion
to second order in the perturbation parameter. In a discussion we consider
conditions under which the assumption of instantaneous birth is appropri-
ate. We consider a related parabolic model with resting phases. Moreover we
discuss the relations of the present results to the known literature.

4.1 The Model

We split the total population density N (¢, z) into a density p(t, z,v) of individuals moving
with velocity v € V and a density 7(¢,x) for particles resting at = € 2. The velocity set
is assumed to be bounded with w = |V| and symmetric of the form that v € V' implies
—v € V. We study a model for (p,r) which bases on the following assumptions:

1. The pure movement process is a velocity jump process

pr+v-Vp=—pup+ M/T(v,v')p(-, L' )dv'. (4.1)
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4 Resting Phase Dynamics

We assume that the kernel T'(v,v") satisfies the basic assumptions (T1)-(T4) given
in Section 1.4.1. We denote the turning operator as Ly := —u(I — 7p) and Propo-
sition 1.1 applies.

2. There is a constant rate o > 0 such that individuals stop moving with that rate «.
3. At rest particles give birth at a rate g(N) > 0 (g for “gain”).

4. Particles choose a velocity v € V' with constant rate 8 > 0 and with equal distri-
bution on V.

5. Death occurs for moving and resting particles at the same rate [(N) > 0. (I for
“loss”).

For later use we define the pure kinetic birth-death process without any movement by

= f(u) = g(uw)u — l(u)u.

The resting-phase transport model reads

m+ov-Vp = Eop—ap-l-gr—l(N)p (4.2)
Ty = a/p(., v)dv — Br + g(N)r —I(N)r. (4.3)

where the total particle density N is given by
N(t,z) = /p(t,a:,v)d'u + r(t, ).

We assume compactly supported initial data on Q = IR", which are L?-integrable on
IR™ x V. Then the solution will have compact support as long as it exists.

We study the parabolic limit of (4.2,4.3) in the framework of singular perturbation
theory and matching asymptotic expansions. For that purpose we identify appropriate
scalings of space and time (parabolic scaling). As pointed out in [52], these scalings occur
for biological populations quite naturally. For a given small quantity € > 0 we consider
fast and slow time scales, t and 7 = £2t, respectively, on microscopic and macroscopic
space scales £ and £ = ez. In singular perturbation theory one splits the dynamic into
two parts. The first part (inner solution) describes the relaxation of the initial data on
the fast time scale t. The outer solution describes the long time behavior on the slow
time scale 7. The initial data for the outer solution are however not directly specified by
the initial data of the original problem (4.2, 4.3). This can be achieved by matching inner

11t might be of particular interest to study a higher death rate at rest due to predators or a lower death
rate due to shelter.
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4.2 The Outer Expansion

and outer expansions in an intermediate region. Roughly speaking, the asymptotics of
the inner solution for ¢ — oo defines the initial condition for the outer solution at 7 = 0.

We begin to study the outer solution (5, 7) which leads to the diffusion limit equation
(4.17). This gives approximations of second order in the perturbation parameter e
(Theorem 4.8). After that we study the inner solution and we illustrate that both parts
match correctly.

4.2 The Outer Expansion

4.2.1 Scaling

In [52] we introduced the scaling of
T =€t ¢ =ex,

for small 0 < ¢ < 1.

We assume that birth and death occurs on a much larger scale as compared to the
random walk process. There are many movements and many turnings at one incident of
birth or death. Hence we assume a scaling of the form

fu) = e (u)

with @ > 0. In the study presented here it turns out that only the choice of a = 2 leads
to a reaction diffusion limit equation (see the Remark at the discussion section). Then
reactions take place on the diffusion scale (slowest scale) and we assume

flu) = f(u) = E(G(wu — l(u)u).
System (4.2, 4.3) in the new variables reads

€2ﬁ7- + €U - Vfﬁ e ﬁoﬁ —_ aﬁ + gl’: - €2l(N)p (4.4)
€2FT = O‘/ﬁ('a .,’U)d’l) - 137: + EQQ(N)’F - EQZ(N)F7 (45)

where (7, &,v) = p(1/e2,&/e,v),7(1,€) = r(1/€2,£/e). We consider Hilbert expansions
in € up to order k > 2:

k k
B(r,&v) =Y elpj(r,&,v), (1, €)= elri(r,)
j=0 J=0
k
N(r,§) ==Y &/ Nj(,€), Nj(1,€) =ri(1,6) + / p;(7,&v)dv, 0<j<k.
j=0
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4 Resting Phase Dynamics

We expand the nonlinearities §,! according to this representation:

k
JN) = §(No) +§(No)(X_ € N;) + Lot
j=1
k
I(N) = I(No) +T(No)(D_ €/ N)) + Lost..
7j=1

4.2.2 Formal Derivation of the Diffusion Limit

We introduce all of the above expansions into system (4.4, 4.5) and collect orders of .

During this section we neglect the subscript ¢ at the V-operator.

0. 0 = Lopo—apo+ Lry
) 0 = afpodv— fPrg
. v-Vpy = Lop1—api+LEr
' 0 = afpidv—pr
2. Por+v-Vpr = Lopz —apy + Sry — I(No)po_
ro; = o« fpadv — PBro+ §(No)ro — I(No)ro.

From (4.6) it follows that

a
ro = — / podv.
B
Hence the first equation of (4.6) reads

(87
0= Lopo — apo + ” /pod'u =: Lapo,

where the operator L, is given for o > 0 and 1 € L?(V) by

H ! @ N
a = - T ’ d
La0) = ~(u+ @p(0) + (u-t ) [ (T + 2 Y i) o
We denote the modified turning kernel by
To(v,0v') = ——T(v,0") + <
ST pta N (b + a)w

and 7, is the integral operator defined by T,.

Lemma 4.1 T, satisfies conditions (T1)-(T4).
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4.2 The Outer Expansion

Proof: Since T is assumed to satisfy (T1)-(T4) it satisfies T > 0. Hence for o > 0
we have Ty (v,v') > 0 for all (v,v') € V2. Then (T2) and the first condition of (T1)
follow.

Integration of the kernel gives:

o
To(v,v")dv = + =
/ al ) ptoa pt+ao

(07

1= /Ta(v,v')d'u'.

Hence (T4) and the second condition in (T1) are satisfied. Moreover

//Tg(v,v')dvdv' = (,uQ//TZ('u,U')dvdv' + 2ua + a2) (n+a)™? < oco.

Then (T1) is satisfied as well and it remains to check (T3):

[ ! N .t o
//A+04T(U’U Y (v')dv' + m/iﬁ(v)dv

1Tallgyr = sup
’lz)eLz(V),”’l/)H:l,f wdv:o

[ Toll¢1yr < 1.

A

Hence Proposition 1.1 applies for £, and we have

Corollary 4.2 Assume (T1)-(T4) for T'(v,v") and let L, be defined by (4.10) for a > 0.
Then,

1. 0 is a simple eigenvalue of L, and the corresponding eigenfunction is ¢p(v) = 1.

2. There is a decomposition L*(V) = (1) @ (1)* and for all ¢ € (1)*
[ patds < —valWlay  where vo=(uta)(t - [Tallys) (012

3. All nonzero eigenvalues \ satisfy —2(p + o) < Re A < —v, < 0, and to within
scalar multiples there is no other positive eigenfunction.

4- NLallezeovry,z2oy) < 2(n + o).
5. L, restricted to (1)~ C L?(V) has a linear inverse F, with norm
1
IFalleqyr,mny < - (4.13)
«

Now we go back to consider the e/-systems for j = 0,1, 2.
€? : With the above Corollary it follows from (4.9) that py = po(7, &) does not depend
on velocity v € V. Then

T = %/podv = %Upo. (4.14)
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4 Resting Phase Dynamics

el : From the second equation of (4.7) it follows that r; = a/83 [ p1dv, hence in the
first equation of (4.7) the operator £, appears again:

v-Vpo = Lapi-

This equation is solvable since

/(v - Vpo)dv = /vdv - Vpo = 0.

Then .
P = Falv-Vpy), with F, = (La\w) . (4.15)

Since F, is one-to-one on (1)* we have [ pi;dv = 0 and then r; = 0.
€2 : From the second equation of (4.8) we obtain

1 } .
éTz = (a/mdv + goro — loTo — 7"0,T> )
w w

where for now we write gy := §(Ny) and similarly for lo. With (4.14) we get
I5} « /. -
—ry = — /p2d11 +2 (gopo — lopo —po,v) -
w w B

We introduce this expression into the first equation of (4.8):

Q. ~ [0 ~
po,r+v-Vpr = Laps + B(Qo —lo)po — 50~ lopo. (4.16)

The solvability condition with respect to £, reads, with use of (4.15),

/ (1 + %) po,rdv+V - /v}"a'udepo = %

Since pg does not depend on velocity v € V this equation becomes

(90 —Zo)/podv —io/podru.

o (145) por + 9 [ oFavdo- Tmn = i m — 1o (1+5 ) wrm.

Now go = g(Ny) and

Ny =19+ wpy = (1 + %) wpg-

Finally the parabolic limit equation reads
o ~ ~
N(),T = VDa”gV N() + mg(No)NO - l()(N())N() (417)
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4.2 The Outer Expansion

with diffusion tensor

_ B
Dqyp = ot P /v}"a'u dv. (4.18)

Hence we obtain the effective birth-rate reduced by a factor a/(a + ). This factor
describes the mean fraction of the population which is at rest at any time. For the
diffusion tensor we will discuss special cases in more detail in the discussion section 4.4.

If Ny(7,€) satisfies (4.17) then (4.16) is solvable for p, and we get

p2(7,6,v) = Falpos+v-Vp— E(go —lo)po + ﬂpo,f + l~0po>
a o a) -
= Fa (( ﬂ) po,r +v-Vpr — Egopo (1 + E) lopo)
1 o N 1-
= Fa (;NO, +v- Vfa(’l) . Vp()) — mgoNo + ;loNg)
1 B
— “VDasVNy+ ——— - - . :
Fo (wV a,3VINy + oot D) v VFq(v VN0)> (4.19)
Then [ padv =0 and
o B ~
9 = 7 (gopo — lopo —po,T)
= “ ( B GoNo — VD VN) (4.20)
whB(a + B) a+ﬁgo 0 B Y0 ) ’

We showed how to formally obtain a parabolic limit equation from a regular pertur-
bation expansion. Next we study the accuracy of an approximation which can be gained
from the limit equation. To be more specific we need additional assumptions.

4.2.3 Assumptions (Al)-(A4)
(A1) f e CYR), g,l € C{(R) and [(N*) > g(N*) for some N* > 0.

(A2) The initial data
p(0,z,v) = p(z,v), r(0,z) = ¢ (z)
are spatially compactly supported with [ ¢(z,v)dv + (z) < N*, ¢(z,.) € L3(V)
for all z € IR"™ and ¢(.,v) € C%°(IR™) for almost all v € V and some 0 < o < 1.

(A3) T > 0 is fixed.
(A4) V =s8""1 or V = By(0) for some s > 0.

With these assumptions we will be able to obtain approximations of order 2 in intervals
of the form 0/e? < 7 < T/e? on compact sets Q C IR"™. First we study the full resting-
phase transport system.
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4 Resting Phase Dynamics

4.2.4 Existence for the Resting-Phase Transport System

As shown in Section 2.2 the shift operator ® = —v - V generates a strongly continuous
unitary group on L2(IR™ x V). (see also Dautray, Lions [25] Ch XXI, section 2, Prop
1.).

The nonlinearities are of the form g(¢),1(p)y with ¢, € L2(IR" x V) with bounded
and differentiable rates g and I. Hence g(p)v,l(p)y € L*(IR™ x V). Moreover the
mappings ((¢,v) — g(¢)¢) and ((¢, ) — I(p)1) are globally Lipschitz continuous on
both L?(IR™ x V)2 and H'(IR" x V)2. The turning operator L is linear and compact
hence local and global existence of solutions to (4.2, 4.3) follows from standard Perron-
iteration and perturbation arguments (see e.g. Taylor [113] or Pazy [93]).

Theorem 4.3 Assume (T1)-(T4) and (A1)-(A4). For each pair of initial data @, with
¢ € D(®) and ¢ € L*(IR™) with ¢(.,v),® € L*(IR™) there is a unique solution (p,r) of
(4.2, 4.3) with

p € C'([0,00), L*(IR" x V)) N C°([0,00), D(®)), 1 € C([0, 00), L*(IR™))
and p(0,.) = ¢ and r(0) = .

Next we show a global L2-estimate for py. For that purpose we need some information
on mean values of p. Let

ﬁ(t :L‘) = fp(t,x,v)dv ﬁ(t) = fﬁ(t,.’l?)d:l;,

’ _ 4.21
7(t) := [ r(t,z)dz, N(t) :== [ N(t,z)dz = p(t) + 7(t). (4.21)
Lemma 4.4
N(t) < N(0)elldllt, (4.22)
Proof: Integration of system (4.2, 4.3) with respect to space and velocity gives
pr = —ap r— [I(N)pd
iz ap + fr — [UN)pdx (4.23)

7 = ap—pPr+ [g(N)rdz — [I(N)rdz.

Note that due to [ T'(v,v")dv =1 the V-integral of Lop vanished. The above equations
add to

N; = /g(N)rd:v - /l(N)(T‘ + p)dz.
where the last term is non positive. Then Ny < ||g|lco/N and we obtain (4.22). O
Proposition 4.5 Assume (Al)-(A4). Let (p,r) denote a solution of (4.2, 4.3). Then

for each t with 0 < t < T there is a constant ¢1 = c1(a, B, w, p, min{l}, ||gllcc,T) such
that

Ip(t, -5 lz2(rmxv) < e1N(0).
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4.2 The Outer Expansion

Proof: With use of (4.2) we obtain

d1 9 B B
72/ P dv = /p (—v Vp+£op—ap+wr—l(N)p) dv
= -V- %/vad'u+/p[,0pdv—a/p2dv+g/pdvr—l(N)/dev.

Since the term [ pLopdv < 0 (see Proposition 1.1) integration of the above equation
with respect to space gives

d1 B & .

72 P2 vy < —ellpliagmasy) + =N = min{l pll7o @rov)-
Here we used Lemma 4.4 and the fact that [(/ pdvr)dr < N2. With use of Gronwall’s
Lemma and Lemma 4.4 the assertion follows. |

4.2.5 Regularity Properties of the Limit Equation

Here we study regularity properties of the parabolic limit initial value problem

Nos = VDapVNo+ 3253(No)No — I(No) Vo,

(4.24)
N0(07 é) = f 80(57 U)d’U + 1/)(5)

Lemma 4.6 The interval I' := [0, N*] is positively invariant for solutions of (4.24).

Proof: A result of Chuey, Conley, Smoller [23] applies. O

Proposition 4.7 For ¢ with 0 <9 < T we have

(2) sup [[D*No(7,.)lloo < Ko,7/|No(0, )| o
9<7<T

(i) sup || Nox (7, oo < KasKorINo(0,)]lcow + csN*,
9<r<T

where

Kyr = c (19"/2_1 + TU/22[2TK1(N*)]+1) _

I

o B ~
g = a—JrﬁHgHCO(r) + 12l coqry
K = 7/682
= w(a+ B)vy’

co is defined by (4.25) and K1(N*) is given by (4.29).
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Proof: Since A := VD, gV defines a strongly elliptic sectorial operator (see [52], Lemma
3.3) it generates an analytic contraction semigroup on C?T7(IR") ([70]). Moreover, for
¢ € C%°(IR"™) which does not grow faster than e<®” for |z| — 0o we have the regularity
property that

ID?(e"7 ) oo < €277/~ || ll o (4.25)

(See [70] chapter IV, 11 formula (11.6)). Note that for compactly supported initial data
the solution Ny(7,£) of (4.24) has exactly the correct growth behavior as |z| — co. This
can be seen from the representation of the solution with fundamental solutions (see e.g.

[70]).

From the limit equation (4.24) we obtain

No(r, &) = e Ny(0, €) + /0 " eAlT=0) (Q(J‘Tﬂg(No)No — l"(No)No> do (4.26)

which leads to

||N()(T, -)HC0,0’ S ||N0 ||CO‘T N() N() - l(N())N() . do. (427)
0,0
The norm ||.||¢o,- is defined as ||.[|coc = [-]|cc + [-]o, where [.], denotes the usual Holder
seminorm. For now we define
a ~
h(N) := Gg(N) —I(N
(V) == 5 59(N) — 1)
and obtain
[[R(No)Nolloo < [/l coryl|Nol|oo- (4.28)
To find a bound for the Holder seminorm we consider z # y € IR™ and we get
h(N(z))N(z) = h(N(y))N(y) _ h(N(z)) — h(N(y)) N(z) |N(z) = N(y)|
|z -yl IN(z) = N(y)| |z —yl°
N(z) - N(y)|
+h(N(y))————=
V)
< (IIbller @yN* + Ibllcoy) 1N o

Hence from (4.27) and (4.28) we obtain

INo(r,llcor < INo(0, o +7 (IblcscryN* + 2lkllcow)) sup [INo(6, Voo

We denote
K1 (N7) := [[hller @y N + 2||hl|cory (4.29)
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and choose )
= ———. 4.30
0= 9K, (NY) (4.30)
Then we have
sup [[No(0,.)[[co.c < 2[[No(0,.)[|co.-
0<8<70
This estimate can be iterated such that for any & € IN we have
sup || No(6, )| cor < 2%[[No(0, )| o - (4.31)

0<0<ko

With the regularity property mentioned above (4.25) we obtain

1D No (7, )0

IN

22 INo(0, )l cow + ez [ (7 = 0)°72 |[1(No) Nollo.r 8
0

cor?!? 1| N (0, )||00a+c27'0/2K1(N*) SuP ”NO( » o

A

Then for 0 < ¢ < T' it follows from (4.31) that

ﬁiunglDQNo( Moo < e207/>7H|No(0,.) | o + 2T K1 (N*)2¥|| No(0, )| con

with k = [T'/70] + 1. This proves (i) of the above Proposition.
To obtain (ii) we apply this estimate directly to the equation (4.24) and we use the
fact that

IVDa,6VNo(7, ) lloo < #ia,sl D No(T, -)l|oo-

4.2.6 Approximation Property of the Outer Solution

Theorem 4.8 Let the assumptions (Al)-(A4) be satisfied and assume § > 0 and >0
are constant with (g — 1)/l # . Suppose:

1. The pair (p(t,z,v),r(t,z)) solves the resting-phase transport system (4.2, 4.3) for
0 <t < T with homogeneous initial conditions p(0,z,v) = ¢(x),r(0,z) = ¥ (z).

2. No(7,€) solves the parabolic limit initial value problem (4.24) in C%7(IR™).
3.

p

po(7,€) :== wath)

No(T,8), To(7,&) = TﬁNO(T ,€)-
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p1(7,&,v) == Folv- Vpo(T,8)), ri(1,&,v) == 0.

We define
P(T,f,’l)) = pO(Tag) + 8p1(7',£,’U), R(T,f) = TO(Ta 5)

Then for each ¥ with 0 < 9 < T and each compact set 2 C IR™ there is a constant
ca = (|, T,9, @, B, va, 8, N*, N(0), [ No(0, )| o)
such that for all t with 9/e®> <t < T/e? we have
Ip(t,z,.) = P(t,z, )| 2 @xvy + It ) = R(t, oo < cae’. (4.32)
Proof: We define the residuum (A4, B) by
B(7,€,0) = P(7,€,v) = € A(1,6,0) and #(7,€) — R(1,€) = €*B(1,€)

and we show that A and B are bounded in appropriate norms, independently of ¢.
The functions pg,p1,7o and r; are chosen to satisfy the €°- and el-systems (4.6),
(4.7), respectively. It remains to study the e2-system for A and B:

p

por+v-Vp1 = LoA—oA+ B - I(N)p (4.33)

o / Adv — BB + §(N)F — I(N)F. (4.34)

To,r

The solvability of this system for A and B leads to

/Adv _9 l_ 's. (4.35)
It follows from (4.34) that
o = (‘7 l_ L 5) B+ §(N)# — [(N)7. (4.36)
Hence
~ ~1
g—1 . 20\ @
I1B(t, )l < ( — - ﬂ) [ (o + 1) F0) + 5 1Mo ()| (437)

where N (t) has been defined in (4.21). With Lemma 4.4 and with Proposition 4.7(ii)
there is an e-independent constant c; such that

[B(t, )]0 < cs5-
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To find an estimate for A we solve (4.34) for B and introduce it into (4.33) to obtain

G o (F Y]

LoA= port+ v VFa(v-Vpo) — g(w—)r +I(N) (g +p> + ;7‘0,77 (4.38)
with £, from (4.10) and F, from Corollary 4.2. We study L2-norms. For the last term
we get

Fooo? T[T _ 12
. = [ (Z+z2pav) + 15l
w Lz(]RnXV) W \W

IN

SN+ AN ()
< eN(0)?, (4.39)

where we used Lemma 4.4, Proposition 4.5 and the fact that 7(7,&) + [p(7,{,v)dv <
N(7). The constant cg is given by

2
66 = —262||g”00T _|_ Cl'
w
From (4.38) it follows that for all compact sets 2 € IR" we have
I£aA(T, )iz @xv) < @lUINow (7, )5 + wllFal*s*|QAID?po(r, Iz

Lin2 m\2 7112 77(’&-) 2
RN () 4 2 || =

+ p(r,.,.)

L2
With use of Proposition 4.7, Lemma 4.4 and the above estimate (4.39) we arrive at
1CaA(r,, iz @) S @l (asKor|No(r, Yoo + Ka(N¥))*
w|s?
a

1. _ o -
= 311 e?I91=T N 0)2 + g2, N (0)2,

_l’_

Ko ||No(7, )| coe

which is bounded independent of . We denote the right hand side by
Cr = C7(|Q|a Ta 19’ a, :87 Va, S, N*7 N(O)’ ||N0(O’ ')”CO“’)'
Finally we split A according to
1 -
A=t / Adv + A.
w
Then LA = LoA=Z € (1)* and F,Z = A. For A we obtain
~ C7
1A > MIE2x) = 1FaZl3 < I7alll1 2115 < -

a
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4 Resting Phase Dynamics

Hence ||A(T,.,.)||L2(va) < /¢7/vq. Since [ Adv is bounded by B via (4.35) a upper
bound for A results.

Finally we switch to the original time and space variables (¢, z) and obtain the assertion
of the Theorem. |

Remark 4.1 We can not expect to get the strong approzimation property as in Theorem
4.8 for nonlinear rates §(N),l~(N). For most relevant nonlinear cases the transport
system (4.2, 4.3) and the parabolic limit (4.24) both will have a global compact attractor.
It is however not clear how these attractors are related. If, for example, the attractor
of the parabolic limit equation is chaotic, then trajectories are sensitive to perturbations.
Each approximation of solutions will fail after a certain time. Fven if the diffusion
limit has a stable limit-cycle it is not clear that solutions of the transport model and
the corresponding parabolic approximation enter the limit cycle with exactly the same
phase. To get more insight into the nonlinear case one has to consider upper and lower
semi-continuity of the corresponding attractors.

4.3 Inner Expansion and Matching

For the inner expansion we consider the original fast time scale ¢ and the macroscopic
space scale £. Then p(t,&,v) = p(t,z/e,v) and 7(¢,&) = r(t,z/¢) satisfy the initial value
problem

prtev-Vp = Lop—ap+Ei—l(N)p
fr = of pdv— BF + 2G(N)F — 2[(N)7 (4.40)
p(0,&,v) = o(¢/e,v) 7(0,8) = ¥(¢/e),

where N = [ pdv + 7 and [(N) = I(N(2¢,€)) and §(N) = (N (e2t, £)).
Again we study expansions in

k
t 57 ZE p] t 6; ) ’F(ta&) = Zej’r’\j(taé.)
=0
t,€), 1= ZEij(taf)a Nyt,) =759 + [ pit, & 0)dv, 0<j <k,

and we collect orders of € of order zero only:

oy Por = Lobo — apo + Sfo (4.41)
fou = a[podv— By
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4.3 Inner Expansion and Matching

We show that the functional

2
E(p,r) = %/p2d11+r/pdv+%

is a Lyapunov function of the integro-differential system (4.41).

Theorem 4.9 For solutions (po,7o) of (4.41) we have

ig(,\ A)< /(A l/”\(1,)2d
dt Po,To) S —aw bo w boav v.
Proof:

dw

22 [fhao = w / foLopodv — wa / fedv + B / fodv 7

< —ow / padv + By / Podv

% (fo/ﬁodv) = (a/ﬁodv — ﬁfo) /ﬁodv + 7o (/ Lopodv — a/ﬁody 4 g /f-odv)
2
= « (/ﬁod’v) — (a+ B)7o /ﬁodq) + B72,

d 2
ﬁ%) - afO/ﬁodv—ﬁfg.

From these inequalities it follows that
d. . . 9 -2
%E(po,ro) < —wappdv + /podv
1 2
= —aw/ (ﬁo — ;/ﬁodv') dv.

For now we abbreviate the mean value by

do(t,€) = / po(t, €, ")

Since £ is a Lyapunov function we have

1
tgrg ||ﬁ0(t’§’ ) - ;¢O(ta§)||2 =0.
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4 Resting Phase Dynamics

Hence in the limit of 7 — 0o the function $y does not depend on v. Then the asymptotic
behavior of (4.41) is determined by the system

dor = —apo+ Bro

' ! (4.42)
fop = agpo — Bro.

The mass N(£) = ¢o(€) + 7o(€) is preserved and the steady state (8/(a + )N, o/(a +
B)N) is asymptotically stable. The initial data of the original problem (see (A2)) deter-
mine N:

N(©) = [ olé,v)d +p(6).

Hence the limit of the inner solution (pg, 7y) for ¢ — oo is given by

Po(&) = g ([ eEv)dv' +9(6))

) (4.43)
Ro®) = 325 (J o(&v))dv +9(6)).

Matching: To match inner and outer solutions we use the asymptotic limit of the
inner solution (4.43) as initial condition for the outer solution. These are homogeneous
in v, as was expected for the outer solution. The corresponding initial condition for the
parabolic limit Ny(7,€) is then given by

No(0,€) = wPo() + Ro() = [ (€, v)do + (€). (4.4

This matches exactly the initial conditions of the outer expansion which we used in
(4.24).

4.4 Discussion

4.4.1 Perturbations of Homogeneous Initial Data

In this Section we show that solutions of the resting phase transport equation (4.2, 4.3)
for initial data of the form p(0,z,v) = ¢(z) + ep1(z,v) are of order £ compared to the
solution of the corresponding homogeneous problem with p(0, z,v) = ¢(x).

Theorem 4.10 Assume (A1)-(A4). Suppose that

1. (r,p) solves (4.2, 4.3) with initial conditions p(0,z,v) = () + ep1(z,v) and
r(0,z) = (x) with [y, p1(x,v)dv = 0.

2. (a,b) solves (4.2, 4.3) with initial conditions a(0,z,v) = ¢(z) and b(0,z) = P(z).
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4.4 Discussion

Then for each T there is a constant cg such that for all t <T

Ip(ts ) = alts - )l2@nxvy + 7 (Es-) = b(E oo < ecsllonllneay-

Proof: We study the difference y := p — a, z :== r — b and we denote N(t,z) :=
[ p(t,z,v)dv +r(t,z) and M(t,z) := [a(t,z,v)dv + b(t,z). Then (y, z) solves

yw+v-Vy = Eoy—ay+§z—l(N)p+l(M)a

zr = a/ ydv — Bz + g(N)r —g(M)b—I(N)r+1(M)b
v

y(0,z,v) = ep1(z,v)
z(0,z) = 0.

Since N— M = [(p—a)dv+r —b= [ydv — z, we rewrite this system as
_ B I(N) — (M) (/ )
yt+v-Vy = Loy ay+wz I(N)y —a N M ydv+ 2
_ _ g(N) — g(M) (/ )
zp = a/vyd'u Bz+g(N)z+b N M ydv+ z

—l(N)z—b% (/ydv

y(0,z,v) = ep1(z,v)
z(0,z) = 0.

+

z

The functions g and [ are supposed to be uniformly bounded in C'. Hence the above
system defines a linear evolution equation for (y, z), where the operator A is perturbed
by a bounded, time and space dependent, multiplication operator. We know already
that the initial value problem is solvable since the solutions (p, ) and (a,b) exist. Hence
there is a bounded solution operator Q(¢,x) : D(®) x L2(IR"®) — L?(IR" x V) x L?(IR")
such that the solution can be written as

(t,z,v) \ _ (z,v)
( yz(t,w) ) = Q) ( I ) '

Then the assertion follows with cg := sup,<r || Qll£(p(a),22)- O

4.4.2 Small Proportion of the Population in Resting Phase

In case of @ — 0 individuals do not stop moving and hence in our model they cannot
reproduce. For the relevant operators and parameters we observe that for @ — 0 (we
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4 Resting Phase Dynamics

will not specify any norms for convergence of these operators).

Lo=—(p+)+(p+a)Ta — —pl+uTo
Fo — Fo
D,g — Dy= —é/v}"o’udv
Ny — wpp

Then the limit equation (4.17) reduces to

No,r = VDoV Ny — I(No) No

which is a reaction-diffusion equation for the pure death process with diffusion tensor
Dy as in the cases studied in [52].

4.4.3 Large Proportion of the Population in Resting Phase

There is a large proportion of the population in the resting phase if « is large and 8 is
small. In that case a/(a + ) ~ 1 and the limit equation (4.17) becomes

Nos = VDo sV No+ f(Np). (4.45)

The complement factor 5/(a+f) is small, which shows that the modified diffusion tensor
D, s given by (4.18) is small. To be more specific we consider an example:

Example: V = 88" !, T = 1/w: Then T, = 1/w and the pseudo inverse F, is a
multiplication operator by —(u + «)~!. Then

__h __ s p
Pes= e gy | e ~ G e

Then the isotropic limit equation reads

2
_ ) s
NO,T — daANO + f(NO)’ with da = m@ f_ ,8 (446)

For oo = 0 this reduces to dy = ;—Z Hence increasing a reduces the motility.

Remark 4.2 It is easy to see that birth-death terms of order less or higher then €2 will
not lead to a limit equation like (4.17):

1. For perturbations of the form f(u) = ef(u) the nonlinearity f would enter into
the turning operator L, in the equation for €'. Then no longer a linear problem
results and we cannot apply the framework of Fredholm operators as used here.

2. For higher order perturbations f(u) = €3 f(u) the nonlinearity would not enter at
all and the limiting equation would be linear to second order with vanishing reaction
part.
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4.4 Discussion

4.4.4 A Parabolic Model with Resting Phase

It is illustrating to compare the foregoing results with a model where particle movement
is described by an uncorrelated random walk (Brownian motion). We keep the assump-
tions of Section 4.1 with the exception of assumption 1. Instead we assume now that

1’. The movement of the population is described by the diffusion equation u; = dAwu,
d> 0.

Then the parabolic model with resting phase reads

u = dAu—au+ fr—I(N)u
re = oau+g(N)r—pBr—1I(N)r (4.47)
N(t,z) = wu(t,z)+r(t,x)

We consider the same scaling a above for the outer expansion
_ 2 _ _ 27
T = €°t, & =cex, flu) =€ f(u).

Then the scaled system reads.

eu, = e*dAgu— au+ Br — 2 l(N)u (4.48)
e2r; = o+ e2§(N)r — Br — e2[(N)r. .
Again we consider expansions in ¢ for k£ > 2.
k . k .
’U,(T,f) = Z‘sjuj(Tag)a T(Taf) = Z€JTj(T, g)a
j=0 j=0
k .
N(1,8) =Y _ e/ Ny(r,9), N; =uj +1j.
j=0
A comparison of orders of ¢ leads to the following systems
0. —aug+prg = 0
e : g — Brg = 0 (4.49)
1. —au; +prp = 0
e : oy — fri = 0 (4.50)
&2 uo,; = dAug —I(No)uo — aup + frs (4.51)

Tor = QU — ,BTQ + g(N())TO - l(NO)IrO
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4 Resting Phase Dynamics

From (4.49) it follows that rg = %uo, hence Ny = %éuo. We solve the second equation
of (4.51) for —aug + Bry and use this in the first equation of (4.51) to obtain a single
equation for Ny:
Bd a ~

= ——ANy + ——g(No) Ny — I(Ng) Np. 4.52
=gt a+59(0)0 (Vo) No (4.52)
This equation shows exactly the same scaling in « and 8 as (4.17) and (4.18). The
reproduction rate is scaled by the mean proportion of the population which is at rest
and the motility is scaled by the mean proportion which is moving.

Ny
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5 Chemotaxis and Density Control

In this chapter we study a version of the Patlak-Keller-Segel model where
the chemotactic velocity depends on both, the external signal and the local
population density. A parabolic quasilinear strongly coupled system follows.
Motivated by reasonable biological assumptions we assume that the chemo-
tactic response is turned off at high cell concentrations. The response to high
population densities prevents overcrowding. We prove local and global exis-
tence in time of classical solutions. Numerical simulations show interesting
phenomena of pattern formation and formation of stable aggregates, which
are similar to the patterns observed in Section 2.6.3 and are presented in

[53].
5.1 Introduction

We consider the following parabolic chemotaxis system

u = V(Vu—V(u,v)Vv)
pAv + g(u,v) (5.1)
u(0,.) = wug, v(0,.)=wvyp.

<
S
Il

on a C3-differentiable, compact Riemannian manifold (M, (Y*#),s) without boundary.
This class includes a 1-D interval with periodic boundary conditions or in 2-D a torus (e.g
IR?/Z?). From solutions to homogeneous Neumann boundary conditions on intervals in
1 (or 2) dimensions we can construct solutions with periodic boundary conditions on a
domain of double (four times) the size. Hence also Neumann boundary conditions on
intervals in 1- and 2-D are included here.

The function u(t,z) describes the particle density at time ¢, at position z € ;
v(t, z) is the density of the external signal. The chemotactic velocity V is assumed to be
bounded and the function g(u,v) describes production and degradation of the external
stimulus.

We will show global existence of classical solutions for

V(u,v) = uB(u)x(v), (5-2)
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5 Chemotaxis and Density Control

where 3, x € C? satisfy the following conditions

(i) x>0
(ii) B(0) > 0, there exists an % > 0 such that S(a) =0 (5.3)
and B(u) > 0 for 0 < u < @.

For the production term g(u,v) we assume that it has birth-death structure, i.e., we
assume g € C?(IR?) and

g(u,v) = g1(u,v)u — go(u,v)v, (5.4)

with bounded death rate go > § > 0 and with birth rate g1 > 0. Then there exists a
© > 0 such that
g(u,v) <0 forall 0<u<a. (5.5)

The standard example for V is
Vo(u,v) = xu(l — u) (5.6)
and for g it is the linear function
go(u,v) =yu—dv, 5>0,6>0, (5.7

which has been used in the related literature as well. In contrast to previous studies of
parabolic chemotaxis equations, we assume that the chemotactic velocity is bounded.
The case of V(u,v) = ux(v) has been studied in great detail in the literature. Finite
time blow-up of solutions has, in particular, captured much attention (see the references
in Section 1.2.3). When the solution blows up, the model is no longer valid and another
process is assumed to start (i.e., formation of a fruiting body or differentiation into
several cell types). In biological processes of aggregation and cell movement, however,
developmental phases do not necessarily occur sequentially. For example, cell specifi-
cation of embryonic cells or prespore/prestalk cells in Dictyostelium can occur prior to
or during periods of cell movement. More pertinently, the cAMP signaling mechanism
responsible for initial aggregation of Dictyostelium is also thought to play a major role in
the subsequent developmental stages (for example, slug formation or culmination [73]).
Bearing this in mind, it is preferable to develop a simple chemotaxis model (like (5.1))
excluding blow up and permitting global existence independently of thresholds or of
space dimensions.

In fact, a steady state analysis of (5.1) together with the assumptions (5.3) shows
that stationary non constant patterns are possible for sufficiently large x. In 1 — D the
steady state analysis leads to

Uy = uIB(u)X(v)Uma

96



5.1 Introduction

implying that a stationary solution u(z) has an extremum when v = 0 or u = @ or
v, = 0. Thus the distribution will be flat about © = 0 and u = @, which has indeed been
observed in numerical simulations (see [53]). A detailed bifurcation analysis of steady
states for a similar system to (5.1) can be found in Schaaf [98] and for the classical model
in Senba and Suzuki [105].

Another approach to global existence of solutions to a chemotaxis equation, with
V linear in u, has been considered by Gajewski and Zacharias [38], and independently
by Nagai et al. [83] and Biler [13]. They use a Lyapunov function to demonstrate
global existence in the subcritical case (i.e., small enough x). Here we require no such
restriction on the size of x, nor do we have dependence on the space dimension for global
existence.

Chemotactic systems of the type (5.1) can be derived from a biased random walk
model whereby the probability of a particle jumping is modulated by an extracellular
signal and by the local population density. In particular, specific conditions for the
chemotactic velocity can be derived from realistic assumptions based on how cells detect
and interpret environmental cues. Some bacteria, for example, are known to secrete a
chemical signal which allows to locally detect the population density (quorum sensing
molecules [29]). Other examples, which lead to the functional form of V' as studied here,
include mechanical inhibition of signal transduction due to interactions between cell
boundaries of neighboring cells or competition of attraction and repulsion mechanisms.
We give several example in [90].

The main result of this chapter is the existence of global in time solutions as presented
in Theorem 5.7. The proof of global existence relies on the existence of an invariant region
I' as shown in Theorem 5.2. To our knowledge, the known literature on quasilinear
parabolic systems does not provide a result on local existence which would fit exactly to
(5.1). Hence we start our analysis by showing local in time existence using a fixed point
argument. In case of a bounded region €2 with Dirichlet boundary conditions the results
of Amann [6] on local existence could be applied if V' < 2,/ui. This condition guarantees
that the equation is of parabolic type. As demonstrated below we need no condition
of that kind. We will study solutions (u,v), where v is contained in a slightly better
regularity class then u (see the definitions of X, X, below). Then the cross diffusion term
in (5.1) appears as a lower order term, compared to the second derivative of u. Hence
it can be treated as a perturbation. This approach uses the fact, that the generator
of (5.1) is of tridiagonal type and we make use of regularity properties of the equation
for the signal v. The regularity properties of the heat equation semigroup have been
summarized in Taylor [113], see Lemma 5.1.
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5 Chemotaxis and Density Control

5.2 Local and Global Existence
We study classical solutions of (5.1) for some ¢y > 0 in spaces

Xy = C(0,0), WO (M), &, := C([0, 1), WP (M),
with

1<o<2, 1<a<?2, 2<oc+4+a<3, max{L,L}<p. (5.8)
c—12—-0
For this choice of parameters we have a Sobolev imbedding W* — C} (see [1]).
Equation (5.1) falls into the class of quasilinear systems with cross-diffusion. How-
ever, in its present form there is no existence result in the literature which applies
directly. The works of Ladyzhenskaja, Solonnikov and Ural’ceva [70] and Amann [6] are
standard sources in this field.
We will construct solutions using a contraction mapping argument. This involves
intensive use of the following regularity properties of the solution semigroup e®* of the
heat equation u; = Au on M.

Lemma 5.1 (Taylor, [113] p. 274)
For allp > q > 0 and s > r we have

A WTI(M) = WEP(M),  with norm  Ct*,

where Kk is given by

Our analysis starts by identifying an invariant region I" for solutions in X, x X,,. We
proceed to show a number of appropriate a-priori estimates which enable a contraction
mapping argument for local existence. Moreover, these estimates demonstrate bounds
which grow polynomially in time, leading to global existence.

For simplicity of notation, we shall denote all constants by C, even though they
might have different values in the same estimate. Of course, all constants used below
depend on the metric (y*¥),5 of M. We will omit the argument (M) of the Sobolev
spaces WP and we denote the norms by ||.||s,p-

5.2.1 Invariant Region

The zero of the chemotactic velocity V(u,v) at u = @ permits us to find an invariant
region for (u,v) in IR?. This a-priori L®-estimate is the key ingredient to obtain global
existence in time.
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5.2 Local and Global Existence

Theorem 5.2 Assume (5.2)-(5.4) Then the region
I:={(u,v) ceR?>:0<u<q, 0<wv<wu}
is positively invariant for solutions of (5.1).

Proof: We explicitly prove the existence of an upper limit (%,%). The proof of non-
negativity uses the same construction.
Let (u,v) € Xy x X, be a solution of (5.1). We define

i ) u(t,z) —q, if w(t,z) > u,
u'(t7) = { 0, otherwise.

For each time ¢, where 0 < t < ¢y, we split the manifold M into three disjoint sets
M = J(8) + Jo(t) + T4 (1):

J_(t) = {xeM:u(tz)<u}
Jo(t) = {zeM:ut,z)=a}
Ji(t) = {zeM:u(t,z) > a}l.
Since u(t,.) € WP for o > 1,p > n/2, it is continuously differentiable (by the Sobolev

imbedding). Thus, the above sets are measurable and 0.J, (¢) is a differentiable subman-
ifold. We can write

d1
——|lut ()5 = / utufdz + ututdz + utuydz
J_(#) To(?)

dt 2 T+(t)
J4(t)

since, on Jo U J_, we have u™ = 0. The set J, (t) is open and u is continuous in time t.
Then for each = € J, (t) there exists an € > 0 such that u(d,z) > u for all 9 € (t—e,t+¢).

Hence u;” = uy on Jy(¢). Then with the first equation of (5.1) we obtain

dl 2 _ — u — u, v v XL
GG = [ D (VT Vv

_ —/ (Vu)? + (u — u)(Vu - v)dS
J4(t) 0J4(t)

+ VuV (u,v)Vvdr — / (u—a)V(u,v)(Vv-v)dS,
J4(t) 0J4(t)

where v denotes the outer normal on 8J4 (t). On the boundary of J(¢) we have u = u,
and the boundary integrals vanish. Thus,
d1

St = [ (vuP+ [ VuV(e)Veds. (59)
t T4(t) T4(t)
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5 Chemotaxis and Density Control

As we are interested in solutions inside I' only, we allow V outside I' to be modified into

Vmwy_{vmwx e

10, else ’

which is continuous at @. Then for solutions of (5.1), with V instead of V, the estimate

(5.9) can be reduced to

d
St 6,13 < 0.

If initially u = 0, then ut(t,.) = 0 for all times of existence. Since V =V on T, the
same conclusion holds for (5.1) with the original V.
To prove the upper bound of v we define

i ) oute) -0, i w(t,z) > 7,
viltz) = { 0, else.

We again split M according to v <,=,> ¥ and consider 4 1|v*(¢,.)||3. Here

d
St (5, ) <0

follows directly. This proves v(t,z) < 7, if initially vo(z) < .
The non-negativity property, u > 0,v > 0, can be shown by a similar construction. O

5.2.2 A-priori estimates
We study first the second equation of (5.1).

Theorem 5.3 Assume (5.2)-(5.4) and p,o,a are as given in (5.8). Then solutions
(u,v) € Xy X Xy, with (u(t,z),v(t,x)) €T, of (5.1) satisfy:

loll, < loollosan + Cots™ (Iullx, + lull%, + o]z, ) (5.10)
where h = %(o + a — 1) and the constant Cy > 0 depends according to

Co = Co (Ua a, P, U, ||gl||Cl(F)) : (511)

Proof: With use of semigroup notation 7),(t) := e#A!, we can write the solution of

vy = pAv + g(u,v), v(0,2) = vo(z) formally as
¢ ¢
v(t) = Tu(t)vo+ / T, (t —s)g1(u,v)uds — / T, (t — s)g2(u,v)vds
0 0

< T,(t)vo + /Ot T, (t — s)g1(u,v)uds. (5.12)
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Here we have made use of go > 0, v > 0 and the fact that 7),(¢) is positive. From Lemma
5.1, we obtain T),(t) : WP — WP with norm Ct~", where h := (0 + a — 1) and
C = C(o0,a). From the assumptions on ¢ and « it follows that 0 < A < 1. Then we
obtain (suppressing the arguments (¢,z) or (s,.) of the dependent functions u,v)

A

lolle, < [vollotap + Ctg™ sup lg1(w,v)ull1,
0<t<to

VAN

[vollo+ap
+Cty ™" sup {lgrullp + l(g1)u Vuullp + [[(g1)s Vo ullp + [lg1Vullp} (5.13)

VAN

[vollo+a.p
+Ctg " lgrllorry sup {[[ullp + [[uVullp + [luVolp +[[Vulph. (5.14)

Here we use the notation that the p-norm of a vector valued function ¢(z) € IR" is given

1/p
by llell, = (X2 leilts) ™
Since o > 1, we have [[ull, + |[Vully < [[ullyp and [uVull, < Cllu|2,. We choose

some § with 1 < ¢ < H"Tp and we denote the dual exponent by 5 (§~! 4+ ¢~ = 1). Then
from Holder’s inequality it follows that |[uVv||, < ||ul|gpl|v]l1,6p- Moreover, we have the
Sobolev imbedding W2® — W% Finally, from the existence of an invariant region T,
it follows that there is a constant C' > 0 such that |lul|z, < Cu, where C = C(g,p). This
gives || uVul, < Cul|v||2,p. Then each term in (5.14) is controlled and (5.10) follows. O

With this estimate, we can derive several auxiliary inequalities which will be useful
in the sequel.

Corollary 5.4 Assume the conditions of the above Theorem.

1
1. For a choice of tg < (ﬁ)m, we obtain

loll, < Cr (Il llosep + lull, + [l ) - (5.15)

where C; = 2max{1, Cotg "}.

2. For the contraction mapping argument later we require the following: Given two
functions @1,p9 € X, the corresponding solutions v; = v;(¢;) of vjy = pAv; +
9(p;j,vj), vj(0) = vo, for j =1,2 satisfy

lvr — v2llx, < Caller — w2l x,, (5.16)

for some constant C2(Co, 7, ||¢1||x,, |02l 2., to) > 0 for sufficiently small ty (e.g.,
to satisfies (5.17) below).

101
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Proof: The estimate (5.15) follows directly from (5.10) by the specific choice of ty.
To show (5.16), we consider the difference ¥ := v; — v9. This satisfies

Uy = pAT + g(p2,v2) ¥ + (G1 — G2)v,  ¥(0) =0,
where G; = g(p;,v;), i = 1,2. For ¥, estimate (5.14) must be supplemented by the term

+Cty " sup 1(G1 — G2)villp < Cty Mlgllerry (ler — w2llx, + llvr — vallx,) [[v1llp.

From the existence of the invariant region I' we have ||v1]|, < Cpo. The quadratic term
in (5.10) can be estimated as

o1 — 2%, < (letllx, + le2llx) lor — @22, -

Then it follows that

o1 — vallx, < Cty " (llor — w2lla, + llvr — v2llx,) -

Assuming

1\ =%
to < <%)1 " (5.17)

we obtain (5.16) with an appropriate C. a

Remark 5.1 If, moreover, (g1), = 0 (which includes the classical example of gy =
yu — dv) then

[ollx, < C1(lvollotap + [lullx,) - (5.18)
Under the condition (g1), = 0, the term containing uVu in (5.18) vanishes identically,

the corresponding term |lul|%, in estimate (5.10) also vanishes and (5.18) follows from
(5.15).

We now proceed with our analysis by attending to the first equation of (5.1).

Theorem 5.5 Assume (5.2)-(5.4) and p,o,« as given by (5.8). For solutions (u,v) €
Xy X Xy of (5.1) with values in T, there exist constants Cs, Cy, Cs (given by (5.33)) such
that

o a(l—c) o
-3 - o -1
ullx, <2 (HuOHa,p + Csty *|lvllx, + Catg*llvll%, + Cst” ™ ||U||le) , (5.19)
where ( 0
n ag n\oc — ag
p=" 49 — 4z 5.20
p T2 © w2 (5.20)

102



5.2 Local and Global Existence

Proof: We again use the semigroup approach, T'(t) = e, to solve for u:

t
w(t) = T(t)uy — /0 T(t — 8)V (u, v)Av ds, (5.21)
/0 Tt — )V (u, 0) (V)2 ds (5.22)
- /Ot T(t — s)Vyu(u,v)VuVuds (5.23)

where V,,, V,, denote the partial derivatives of V with respect to u, v, respectively. We
assume v € X, and consider these three terms separately.
Term (5.21): We use the regularity Lemma 5.1 for

T(t): IP - WP with norm C,t~7/? (5.24)
and obtain
H/T(t—s)VAvds < Cy, t1 o/2 sup ||[VAv||,
a,p OStStO
< Coty PIVIr sup ol |2, (5.25)
0<t<to

where C, = Cy(0,p) and |V||r denotes the supremum norm on I' C IR
Term (5.22): Here we use the regularity Lemma 5.1 for

T(t) : IP/? - WP  with norm  Cyt~?, (5.26)
where b is given in (5.20). From the parameter conditions (5.8) it follows that b < 1.
We obtain

H/T(t—s)Vv(VU)st < Gti™ sup [Va(Vo)2llg

a,p 0<t<to
< Gty |Vallr sup |lo(, )17, (5.27)
0<t<ty

Term (5.23): It turns out to be much more difficult to obtain an appropriate estimate
for the product VuVwv. We start by using Young’s inequality to get:

VuVoll,e < HS(Vu)‘T (Vu)?

cl/o p/a

AN

IVoll7;

3
< Sy + q/a p/(o=1)"

where ¢ = -%¢ and some ¢ > 0. We use the interpolation inequality ([113], p. 22, Prop.
6.2)

0 -6
llloop < CO)llullspllul,
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5 Chemotaxis and Density Control

for § € (0,1). If we choose # = 0!, we get

lullfp, < Co)ullopllully ™ (5.28)
As T is a bounded invariant region, there exists a constant C' = C(p, o) such that

Jlullg™" < ca” . (5.29)

Finally we use T'(t) : LP/? — WP with norm C.t~¢, where c is as given in (5.20). Tt is
easily verified from (5.8) that ¢ < 1. Thus,

(t —s)VuVuVuds < Cety™© sup |(VuVuV)(t, ) lp/e
a,p OStStO
l—c E —0— 1
< Oy Wl up (Sllegn®™ 4 IV )
— &
< Gty Wallr (Sl + 7 0l ) (5:30

where Cg = Cs(C,, @).
We collect estimates (5.25, 5.27, 5.30):
1-g _
lullx, < luollop +Coty *IVIrlvlla, + Cotg IVallrllvl%, +
c € 1 o1
Coto “IVaullr | ~llullx, + —zllvll2 |- (5.31)
g qga

For given t; > 0 we choose

o
R — (5.32)
2ty °[[VallrCe
Then, from (5.31), estimate (5.19) follows with constants Cs,Cy4, Cs given by:
1
2| VullrCs\ = T

Cs =G, ||V, Cs = Cy||[Vol|r, Cs = Cs (W) (5.33)
O

5.2.3 Local Existence

Theorem 5.6 Assume (5.2) — (5.4) and p, o, a as given by (5.8). For each initial datum
up € WP, vy € Wot®P with (ug(x),vo(x)) €T for all z € M, there exists a ty > 0 and
a unique solution (u,v) € X, x X, of (5.1).
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5.2 Local and Global Existence

Proof: We use a fixed-point argument. Consider ¢ € X, with ¢(0) = wup and let
v = v(¢p) denote the corresponding solution of the v-equation:

v = pAv + Q(QU,’U), U(O) = o- (534)
For this v we define u = u(v(p)) to be the corresponding solution of
ur = V(Vu — V(u,v)Vv), u(0) = ug = ¢(0). (5.35)

These solutions exist by standard theory and the a-priori estimates (5.10) and (5.19).
Moreover, the above estimates show that this procedure defines a map @ : &, —
Xu, Qp = u(v(p)). We first show that for ¢y sufficiently small, ) maps a ball

B = {p € Xy| p(t) € Bn(0),0 <t <tp}, m := 2||ugl/sp + 1.

into itself. Indeed, if we combine the estimates (5.19) and (5.15) we obtain
1—<
Qele. < 2 (uollow + CaCity* (Ioollras + lx. + el

B 2
+C4Ct5 " (Ivolloran + Iellx, + el )

og—1 o(l-c) —z_
+CsC 157 (Iollosap + el + ol ) )

< 2ffuollop +1,

for small enough t;.

Now we demonstrate that at small times, @) is a contraction. Consider ;1,9 € X,
and let v; for i = 1,2 denote the corresponding solutions of the v-equation (5.34). Then
the difference Q@1 — Qo satisfies:

t
Qo1 — Qpy = — /0 T(t — 5)(ViAvy — VaAwg)ds, (5.36)
t
_ / Tt — 8)(Via(V01)? — Voo (Vos)?)ds (5.37)
0
t
—/ T(t — s)(ViuVui1 Vo — Vo, VuaVug)ds, (5.38)
0

where V; := V(p;,v;) for i = 1,2 and V;,, Vi, denote partial derivatives with respect to
u and v, respectively. Again we study each term separately.
Term (5.36): Using (5.24) and (5.16), for ¢y small enough we get

t
/ T(t — s)(ViAvy — VaAwvy)ds
0

o,p

IN

Cot' % <||V1—V2||r sup || Avi(9,.)lp + [|Valle sup ||Av1—Awllp>
0<9<t 0<9<t

IA

Ct'"% |1 — pallx, (5.39)
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5 Chemotaxis and Density Control

where C' = C(Cy, Co, [Vl cr (1), llprllx, vzl 2,)-
Term (5.37): Here we use (5.26) to obtain

/0 "It = ) (Via(Vor)? — Vi (Vo) ds

o,p

< '™ sup (Vi = Vaullel(Vor)2 2 + Vool (V01)2 = (V)L 2) -

0<9<t
With Holder’s inequality we get
1(V01)? = (Vo) |72 < Vo1 + Voa|lp[| Vo = Vos|lp.

With estimate (5.16) this leads to

< Ct' o1 — ol 2, s
a,p

/0 Tt = ) (Via(T01)? — Vi (Vo) 2ds

where C = C(C2, Gy, |V llc1(rys [[01ll1ps (102115 101 25 [| 0212, -
Term (5.38): Once again, we use (5.24) and (5.16):

t
/ T(t - s) (Vi Vui Vo — Vo, VuaVug)ds
0

a,p
< Cctt Oilégt{ﬂ(vl,u = Vo) Vo1 Vuillp + [[Vau(Ver — Vo) Vo |l
HV2,u Vo2 (Vor — Vo)|lp}
<

Ct 2 |[V]ievry sup {IIVorlpl Vi llooller — @allx,
0<9<t

HIVillooll V1 — Veallp + IV2llpl| Vo1 — Vgl }
< Ct'7E o1 — ool

where C' = C(Cs, Cy, |Vl o1 (rys lv1ll 2, [vall, » (1] 2, s 102l 2,)-

5.2.4 Global Existence

(5.40)

(5.41)

(5.42)

(5.43)

In the above estimates we saw that all bounds grow, at most, algebraically in time ¢y.
We will use this to show global in time existence. The procedure uses the successive
application of the regularity properties of the heat equation (e.g. as given in Lemma
5.1). Starting form the known L™ estimates (invariant region), we develop higher order
estimates for v which lead to better estimates for u. Here we work with an additional
set of parameters, (&,v) such that one iteration step of this procedure is sufficient. At
each iteration we gain an order of &. For the original parameters (o, ) we would have

to use more iterations to get the same result.

106



5.2 Local and Global Existence

Theorem 5.7 Assume (5.2) — (5.4) and p, o, o as given by (5.8). For each initial datum
ug € WP, vy € Wt with (ug(z),vo(z)) € T for all z € M, there ezists a unique
global solution

(u,v) € C([0,00), WoP x WIT®P)

of (5.1).

Proof: We start with the global L* estimate (i.e. the invariant region I') to successively
derive higher order estimates. For technical reasons we choose parameters ¢ > 0 and
v > 0 such that

2>6> max{a,g} (5.44)
c—1

2—&<U<UT (5.45)

l-v+6=0+a. (5.46)

It is easy to check that these three conditions can be simultaneously satisfied.

Lemma 5.8 There ezists a constant k1 = £1(6,p,4,, ||gllc1(r)) such that the solution
of Theorem 5.6 satisfies

1-¢
[vll.p < llvollap + K1ty * = Ki(to)- (5.47)
Proof: We consider the solution of the v-equation as represented by (5.12) and we use

(5.24) with & replacing o. O

Now, with use of T,,(t) : W'™"=%P — W!="P with norm C5¢~%/2, we obtain from
u(t) =T(t)up — [ T(t — s)V(V'Vv)ds that

lu@)l1-vp < luollivp + Cst' =2 sup [V(VV)|l1s6.p-
0<9<t

Since v > 2 — & we have 2 — v — & < 0. Then there is a constant C = C(&,v) such that
IV VI 1so5 < CIV IOl

and we get

ol

lu@lli—vp < |uolli—vp +Ct 2 sup |[VVo]lo—p_sp
0<d<t

VAN

VAN

< luolls vy + CZ Ve sup o)1,
0<9<t

We apply Lemma 5.8 to show

[u()l1—vp < lJolli—vp + CE 72|V Ki(to)  =: Ka(to)
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5 Chemotaxis and Density Control

We use this estimate to get a better estimate for v, than in the previous Lemma 5.8.
Since on the compact set I' the function h(u,v) = ¢1(u,v)u is uniformly bounded in
C?(T), it follows that the map h : W'=»P — W1="P is Lipschitz continuous, where the
Lipschitz constant is bounded by H := [|h||c>(r). Then , from (5.12), it follows that

lo@lli-vrsp < volli—vtop +Ct % sup llg1(u,v)ulli-vyp
0<I<t

ol

2 sup ||hllczllulli-vp
0<9<t

IA

[voll1—p+s,p + Ct'™

IN

||’U0||1_u+&’p + Ctl_%HKZ(tO) (548)

To complete the proof of global existence we use (5.46). Then from (5.48) it follows that
1-&

[vll, < vollotayp + Cty * Ka(to) =: Ks(to)- (5.49)

Hence ||v||x, grows, at most, algebraically in time with maximal order of 2 — &.

Finally, to estimate ||u||x,, we consider (5.31). For each time t; > 0 we choose
e = e(tp) according to (5.32), and obtain (5.19). With use of (5.49) we observe that

a(l=c)

-2 _ - o1
ullx, <2 <||U0||a,p+03to 2 K3(to) + Caty "Ks(to)® + Csty"" Ks(to) @ >,

which also grows algebraically in time. Global existence in X, x X, follows.

Note that |lullx, + ||v||x, grows at most with 2.
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