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Abstract: In this paper we present a comprehensive existence theory
for linear and nonlinear reaction random walk systems. The methods are
based on semigroup theory for solutions of differential equations on Ba-
nach spaces. The solution properties on a bounded domain sensitively
depend on the choice of boundary conditions. For Neumann or for peri-
odic boundary conditions, singularities are transported along characteris-
tics and the solutions form a group. Surprisingly, for Dirichlet boundary
conditions, singularities are washed out, the problem regularizes in finite
time, and the solution operator forms a semigroup.

Furthermore, we study the relation to damped wave equations and reaction-
telegraph equations. The relation between random walk models and tele-
graph equations for Neumann and periodic boundary conditions requires
a compatibility condition of the initial condition. For Dirichlet boundary
conditions, however, there is no direct relation between the random walk
model and the telegraph equation.

1 Introduction

The detailed investigation of partial differential equations (PDE) models for correlated
random walks has flourished in the 1990th and many theoretical results and specific
applications have been studied (see [16], [21]). The current paper is based on my
thesis from 1995 [17], which is written in German. It contains results which are
largely unknown and have not been published previously. In continued work on these
systems, it turns out that the semigroup solution theory as well as the regularization
property of the Dirichlet problem are needed for many follow up studies. Also, the

∗University of Alberta, Centre for Mathematical Biology, Department of Mathematical and Sta-
tistical Sciences, thillen@ualberta.ca, supported by NSERC and MITACS

1



relation to telegraph equations is discussed by many scholars. The results presented
here give a definitive answer.

The original model (2) was introduced by Goldstein and Kac [11, 26]. The Goldstein-
Kac model (2) is a linear system of hyperbolic PDE and the existence theory on an
unbounded domain IR is clear (see for example Bressan [4]). Existence and unique-
ness of solutions on bounded domains is less clear and we use semigroup theory to
prove local and global existence.

The one-dimensional model for correlated random walk and generalizations have been
used extensively for modelling of biological processes. A comprehensive review includ-
ing applications to edpidemic spread, to chemotaxis, Turing pattern formation and
travelling waves can be found in the CIME lecture notes of Hadeler [16], see also
[18, 19, 23, 22]. Models for alignment were studied by Lutscher [31]. A comprehen-
sive study of pattern formation under non-local aggregation and alignment terms was
studied recently by Eftimie and co-workers in [6, 7].

The paper is organized as follows. Following this introduction we will introduce the
main model in Section 2 and discuss local and global existence of weak and classical
solutions in Section 3. It is well accepted that hyperbolic systems do not regularize
(in contrast to parabolic systems) and solutions are as smooth as the initial condi-
tions. We show in Section 4 that this is true for periodic and for Neumann boundary
conditions, and that it is not true for Dirichlet boundary conditions. For Dirichlet
boundary conditions, singularities are washed out and solutions regularize in finite
time. This is a quite surprising result and it shows how sensitive these models are to
boundary conditions. In Section 5 we introduce kinetic terms which describe birth and
death events. These terms lead to so called nonlinear reaction-random walk equations
(RRWE). We show in Section 6 that these are closely related to reaction telegraph
equations (RTE). If we only look at the equations (and not the boundary conditions),
then we see a close correlation between these models. For each solution of RRWE we
find a solution of RTE, and for each solution of RTE there is a one-parameter family
of solutions to RRWE. This relation changes if boundary conditions are included. For
Neumann and for periodic boundary conditions an additional compatibility condition
appears. Surprisingly, for the Dirichlet problem the above relation is untrue.

Besides the two main results mentioned above, this paper also provides an explicit
solution based on Bessel functions (Section 3), and summarizes results on the existence
of solutions for damped wave equations (Section 7).

2 One-dimensional Correlated Random Walk

For one space dimension Taylor [43] considers the following random walk process:
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Suppose that a point starts moving with uniform velocity γ along a line,
and that after a time τ it suddenly makes a fresh start and either continues
moving forward with velocity γ or reverses its direction and moves back
over the same path with the same velocity γ.

This form of random walk can be formulated on a spatial grid. A particle travels
ρ = γτ per unit of time τ and changes direction with probability q = µτ . It keeps
the direction with probability p = 1 − µτ . We denote by u+

n (x) the density of right
moving particles and with u−n (x) the density of left moving particles at location x
at time t = nτ . This random walk can be described through the following Master
equation

u+
n (x) = p u+

n−1(x− ρ) + q u−n−1(x− ρ)

u−n (x) = p u−n−1(x + ρ) + q u+
n−1(x + ρ).

(1)

We divide this equation by τ and consider the limit τ → 0. Then ρ → 0 and p/τ → µ.
If we define

u(t, x) := lim
τ→0,nτ=t

u+
n (x), u−(t, x) := lim

τ→0,nτ=t
u−n (x)

then u±(x, t) satisfy the following hyperbolic system of correlated random walk.

u+
t (t, x) + γu+

x (t, x) = µ(u−(t, x)− u+(t, x))

u−t (t, x)− γu−x (t, x) = µ(u+(t, x)− u−(t, x)).
(2)

Here we used index notation for partial derivatives.

The model can be understood in terms of death and birth events. A particle moving
to the right dies with rate µ and is reborn as a left moving particle with the same
rate.

2.1 Boundary Conditions

We study (2) on an interval [0, 1]. We see that the classical Dirichlet, Neumann and
periodic boundary conditions for this hyperbolic system need to be appropriately
adapted to the hyperbolic model. For given 0 < T ≤ ∞ we denote the spatio-
temporal domain ΩT := [0, T )× [0, l] and we define its “hyperbolic boundary”.

Definition 2.1 The hyperbolic boundary of ΩT is defined as

∂+ΩT := {0} × [0, l] ∪ [0, T )× {0},
∂−ΩT := {0} × [0, l] ∪ [0, T )× {l}.

The hyperbolic system (2) has two families of characteristics, x+γt and x−γt. Hence
we impose conditions for u+ on ∂+ΩT and conditions for u− on ∂−ΩT (see. Fig. 1)
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Figure 1: Hyperbolic boundary.

At t = 0 we impose initial conditions for both compartments

u+(0, x) = u+
0 (x), u−(0, x) = u−0 (x), ∀x ∈ [0, l] (3)

The boundary conditions will be chosen to describe the physical situation of classical
Dirichlet, Neumann and periodic boundary conditions.

• Homogeneous Dirichlet boundary conditions describe a domain which is
open at the boundary. Particles can leave the domain but no particle can enter
from the outside. Hence

u+(t, 0) = 0, u−(t, l) = 0. (4)

• Homogeneous Neumann boundary conditions describe a closed domain,
where no particle can leave. Hence particles are reflected

u+(t, 0) = u−(t, 0), u−(t, l) = u+(t, l). (5)

• Periodic boundary conditions are straightforward

u+(t, 0) = u+(t, l), u−(t, l) = u−(t, 0). (6)

We combine these three and more general boundary conditions as

u+(t, 0) = χ0(u
+(t, l), u−(t, 0)), u−(t, l) = χl(u

+(t, l), u−(t, 0)). (7)

where χ0(α, β) = χl(α, β) = 0 for Dirichlet, χ0(α, β) = β, χl(α, β) = α for Neumann
and χ0(α, β) = α, χl(α, β) = β for periodic boundary conditions.
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3 Existence and Uniqueness

To show existence and uniqueness for equation (2) with the above boundary condi-
tions, we use semigroup theory and apply the Lumer-Phillips theorem (see Pazy [37]).

We define two operator matrices as

G := γ

( −Dx 0
0 Dx

)
, B :=

( −µ µ
µ −µ

)
, (8)

where Dx denotes the partial differential operator with respect to x ∈ IR. We define
y := (u+, u−) and (2) reads

yt = Gy + By. (9)

For 1 ≤ p ≤ ∞ we denote
Lp := (Lp([0, l]))2

with norm

‖y‖p = ‖(y1, y2)‖p :=

{ (
‖y1‖p

Lp([0,l]) + ‖y2‖p
Lp([0,l])

)1/p

f”ur 1 ≤ p < ∞,

max(‖y1‖∞, ‖y2‖∞) f”ur p = ∞
The dual of Lp is Lq with q = p/(p− 1) for 1 < p < ∞ and q = ∞ for p = 1. We will
prove that G is generator of a semigroup for 1 ≤ p < ∞. The space L∞ is only used
as dual of L1.
For 1 ≤ k ∈ IN we denote the Sobolev spaces as

Wk,p := (W k,p([0, l]))2,

with norm

‖y‖k,p =
k∑

j=0

‖Dj
xy‖p.

For 1 ≤ p < ∞ we denote the domain of definition of G as

D(G) := {y ∈ W1,p : y1(0) = χ0(y1(l), y2(0)), y2(l) = χl(y1(l), y2(0))} (10)

with χ0 and χl as in (7). The domain of definition D(G) is dense Lp. The norm on
D(G) is induced by W1,p and corresponds to the graph norm of G, i.e. ‖y‖D(G) =
‖y‖Lp + ‖Dxy‖Lp ≡ ‖y‖Lp + 1

γ
‖Gy‖Lp . Hence G is a closed operator.

We first study the spectrum of G:

Lemma 3.1 The spectrum of G : D(G) → Lp for 1 ≤ p < ∞ is given as follows

• Dirichlet boundary conditions (4):

σ(G) = ∅
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• Neumann boundary conditions (5):

σ(G) = {kγπ

l
i : k ∈ ZZ }

• Periodic boundary conditions (6):

σ(G) = {2kγπ

l
i : k ∈ ZZ }

Proof. Consider λ ∈ C and let 1 ≤ p < ∞. If for each z ∈ Lp there exists a unique
y ∈ D(G) with (λI−G)y = z and if the resolvent R(λ, G) = (λI−G)−1 : Lp → D(G)
is bounded, then λ ∈ ρ(G).

Consider z ∈ Lp. The resolvent equation reads

(λI −G)y = z ⇐⇒
{

y′1 = −λ
γ
y1 + z1

γ

y′2 = λ
γ
y2 − z2

γ
,

(11)

The solution can be written explicitly using the boundary conditions (7) as

y1(x) = e−
λ
γ

xχ0(y1(l), y2(0)) +
1

γ

∫ x

0

e
λ
γ
(ξ−x)z1(ξ)dξ (12)

y2(x) = e
λ
γ
(x−l)χl(y1(l), y2(0)) +

1

γ

∫ l

x

e−
λ
γ
(ξ−x)z2(ξ)dξ. (13)

We abbreviate

ε(λ) := e−
λ
γ

l, K1 :=
1

γ

∫ l

0

e
λ
γ
(ξ−l)z1(ξ)dξ, K2 :=

1

γ

∫ l

0

e−
λ
γ

ξz2(ξ)dξ. (14)

We evaluate (12) at x = l and (13) at x = 0 and find a linear system for the unknown
y1(l) and y2(0).

y1(l) = ε(λ) χ0(y1(l), y2(0)) + K1

y2(0) = ε(λ) χl(y1(l), y2(0)) + K2

(15)

• Dirichlet (χ0(y1(l), y2(0)) = 0, χl(y1(l), y2(0)) = 0): Equation (15) reads in this
case

y1(l) = K1 and y2(0) = K2. (16)

Hence the resolvent equation (11) has a unique solution for alle λ ∈ C. Hence
the set ΣD := ∅ is a candidate for the spectrum of G.
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• Neumann (χ0(y1(l), y2(0)) = y2(0), χl(y1(l), y2(0)) = y1(l)): In this case equa-
tion (15) becomes

y1(l) = εy2(0) + K1, y2(0) = εy1(l) + K2.

This system has a unique solution if

det

(
1 −ε
−ε 1

)
6= 0 ⇐⇒ ε2 6= 1 ⇐⇒ λ 6∈ ΣN :=

{
k
γπ

l
i : k ∈ ZZ

}
.

The corresponding solution reads

y1(l) =
K1 + εK2

1− ε2
, y2(0) =

K2 + εK1

1− ε2
. (17)

• Periodic (χ0(y1(l), y2(0)) = y1(l), χl(y1(l), y2(0)) = y2(0)): From (15) we get

(1− ε)y1(l) = K1, (1− ε)y2(0) = K2,

which has a unique solution if

ε 6= 1 ⇐⇒ λ 6∈ ΣP :=
{

2k
γπ

l
i : k ∈ ZZ

}
.

The corresponding solution is

y1(l) =
K1

1− ε
, y2(0) =

K2

1− ε
. (18)

To ensure that the sets ΣD, ΣN and ΣP are indeed the spectrum of G, we need to
show that the resolvent is continuous for the complementary set, respectively.

Hence we need to show that each solution y of the resolvent equation (11) satisfies

‖y‖D(G) ≤ c(λ, p)‖z‖p

with a constant c, which might depend on λ und p. We first study the first component
y1. We get from (12) that

‖y1‖Lp ≤
∥∥e−

λ
γ

xχ0(y1(l), y2(0))
∥∥

Lp︸ ︷︷ ︸
T1

+
1

γ

∥∥∥
∫ x

0

e
λ
γ
(ξ−x)z1(ξ)dξ

∥∥∥
Lp︸ ︷︷ ︸

T2

. (19)

The first term T1 is studied for each boundary condition separately.

• Dirichlet: T1 = 0.
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• Neumann: Let λ 6∈ ΣN . From (17) we obtain

T1 =

∥∥∥∥e−
λ
γ

x K2 + εK1

1− ε2

∥∥∥∥
Lp

≤
∣∣∣K2 + εK1

1− ε2

∣∣∣.

• Periodic: Let λ 6∈ ΣP . From (18) we get

T1 =

∥∥∥∥e−
λ
γ

x K1

1− ε

∥∥∥∥
Lp

≤
∣∣∣ K1

1− ε

∣∣∣.

The constants K1 and K2 from (14) are bounded by the norm of z as follows. For
1 < p < ∞ we use Hölders inequality and get

|K1| ≤ c1(λ, p)‖z1‖Lp , with c1(λ, p) :=
1

γ

∥∥∥e
λ
γ
(ξ−l)

∥∥∥
Lq

(20)

and
|K2| ≤ c1(λ, p)‖z2‖Lp

with the same constant c1.
For p = 1 we obtain

|K1| ≤ 1

γ
max
ξ∈[0,l]

|eλ
γ
(ξ−l)| ‖z1‖L1 =

1

γ
‖z1‖L1 ,

|K2| ≤ 1

γ
max
ξ∈[0,l]

|e−λ
γ

ξ| ‖z2‖L1 =
1

γ
‖z2‖L1 .

Hence for all 1 ≤ p < ∞ and the three boundary conditions we find T1 ≤ c3(λ, p)‖z‖p.

Now we study T2. Again using Hölders inequality we find for each x ∈ [0, l]

1

γ

∫ x

0

e
λ
γ
(ξ−x)z1(ξ)dξ ≤ 1

γ
‖eλ

γ
(ξ−x)‖Lq([0,x]) ‖z1‖Lp([0,x])

≤ 1

γ
‖eλ

γ
(ξ−l)‖Lq([0,l]) ‖z1‖Lp([0,l])

= c1(λ, p)‖z1‖Lp

with the same constant c1 as in (20). Hence T2 ≤ c1(λ, p)‖z1‖Lp .

Together we find ‖y1‖Lp ≤ c4(λ, p)‖z‖p for all 1 ≤ p < ∞ and alle three boundary
conditions, respectively. Similarly we obtain ‖y2‖Lp ≤ c5(λ, p)‖z‖p.
Since y satisfies the resolvent equation (11) we can estimate Dxy through the norms
of y and z.

‖Dxy‖p ≤ c6(λ, p)‖y‖p + c7(λ, p)‖z‖p ≤ c8(λ, p)‖z‖p.
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Finally we see
‖y‖D(G) = ‖y‖p + γ‖Dxy‖p ≤ c(λ, p)‖z‖p.

Hence the resolvent R(λ,G) is continuous for all λ 6∈ Σi, i = D,N, P , respectively.
qed.

We recall a definition from Pazy [37].
Definition 3.1 Let E be a Banach space and A : D(A) → E a linear operator. A
is dissipative, if for each y ∈ D(A) there exists a continuous linear form z ∈ E ′ with
‖z‖2

E′ = 〈z, y〉 = ‖y‖2
E and Re (〈z, Ay〉) ≤ 0.

Lemma 3.2 The operator G : D(G) → Lp, equipped with Dirichlet, Neumann, or
periodic boundary conditions, respectively, is dissipative.

Proof. The action of a linear form z on y can be represented through integration

〈z, y〉 :=

∫ l

0

(z1y1 + z2y2)dx. (21)

We show for each 1 ≤ p < ∞ the following statement: For each y ∈ D(G) there exists
a continuous linear form z ∈ Lq with ‖z‖2

q = 〈z, y〉 = ‖y‖2
p, such that 〈z, Gy〉 ≤ 0.

Consider y ∈ D(G).
Case 1: 1 < p < ∞. We denote z̃ := (y1|y1|p−2, y2|y2|p−2) and observe that

‖z̃‖q
q =

∫ l

0

∣∣∣y1|y1|p−2
∣∣∣
q

dx +
∫ l

0

∣∣∣y2|y2|p−2
∣∣∣
q

dx

=
∫ l

0
|y1|(p−1)qdx +

∫ l

0
|y2|(p−1)qdx

= ‖y‖p
p

(22)

and

〈z̃, y〉 =

∫ l

0

y1|y1|p−2y1dx +

∫ l

0

y2|y2|p−2y2dx =

∫ l

0

|y1|pdx +

∫ l

0

|y2|pdx = ‖y‖p
p. (23)

With c := ‖y‖p and z := c2−p z̃ we obtain with use of (22)

‖z‖2
q = c2(2−p)‖z̃‖2

q = c2(2−p)(‖y‖p
p)

2/q = c2(2−p)+2p/q = c2 = ‖y‖2
p.

From (23) we get
〈z, y〉 = c2−p〈z̃, y〉 = c2−p‖y‖p

p = ‖y‖2
p.

Now we apply z to Gy

cp−2 〈z, Gy〉 = 〈z̃, Gy〉 =

∫ l

0

y1|y1|p−2(−γDxy1)dx +

∫ l

0

y2|y2|p−2(γDxy2)dx

= −γ

p

∫ l

0

Dx|y1|pdx +
γ

p

∫ l

0

Dx|y2|pdx

=
γ

p

(|y1(0)|p − |y1(l)|p + |y2(l)|p − |y2(0)|p). (24)
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We will study this equality for the three boundary conditions separately later.

Case 2: p = 1 Here we introduce z̃ := (z̃1, z̃2) with

z̃i =

{
yi |yi|−1 for yi 6= 0
1 for yi = 0

i = 1, 2.

We have

‖z̃‖∞ = max

(∥∥∥∥
y1

|y1|

∥∥∥∥
∞

,

∥∥∥∥
y2

|y2|

∥∥∥∥
∞

)
= 1 (25)

and

〈z̃, y〉 =

∫ l

0

y1|y1|−1y1dx +

∫ l

0

y2|y2|−1y2dx =

∫ l

0

|y1|dx +

∫ l

0

|y2|dx = ‖y‖1. (26)

With c := ‖y‖1 and z := cz̃ we use (25) and (26) and derive the following relations.

‖z‖2
∞ = c2 = ‖y‖2

1 und 〈z, y〉 = c〈z̃, y〉 = c2 = ‖y‖2
1.

If we apply z to Gy for this case we get

1

c
〈z, Gy〉 = 〈z̃, Gy〉 =

∫ l

0

y1|y1|−1(−γDxy1)dx +

∫ l

0

y2|y2|−1(γDxy2)dx

= −γ

∫ l

0

Dx|y1|dx +
γ

p

∫ l

0

Dx|y2|dx

= γ
(|y1(0)| − |y1(l)|+ |y2(l)| − |y2(0)|).

Hence in both cases, i.e. for 1 ≤ p < ∞, we obtain equation (24). Now we consider
each of the three boundary conditions separately:

• Dirichlet (4): 〈z, Gy〉 = − γ
pcp−2 (|y1(l)|p + |y2(0)|p) ≤ 0.

• Neumann (5): 〈z, Gy〉 = 0.

• periodic (6): 〈z,Gy〉 = 0.

qed.

Lemma 3.3 The linear operator G : D(G) → Lp, with Dirichlet, Neumann, or peri-
odic boundary conditions, respectively, is generator of a strongly continuous semigroup
of contractions on Lp.

Proof. Theorem of Lumer–Phillips (see Pazy [37], Chap. 1, Theorem 4.3, p.14).qed.
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Theorem 3.4 The linear operator G + B : D(G) → Lp, with Dirichlet, Neumann,
or periodic boundary conditions, respectively, is generator of a strongly continuous
semigroup on Lp. For µ ≥ 0 this semigroup is positive.

Proof. The perturbation operator B is bounded on Lp. We use a theorem of Pazy
([37], Chap. 3, Theorem 1.1, p.76) on generators with bounded perturbations. The
positivity follows form the fact if u+ = 0 (or u− = 0) at a certain point, then the
right hand side of the first (second) equation of (2) is non-negative (see Smoller [42]).

For existence, we did not need an assumption on the sign of the turning rate µ. The
notion of “turning rate” implicitly implies a positivity assumption. The arguments
used so far, however also hold true for negative µ. If µ is negative, then the model
for the correlated random walk describes alignment, where particles moving in pos-
itive direction enhance the positive direction. The two directions will be split and
eventually only one direction remains. In some sense (made precise later) the case
for negative µ is inverse to the random walk case for µ > 0. We will use this fact to
show that the hyperbolic system (2) generates a solution group for Neumann and for
periodic boundary conditions. This fact is not true for the Dirichlet problem, which
we will study separately. For Dirichlet boundary conditions we observe a regularity
property, which prohibits backward well definedness.

Lemma 3.5 The linear operator G− B : D(G) → Lp, with Dirichlet, Neumann, or
periodic boundary conditions is generator of a strongly continuous semigroup in Lp.

3.1 Group for Neumann and Periodic Boundary Conditions

Theorem 3.6 The linear operator G+B, with Neumann, or periodic boundary con-
ditions is generator of a strongly continuous group in Lp.

Proof. We use a remark from Goldstein ([10], Remark 2.16, p.22) which states that
the property of generation of a group is equivalent to the fact that both G + B and
−(G + B) are generators of a strongly continuous semigroup and that D(G + B) =
D(−(G + B)).
In our case we have a bounded operator B, hence

D(G + B) = D(G), D(−(G + B)) = D(−G).

To match forward and backward solutions, we introduce a permutation matrix Π :=(
0 1
1 0

)
. Then C := G−B satisfies

Π−1GΠ = −G and Π−1CΠ = −G−B = −(G + B).
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The solutions of the inverse problem yt = −(G + B)y are after switch of coordi-
nates y1 and y2, solutions of zt = Cz with C = G − B. Since C is generator of a
strongly continuous semigroup, and since conjugation with Π is just a transformation
of coordinates, we conclude that also −(G + B) is generator of a strongly continuous
semigroup.

Finally it remains to show that D(G) = D(−G). By definition we have

D(G) = {(z1, z2) ∈ W1,p : z1(0) = χ0(z1(l), z2(0)), z2(l) = χl(z1(l), z2(0))}.
Using the coordinate transformation Π we find the domain of definition of −G to be

D(−G) = {(z1, z2) ∈ W1,p : z2(0) = χ0(z2(l), z1(0)), z1(l) = χl(z2(l), z1(0))}.
Again, we study the boundary conditions separately.

• Neumann: (χ0(α, β) = β, χl(α, β) = α)

D(−G) = {(z1, z2) ∈ W1,p : z2(0) = z1(0), z1(l) = z2(l)}
= {(y1, y2) ∈ W1,p : y1(0) = y2(0), y2(l) = y1(l)} = D(G)

• Periodic: (χ0(α, β) = α, χl(α, β) = β)

D(−G) = {(z1, z2) ∈ W1,p : z2(0) = z2(l), z1(l) = z1(0)}
= {(y1, y2) ∈ W1,p : y1(0) = y1(l), y2(l) = y2(0)} = D(G)

qed.
Remarks 3.2 The above relation is not satisfied for Dirichlet boundary conditions
(χ0 = 0, χl = 0) since in this case

D(−G) = {(z1, z2) ∈ W1,p : z2(0) = 0, z1(l) = 0} 6= D(G).

It is true that the Dirichlet problem for G−B can be solved as well, but the solutions
are not the backward solutions of G+B, since the boundary conditions do not match.

3.2 Weak and Classical Solutions

Now we use the semigroup properties to study weak and strong solutions as they
are classically defined for PDEs. According to Pazy [37] and Ball [1], weak solutions
are defined through integration with appropriate test functions. In this context, the
space of test functions is the domain of definition of the adjoint operator of G. Using
integration by parts we find that

G∗ = −G : D(G∗) → Lq,
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with domain of definition

D(G∗) = {(ϕ1, ϕ2) ∈ W1,q : ϕ2(0) = χ0(ϕ2(l), ϕ1(0)), ϕ1(l) = χl(ϕ2(l), ϕ1(0))},

with χ0 and χl from (7).

We study the following intial boundary value problem (IBWP)

u+
t + γu+

x = µ(u− − u+)
u−t − γu−x = µ(u+ − u−)

}
(t, x) ∈ [0,∞)× (0, l)

u+(0, x) = u+
0 (x)

u−(0, x) = u−0 (x)

}
x ∈ [0, l] (27)

u+(t, 0) = χ0(u
+(t, l), u−(t, 0))

u−(t, l) = χl(u
+(t, l), u−(t, 0))

}
t ∈ [0,∞)

Definition 3.3 (Pazy [37], Chap. 4) Let T > 0.

1. The function u(t, x) = (u+(t, x), u−(t, x)) is called classical solution of (27), if

u ∈ C1([0, T ),Lp) ∩ C([0, T ),D(G))

and for all t ∈ [0, T ) we have

d

dt
u(t) = (G + B)u(t).

2. The function u(t, x) = (u+(t, x), u−(t, x)) is called weak solution of (27), if

u ∈ C([0, T ),Lp)

and for each z ∈ D(G∗) and all t ∈ [0, T )

d

dt
〈z, u(t)〉 = 〈G∗z, u(t)〉+ 〈z, Bu(t)〉

and the map t 7→ 〈z, u(t)〉 is absolutely continuous.

Obviously, a classical solution is also a weak solution.

Theorem 3.7 Let (S(t))t≥0 denote the semigroup generated by G + B.

1. If u0 ∈ D(G), then u(t, x) := S(t)u0(x) is a unique classical solution of the
IBWP (27).

13



2. If u0 ∈ Lp, then u(t, x) := S(t)u0(x) is a unique weak solution of the IBWP
(27).

Proof. Since the resolvent set of G is non-empty, also the resolvent set of G + B
is non-empty. Then a Theorem from Pazy [37] (Chapter 4, Theorem 1.3) applies
and the generator property is equivalent with item 1. of the theorem. The second
statement is based on a Theorem of Ball [1]

qed.

Remarks 3.4

1. A complete spectral analysis for a larger class of hyperbolic systems which also
include the models studied here is given in Neves, Ribeiro, Lopes [36] and Neves,
Lin [35]. They include dynamic boundary conditions of the form

u+(t, 0) = E(t)u−(t, 0)

d

dt
(u−(t, l)−D(t)u+(t, l)) = F (t)u+(t, l) + G(t)u−(t, l)

For existence and uniqueness the authors refer to “standard literature on semi-
groups”. Hence we feel it is justified to carry out the above arguments in detail.

2. Beck [3] studies boundary conditions of the form

u+(t, 0) = χ0(t) ∈ C1([0, T ])

u−(t, l) = χl(t) ∈ C1([0, T ])

and he proves existence and uniqueness of classical solutions for (2) with initial
conditions u+(0, x) = u+

0 (x), u−(0, x) = u−0 (x) which satsfy the following
continuity conditions

lim
t→0

χ0(t) = lim
x→0

u+
0 (x), lim

t→0
χl(t) = lim

x→l
u−0 (x).

3. The hyperbolic system (2) on an unbounded domain IR falls into the class of
symmetric hyperbolic systems, as they are studied in many standard texts. For
example Kato [27] showed that initial conditions u0 ∈ Wk,2(IR) with k ≥ 2 lead
to unique solutions in C([0, T ),Wk,2(IR))∩C1([0, T ),Wk−1,2(IR)). Renardy and
Rogers [40] present a proof for k = 1 and also John [25] studies these kind of
systems on IR.

4. Using the one-dimensional Sobolev embeddings (see e.g. [9], [44], [5]) we find
that classical solutions of (2) are continuous on Ω∞ = [0,∞)× [0, l].
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5. It is well known that the hyperbolic model (2) can be transformed into a tele-
graph equation (damped wave equation) (see Hadeler [15] and section 5 below).
Poincare [38] used Bessel functions to find explicit solutions for the telegraph
equation. Hadeler [15] used these solutions to derive explicit solutions for our
hyperbolic system (2) on IR.

For k ∈ IN let Ik(x) := ekπiJk(ix) denote the Besselfunction with purely imag-
inary argument (see also Smirnow Vol. II [41]). For k = 0 and k = 1 we have
the relations

I0(x) = J0(ix) =
∞∑

k=0

1

(k!)2

(x

2

)2k

and I1(x) =
d

dx
I0(x).

The functions I0(x), I1(x) and I1(x)/x are real analytic and positive for x > 0.
For an initial condition u0 ∈ Lp the solution of u(t, x) = (u+(t, x), u−(t, x)) of
(2) on IR can be written as

u+(t, x) = u+
0 (x− γt)e−µt +

∫ x+γt

x−γt

K(t, x, y)u−0 (y)dy

+

∫ x+γt

x−γt

K+(t, x, y)u+
0 (y)dy (28)

u−(t, x) = u−0 (x + γt)e−µt +

∫ x+γt

x−γt

K(t, x, y)u+
0 (y)dy

+

∫ x+γt

x−γt

K−(t, x, y)u−0 (y)dy (29)

with integral kernels

K(t, x, y) := µe−µt

2γ
I0

(
µ
γ

√
γ2t2 − (y − x)2

)

K±(t, x, y) := µe−µt

2γ

I1
(

µ
γ

√
γ2t2−(y−x)2

)
√

γ2t2−(y−x)2
(γt∓ (y − x)).

(30)

From this representation we see that solutions are in L∞([0,∞)× IR) for initial
conditions in L∞. The integrals are absolutely continuous such that possible
discontinuities can only travel along the characteristics x−γt = c and x+γt = c.
This fact was observed by Reed [39] using different methods.

Additionally, if u0 is k–times differentiable then u is also. In general we conclude:

u0 ∈ L∞(IR) =⇒ u ∈ L∞([0,∞)× IR)

u0 ∈ Ck(IR) =⇒ u ∈ Ck([0,∞)× IR).

6. A semigroup theory for matrix operators, such as G =

( −γDx 0
0 γDx

)
has

been developed in Nagel [33] and Engel [8]. The computation of the spectrum
of G with periodic boundary conditions is an example in [34].
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4 Regularity

For the diffusion equation it is known that solutions regularize. This means non-
smooth initial conditions lead to smooth solutions for each t > 0. For hyperbolic
systems this is not the case. We saw in the above remarks that for (2) on IR solu-
tions stay in the same smoothness class as the initial conditions and singularities are
transported along characteristics and are damped exponentially.

Problem (2) on a bounded domain [0, l] has similar properties. However, we need
to consider an additional matching condition on the boundary. For example if for
the Neumann problem we choose smooth initial conditions which do not satisfy the
Neumann boundary condition, then a ”kink” will develop and move into the domain
along characteristics. As time evolves, this ”kink” will be reflected at the boundaries
and be damped exponentially. The Dirichlet problem is different. Here, singularities
are washed out at the boundary and the solution becomes regular after time T = l/γ.
Hence, as we show below, the Dirichlet problem does regularize in finite time.

We study the three boundary conditions separately. We begin with periodic boundary
conditions, which can be extended to a problem on IR. Then we study Neumann
boundary conditions on [0, l] and use the fact that these can be extended to periodic
boundary conditions on [0, 2l]. The Dirichlet problem is treated using the method of
characteristics.

4.1 Periodic Boundary Conditions

First we show that periodic solutions on IR stay periodic for all times.

Lemma 4.1 Assume that the initial condition u0 = (u+
0 , u−0 ) ∈ (L∞(IR))2 is periodic

with period l. Then for all t > 0 the solution of (2) on IR is spatially periodic with
period l.

Proof. Given u0 ∈ (L∞(IR))2 with u0(x + l) = u0(x) and corresponding solution
u(t, x). We define another solution v(t, x) = (v+(t, x), v−(t, x)) := u(t, x + l). Then v
satisfies

(v+
t + γv+

x )|(t,x) = (u+
t + γu+

x )|(t,x+l) = µ(u− − u+)|(t,x+l) = µ(v− − v+)|(t,x)

(v−t − γv−x )|(t,x) = (u−t − γu−x )|(t,x+l) = µ(u+ − u−)|(t,x+l) = µ(v+ − v−)|(t,x)

with initial conditions v(0, x) = u0(x + l) = u0(x). Hence u and v satisfy the same
intial value problem on IR. Since the solution is unique we have u(t, x) = v(t, x) for
all (t, x). qed.

Now we study the initial boundary value problem (27) on [0, l] with periodic boundary
conditions (6). As shown earlier, an initial condition u0 ∈ D(G) defines a unique
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classical solution u ∈ C1([0,∞),Lp) ∩ C([0,∞),D(G)). We further assume that the
initial condition satisfies

u0 ∈ (Ck([0, l]))2 ∩ D(G). (31)

The initial condition might have lower regularity at the boundary: Let κ ∈ IN be
such that 0 ≤ κ ≤ k and assume that

∀j ≤ κ : Dj
xu

+
0 (0) = Dj

xu
+
0 (l) and Dj

xu
−
0 (0) = Dj

xu
−
0 (l). (32)

Theorem 4.2 Assume (31), (32) then the unique solution of (27) with periodic bound-
ary conditions satisfies u ∈ (Cκ(Ω∞))2.

Proof. We periodically extend u0 to IR

û0(x) := u0(x mod(l)). (33)

From assumptions (31), (32) we have û0 ∈ (Cκ(IR))2 and based on Remark 3.2 item
5 we know that the unique solution satisfies û ∈ (Cκ(IR+ × IR))2. In Lemma 4.1 we
showed that this solution keeps the period l. Hence the restriction of u := û|[0,l] is
our desired solution. qed.

If the initial condition satisfies u0 6∈ D(G), then the extension û0 on IR is bounded but
not necessarily continuous. Hence the corresponding solution will be in (L∞(Ω∞))2.

4.2 Neumann Boundary Conditions

To study Neumann boundary conditions, we use the following symmetry property.

Lemma 4.3 Assume u = (u+, u−) is a solution of (2) on IR with initial conditions
u0 = (u+

0 , u−0 ). Then for each a ∈ IR the function v(t, x) := (u−(t, a−x), u+(t, a−x))
solves (2) with initial condition v0(x) = (u−0 (a− x), u+

0 (a− x)).

Proof. Given a solution u(t, x) of (2) on IR and define v as above. The function v
satisfies

(v+
t + γv+

x )|(t,x) = (u−t − γu−x )|(t,a−x) = µ(u+ − u−)|(t,a−x) = µ(v− − v+)|(t,x)

(v−t − γv−x )|(t,x) = (u+
t + γu+

x )|(t,a−x) = µ(u− − u+)|(t,a−x) = µ(v+ − v−)|(t,x)

with initial conditions v(0, x) = u0(a− x). qed.

Corollary 4.4 Let u = (u+, u−) be a solution of (27) with periodic boundary con-
ditions and initial condition u0 ∈ D(G). Then v(t, x) := (u−(t, l − x), u+(t, l − x))
is a solution of (27) with periodic boundary conditions and initial condition v0 =
(u−0 (l − x), u+

0 (l − x)).
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Now we study (27) on [0, l] with Neumann boundary conditions (5). Based on The-
orem 3.7 for each u0 ∈ D(G) there exists a unique solution u. We assume higher
regularity for k ∈ IN

u0 ∈ (Ck([0, l]))2 ∩ D(G). (34)

For the boundary of the initial condition we assume

∀j ≤ κ Dj
xu

+
0 (0) = (−1)jDj

xu
−
0 (0) and Dj

xu
+
0 (l) = (−1)jDj

xu
−
0 (l). (35)

for 0 ≤ κ ≤ k.

Theorem 4.5 Assume (34), (35) then the unique solution u of (27) with Neumann
boundary conditions satisfies u ∈ (Cκ(Ω∞))2.

Proof. We define periodic intial conditions on [0, 2l]

w0(x) = (w+
0 (x), w−

0 (x)) =

{
(u+

0 (x), u−0 (x)) 0 ≤ x ≤ l,
(u−0 (2l − x), u+

0 (2l − x)) l < x ≤ 2l.
(36)

Based on assumptions (34), (35) we have w0 ∈ (Cκ([0, 2l]))2. Additionally, w0 satisfies
the periodic boundary conditions (32) on [0, 2l] with the same κ. By Theorem 4.2
the corresponding solution satisfies w ∈ (Cκ([0,∞)× [0, 2l]))2. Now we define for x ∈
[0, 2l] the functions (v+(t, x), v−(t, x)) = (w−(t, 2l−x), w+(t, 2l−x)). By Corollary 4.4
v is solution of (27) on [0, 2l] with periodic boundary conditions and initial condition

v+
0 (t, x), v−0 (t, x)) = (w−

0 (2l − x), w+
0 (2l − x))

=

{
(u+

0 (x), u−0 (x)) 0 ≤ x ≤ l,

(u−0 (2l − x), u+
0 (2l − x)) l < x ≤ 2l.

(37)

Hence v and w satisfy the same initial boundary value problem and we obtain

(w+(t, x), w−(t, x)) = (v+(t, x), v−(t, x)) = (w−(t, 2l − x), w+(t, 2l − x)). (38)

The restriction u := w|[0,l] satisfies

u+(t, 0) = w+(t, 0) = w−(t, 2l) = w−(t, 0) = u−(t, 0)

u−(t, l) = w−(t, l) = w+(t, l) = u+(t, l).

Hence u ∈ (Cκ(Ω∞))2 solves the Neumann problem (27) on [0, l]. qed.

If the initial condition satisfies u0 6∈ D(G), then the extension w0 is bounded but not
necessarily continuous. Hence the corresponding solution will be in (L∞(Ω∞))2.
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4.3 Dirichlet Boundary Conditions

Theorem 4.6 Let u = (u+, u−) be a solution of (27) with Dirichlet boundary condi-
tions and initial condition u0 ∈ D(G). Then u ∈ (C1((l/γ,∞)× [0, l]))2.

Proof. The idea of the proof is as follows. For a given point (t, x) we follow the
characteristics backwards until we either hit the domain boundary or the initial con-
dition. If we hit the boundary, then the boundary terms in (28) and (29) vanish and
the remaining integral terms are differentiable.

A solution given by (28), (29) only depends on the values of the solution in the
characteristic cone Θ := {(s, ξ) ∈ Ω∞ : 0 ≤ s ≤ t, x− γ(t− s) ≤ ξ ≤ x + γ(t− s)}.
For each 0 ≤ τ ≤ t with x− γ(t− τ) ≥ 0 and x + γ(t− τ) ≤ l we can write

u+(t, x) = u+(τ, x− γ(t− τ))e−µ(t−τ) +

∫ x+γ(t−τ)

x−γ(t−τ)

K(t, x, y)u−(τ, y)dy

+

∫ x+γ(t−τ)

x−γ(t−τ)

K+(t, x, y)u+(τ, y)dy (39)

u−(t, x) = u−(τ, x + γ(t− τ))e−µ(t−τ) +

∫ x+γ(t−τ)

x−γ(t−τ)

K(t, x, y)u+(τ, y)dy

+

∫ x+γ(t−τ)

x−γ(t−τ)

K−(t, x, y)u−(τ, y)dy (40)

with the integral kernels K, K± from (30).
For each (t, x) ∈ Ω∞ we define two characteristic time values τ+ and τ− at which the
characteristics leave the domain [0, l] (see Fig. 2).

x− γ(t− τ+) = 0 =⇒ τ+(t, x) = t− x

γ

x + γ(t− τ−) = l =⇒ τ−(t, x) = t +
x− l

γ

The values τ± are smooth functions of t and x. Next we show the differentiability of
u+. The arguments for u− are similar.
Let t > l

γ
, then τ+ and τ− are positive for each x ∈ [0, l].
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τ

τ +

-

0 l

(t,x)

Fig. 2: The exit times τ+ and τ− of the backward characteristics.

Case 1: Assume (t, x) ∈ Q1 := (l/γ,∞)× [0, l/2). Then (39) reads

u+(t, x) = u+(τ+(t, x), 0)︸ ︷︷ ︸
=0

e−µ(t−τ+(t,x)) +

∫ 2x

0

K(t, x, y)u−(τ+(t, x), y)dy

+

∫ 2x

0

K+(t, x, y)u+(τ+, y)dy. (41)

As show in Theorem 3.7 we have u ∈ C1([0,∞),Lp). Additionally, τ+ ∈ C1(Q1, IR+)
and the kernels K and K+ are analytic in their arguments. Hence u(t, x) is continu-
ously differentiable on Q1.

Case 2: Assume x = l/2:
Here we use (39) with τ = t− l/(4γ). Again, the integral terms are smooth. The first
term from (39) reads now u+(τ, x− γ(t− τ)) = u+(τ, l/4) and we apply Case 1.

Case 3: Assume (t, x) ∈ Q2 := (l/γ,∞)× (l/2, l):
In this case the equation (41) does not hold, since 2x > l. Hence now we use (39)
with τ = τ−(t, x). Then we obtain

u+(t, x) = u+(τ−(t, x), 2x− l)e−µ(t−τ−(t,x)) +

∫ l

2x−l

K(t, x, y)u−(τ−(t, x), y)dy

+

∫ l

2x−l

K+(t, x, y)u+(τ−(t, x), y)dy. (42)

The integral terms are smooth, and we only need to study the first term u+(τ−(t, x), 2x−
l). We introduce t1(t, x) := τ−(t, x) and x1(t, x) := 2x− l. If x1 < l/2, then we apply
Case 1 and u+(t1(t, x), x1(t, x)) is continuously differentiable in (t, x). If x1 = l/2 we
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apply Case 2. If x1 > l/2 we repeat the construction above (42) with u+(t1, x1) and
t2 = τ−(t1, x1) (see Fig. 3). We obtain a finite sequence {(tk, xk)}k∈{1,...,n} with the
property that

u+(tk, xk) = u+(tk+1, xk+1)e
−µ(tk−tk+1) +

∫ l

2xk−l

K(tk, xk, y)u−(tk+1, y)dy

+

∫ l

2xk−l

K+(tk, xk, y)u+(tk+1, y)dy.

(43)

The sequences {tk} and {xk} are both monotonically decreasing and we have xk −
xk+1 = l−xk ≥ l−x =: r > 0. Hence xk+1 ≤ x−kr and there exists n ∈ IN such that
xn ≤ l/2. Now we can again apply either Case 1 or Case 2. Notice that the sequence
tk stays non-negative, since for xk > l/2 we have tk+1− τ+ = 1

γ
(xk +x− l) > 0, hence

tk+1 > τ+ > 0.

1(t ,x )

(t ,x )

(t,x)

l

1

2

1

t

= t

22

0

-τ

+τ

Fig. 3: Construction of the finite sequence {(tk, xk)}k∈{1,...,n}

Case 4: Assume x = l: In this case we use an implicit representation of the solution
if we use the method of characteristics for (2). The characteristics of (2) are

x+(s) = x− γ(t− s), x−(s) = x + γ(t− s).

Let u+ and u− denote the components of the solution u of (2). Then v+(s) :=
u+(s, x+(s)) and v−(s) := u−(s, x−(s)) satisfy the ODE’s (ordinary differential equa-
tioins)

v̇+(s) = −µv+(s) + µu−(s, x+(s))

v̇−(s) = −µv−(s) + µu+(s, x−(s)).
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Using the variation of constant formula we get the following implicit representation

u+(t, x) = e−µ(t−τ)u+(τ, x+(τ)) + µ

∫ t

τ

eµ(s−t)u−(s, x+(s))ds (44)

u−(t, x) = e−µ(t−τ)u−(τ, x−(τ)) + µ

∫ t

τ

eµ(s−t)u+(s, x−(s))ds, (45)

where 0 < τ < t, such that 0 < x− γ(t− τ). In particular for x = l we obtain

u+(t, l) = e−µ(t−τ)u+(τ, l − γ(t− τ)) + µ

∫ t

τ

eµ(s−t)u−(s, l − γ(t− s))ds. (46)

Now we choose τ such that 0 < l − γ(t − τ) < l/2. Then we see that the integral
term in (46) is continuously differentiable and we apply the Case 1 to the first term.

The proof of smoothness for u−(t, x) is similar, where Case 1 corresponds to l/2 <
x ≤ l, Case 2 corresponds to x = l/2, Case 3 corresponds to 0 < x < l/2 and Case 4
corresponds to x = 0. qed.

5 Correlated Random Walk and Kinetics

We like to include population dynamics described by ut = f(u) into the random walk
equations. For diffusion models it is typically assumed that diffusion and reaction are
independent processes and they are modeled through addition of the corresponding
terms, leading to reaction-diffusion equations (see [42]). In case of correlated random
walk, we split the population into right and left moving compartments. This allows
for a finer inclusion of reaction kinetics. In particular, we need to make sure that
right moving particles die as right moving particles, i.e. we need appropriate death
terms.

We follow Hadeler ([13], [14], [15]) and discuss a hierarchy of models:

(i) Holmes [24] introduced reaction as to be symmetric between the two classes. She
assumed that (i,a) reaction is independent from the movement direction and
(i,b) that newborn particles choose either direction with the same probability.
The corresponding model reads

u+
t + γu+

x = µ(u− − u+) + 1
2
f(u+ + u−)

u−t − γu−x = µ(u+ − u−) + 1
2
f(u+ + u−).

(47)

(ii) The reaction can be split into gain and loss (birth and death) terms as f(u) =
um(u)−u g(u), where m(u) denotes a birth rate and g(u) a death rate. Now we
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assume (ii,a) that the death rate g(u) is independent of the movement direction,
but right moving particles can only die as right moving particles and vice versa.
Hence a death term for right moving particles appears only in the equation for
right moving particles and vice versa. (ii,b) We assume that the birth rate m(u)
is independent of direction and newborn particles choose either direction with
the same probability. The corresponding reaction-random walk model reads

u+
t + γu+

x = µ(u− − u+) + 1
2
(u+ + u−) m(u+ + u−)− u+ g(u+ + u−)

u−t − γu−x = µ(u+ − u−) + 1
2
(u+ + u−) m(u+ + u−)− u− g(u+ + u−).

(48)

(iii) Here we consider the same reaction terms as in (ii) but we additionally assume
(iii,a) that the movement direction of newborn particles correlates to the di-
rection of their mother by a parameter τ ∈ [0, 1]. The corresponding model
equations are

u+
t + γu+

x = µ(u− − u+) + (τu+ + (1− τ)u−) m(u+ + u−)− u+ g(u+ + u−)

u−t − γu−x = µ(u+ − u−) + ((1− τ)u+ + τu−) m(u+ + u−)− u− g(u+ + u−).

(49)
If τ = 1/2 we have case (ii). For τ > 1/2 the daughter particles tend to prefer
the same direction as the mother and for τ < 1/2 they prefer the opposite.

Holmes [24] and Hadeler [13], [14] studied travelling front solutions for these systems
and they compare the wave speed with the corresponding reaction-diffusion equa-
tions. Hillen studied the corresponding hyperbolic Turing model [18] and he found a
Lyapunov function for a class of nonlinearities [20].

Using operator notation we can write the above systems (47), (48) and (49) as

yt = (G + B) y + F (y), (50)

with F (y) = (f1(y1, y2), f2(y1, y2)) and

f1(y1, y2) =





1
2
f(y1 + y2) in case (i),

1
2
(y1 + y2)m(y1 + y2)− y1g(y1 + y2) in case (ii),

(τy1 + (1− τ)y2)m(y1 + y2)− y1g(y1 + y2) in case (iii),

f2(y1, y2) =





1
2
f(y1 + y2) in case (i),

1
2
(y1 + y2)m(y1 + y2)− y2g(y1 + y2) in case (ii),

((1− τ)y1 + τy2)m(y1 + y2)− y2g(y1 + y2) in case (iii).

We use a perturbation argument for Lipschitz continuous perturbations to show ex-
istence for the above models.
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Theorem 5.1 Let y0 ∈ Lp.

1. If F : Lp → Lp is locally Lipschitz continuous then there exists a unique (local)
solution y ∈ C([0, tmax),Lp) of (50). If the maximal time of existence is tmax <
∞, then limt→tmax ‖y(t)‖ = ∞. Furthermore, if F is differentiable with Lipschitz
continuous derivative and y0 ∈ D(G), then y(t) is a classical solution.

2. If F : Lp → Lp is globally Lipschitz continuous then tmax = ∞.

Proof.

1. See Pazy [37] Kap. 6, Theorem 1.4 and 1.5, as well as Grabosch und Heijmans
[12] Theorem 3.2.

2. Grabosch und Heijmans [12] Theorem 4.6.

qed.

6 Reaction–Telegraph Equations

It is well known that correlated random walk systems can be transformed into a
telegraph equation [16] (second order, damped wave equation). These systems are
nearly equivalent. In this section we will study the reaction-telegraph equations
which correspond to the reaction-random walk equations studied above. If we ignore
boundary conditions, then we find that to each solution of the reaction-telegraph
equation corresponds a one-parameter family of solutions to the reaction-random
walk system (Section 6.1). For Neumann or for periodic boundary conditions, we find
equivalence only if the initial conditions for the reaction-telegraph equation satisfy
a certain compatibility condition (Sections 6.2, 6.3). Surprisingly, the corresponding
Dirichlet problems cannot be related in a straightforward way (Section 6.4).

To use Kac’s trick [26] we write the systems (47), (48) and (49) in terms of the total
particle density u = u+ + u− and the particle flux v = u+ − u−.

ut + γvx = f(u)

vt + γux = −h(u) v,
(51)

with

f(u) =

{
f(u) in case (i)
um(u)− u g(u) in case (ii) and (iii),

h(u) =





2µ in case (i)
2µ + g(u) in case (ii)
2µ + (1− 2τ)m(u) + g(u) in case (iii).

The boundary conditions transform as
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• Dirichlet (4):

u(t, 0) = −v(t, 0), u(t, l) = v(t, l), t ∈ [0, tmax). (52)

• Neumann (5):
v(t, 0) = 0, v(t, l) = 0, t ∈ [0, tmax). (53)

• Periodic (6):

u(t, 0) = u(t, l), v(t, 0) = v(t, l) t ∈ [0, tmax). (54)

To investigate the relation to a telegraph equation, we focus on case (i), i.e. F (u) :=
1
2
(f(u), f(u)). System (51) reads in this case

ut + γvx = f(u)

vt + γux = −2µ v.
(55)

We assume that solutions are twice differentiable and we differentiate the first equa-
tion with respect to t and the second with respect to x

utt + γvxt = f ′(u)ut. (56)

vtx + γuxx = −2µ vx. (57)

Then we multiply (57) with γ and substitue into (56).

utt + (−γ2uxx − 2µvx) = f ′(u)ut.

The term −2µvx can be substituted from the first equation of (55).

utt + (2µ− f ′(u))ut = γ2uxx + 2µ f(u). (58)

We call this equation a reaction-telegraph equation.

The above construction defines a map which maps solutions (u, v) of (55) onto solu-
tions of (58). We see immediately, that a term of the form v∗e−2µt with v∗ ∈ IR can
be added to v without changing the equations. Hence the systems are not equivalent.

Initial conditions for u and v transform as

ut(0, x) = −γvx(0, x) + f(u(0, x)) = −γv′0(x) + f(u0(x)). (59)

The above transformation applied to cases (ii) and (iii) would not lead to a single
telegraph equation, unless τ = 1/2 and g = 0, which is case (i) (see also [16, 15]).
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Definition 6.1 Let 1 ≤ p < ∞. The function u ∈ C1([0, T ), Lp([0, l]))∩C([0, T ),W 1,p([0, l]))
is a weak solution of (58), if for each test function ϕ ∈ C2([0, T )×[0, l]) with ϕ|∂ΩT

= 0
we have

∫ T

0

∫ l

0

(
− utϕt + (2µ− f ′(u))utϕ + γ2uxϕx − 2µf(u)ϕ

)
dxdt = 0.

We abbreviate the relevant function spaces as

E := C1([0, T ), Lp(I)) ∩ C([0, T ),W 1,p(I))

E2 := C1([0, T ),Lp) ∩ C([0, T ),W1,p),

with I = [0, l] and 0 < T ≤ tmax.

We formulate the corresponding initial value problems

ut + γvx = f(u)

vt + γux = −2µ v
(60)

with initial conditions

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ I (61)

and
utt + (2µ− f ′(u))ut = γ2uxx + 2µ f(u) (62)

with initial conditions

u(0, x) = a0(x), ut(0, x) = a1(x) x ∈ I. (63)

We study the boundary conditions separately.

6.1 No Boundary Conditions

Theorem 6.1

(a) Assume (u0, v0) ∈ W1,p(I) with corresponding classical solution (u, v) ∈ E2 of
(60), (61), then u is a weak solution of (62) with initial condition

a0 = u0 ∈ W 1,p(I) and a1 = −γv′0 + f(u0) ∈ Lp(I). (64)

(b) If a0 ∈ W 1,p(I), a1 ∈ Lp(I) and u ∈ E the corresponding weak solution of (62),
(63), then the pair (u, v) ∈ E2 defined as

v(t, x) = ṽ(x)e−2µt −
∫ t

0

e−2µ(t−τ)γux(τ, x)dτ (65)

ṽ(x) = v∗ +
1

γ

∫ x

0

(f(a0(s))− a1(s))ds,
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defines a solution of (60) for each v∗ ∈ IR. The initial conditions are

u0 = a0 ∈ W 1,p(I) and v0 = v∗+
1

γ

∫ ·

0

(f(a0(s))−a1(s))ds ∈ W 1,p(I). (66)

Proof.

(a) Let (u, v) ∈ E2 solve (60) with initial conditions (u0, v0) ∈ W1,p(I). Then for
each ϕ ∈ C2([0, T )× [0, l]) with ϕ|∂ΩT

= 0 we have

∫ T

0

∫ l

0

−utϕtdxdt =

∫ T

0

∫ l

0

(γvxϕt − f(u)ϕt)dxdt

=

∫ T

0

∫ l

0

(−γvϕtx − f(u)ϕt)dxdt

=

∫ T

0

∫ l

0

(γvtϕx + f ′(u)utϕ)dxdt

=

∫ T

0

∫ l

0

(−γ2uxϕx − 2µγvϕx + f ′(u)utϕ)dxdt

=

∫ T

0

∫ l

0

(−γ2uxϕx + 2µγvxϕ + f ′(u)utϕ)dxdt

=

∫ T

0

∫ l

0

(−γ2uxϕx − 2µutϕ + 2µf(u)ϕ + f ′(u)utϕ)dxdt.

Hence
∫ T

0

∫ l

0

(
− utϕt + (2µ− f ′(u))utϕ + γ2uxϕx − 2µf(u)ϕ

)
dxdt = 0

and u is a weak solution of (62). The initial conditions are a0 = u0 and a1 =
−γv′0 + f(u0).

(b) Let u ∈ E solve (62), (63) with a0 ∈ W 1,p(I) and a1 ∈ Lp(I). Define v by
(65). According to the assumptions we have ṽ ∈ W 1,p(I). The first term in
(65) satisfies ṽe−2µt ∈ E. The gradient of u satisfies ux ∈ C([0, T ), Lp(I)),
and the integral term

∫ t

0
e−2µ(t−τ)γux(τ, x)dτ ∈ C1([0, T ), Lp(I)). Hence indeed

v ∈ C1([0, T ), Lp(I)). We still need to confirm that v ∈ C([0, T ),W 1,p(I)),
which we achieve by using (62)

∂

∂x
v(t, x) = ṽ′(x)e−2µt −

∫ t

0

e−2µ(t−τ)γ
∂

∂x
ux(τ, x)dτ

=
1

γ
(f(a0(x))− a1(x))e−2µt

−1

γ

∫ t

0

e−2µ(t−τ) {utt + (2µ− f ′(u))ut − 2µf(u)} dτ.
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With the abbreviation w := f(u)− ut we have w(0, x) = f(a0(x))− a1(x) and
after multiplication with γ

γvx = w(0, x)e−2µt −
∫ t

0

e−2µ(t−τ)(−2µw − wt)dτ

= w(0, x)e−2µt +

∫ t

0

∂

∂τ

(
e−2µ(t−τ)w(τ, x)

)
dτ

= w(t, x)

= f(u)− ut. (67)

Hence vx ∈ C([0, T ), Lp(I)) and consequently v ∈ E. Furthermore, (67) is
identical to the first equation of (60). To obtain the second equation of (60) we
compute

∂

∂t
v(t, x) = −2µṽ(x)e−2µt − γux(t, x) +

∫ t

0

2µe−2µ(t−τ)γux(τ, x)dτ

= −γu(t, x)− 2µv(t, x).

For the corresponding initial conditions (61) of (u, v) we find u0(x) = a0(x) ∈
W 1,p(I) and

v0(x) = v∗ +
1

γ

∫ x

0

(f(a0(s))− a1(s))ds ∈ W 1,p(I).

Here we clearly see where the free parameter v∗ enters the equations. There is
a one-parameter family of solutions v, which all correspond to the same u.

qed.

6.2 Neumann Boundary Conditions

The homogeneous Neumann boundary conditions read in the (u, v) notation

v(t, 0) = 0, v(t, l) = 0, t ∈ [0, T ), (68)

and for the reaction-telegraph equation (62), (63)

ux(t, 0) = 0, ux(t, l) = 0, t ∈ [0, T ). (69)

Theorem 6.2

(a) Let (u, v) ∈ E2 solve (60) and (61) with homogeneous Neumann boundary con-
ditions (68), then u ∈ E solves (62) with initial conditions (64) and Neumann
boundary conditions (69).
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(b) Let u ∈ E solve (62), (63) with homogeneous Neumann boundary conditions
(69), then the pair (u, v) ∈ E2 defined by (65) with initial conditions (66) is a
solution of (60) with homogeneous Neumann boundary conditions (68) if and
only if

v∗ = 0 and

∫ l

0

(f(a0(s))− a1(s))ds = 0.

Proof.

(a) Since (68) is true for all t ∈ [0, T ), we can deduce that vt(t, 0) = vt(t, l) = 0 for
all t ∈ [0, T ). The second equation of (60) evaluated at x = 0, and at x = l
reads

ux(t, 0) =
1

γ
v(t, 0)− 2µ

γ
vt(t, 0) = 0

ux(t, l) =
1

γ
v(t, l)− 2µ

γ
vt(t, l) = 0.

(b) We evaluate (65) at x = 0 and obtain

v(t, 0) = ṽ(0)e−2µt +

∫ t

0

e−2µ(t−τ)γux(τ, 0)dx

= ṽ(0)e−2µt = v∗e−2µt.

Hence v(t, 0) = 0 if and only if v∗ = 0. If we evaluate v at x = l and use v∗ = 0
then we see that

v(t, l) = 0 ⇐⇒
∫ l

0

(f(a0(s))− a1(s))ds = 0.

qed.

6.3 Periodic Boundary Conditions

The periodic boundary conditions for (60), (61) are

u(t, 0) = u(t, l), v(t, 0) = v(t, l), t ∈ [0, T ), (70)

and for (62), (63)

u(t, 0) = u(t, l), ux(t, 0) = ux(t, l), t ∈ [0, T ). (71)

Theorem 6.3
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(a) Let (u, v) ∈ E2 solve (60) and (61) with periodic boundary conditions (70), then
u ∈ E solves (62) with initial conditions (64) and periodic boundary conditions
(71).

(b) Let u ∈ E solve (62), (63) with periodic boundary conditions (71), then the pair
(u, v) ∈ E2, defined by (65) with initial conditions (66) solves (60) with periodic
boundry conditions (68) if and only if

∫ l

0

(f(a0(s))− a1(s))ds = 0.

Proof.

(a) Since (70) holds for all t ∈ [0, T ) we find vt(t, 0) = vt(t, l) for all t ∈ [0, T ). The
second equation of (60) evaluated at x = 0 reads

ux(t, 0) =
1

γ
v(t, 0)− 2µ

γ
vt(t, 0)

=
1

γ
v(t, l)− 2µ

γ
vt(t, l) = ux(t, l).

(b) By definition (65) we have

v(t, 0)− v(t, l) = (ṽ(0)− ṽ(l))e−2µt +

∫ t

0

e−2µ(t−τ)γ(ux(τ, 0)− ux(τ, l))dx

=

∫ l

0

(f(a0(s))− a1(s))ds e−2µt.

Hence v(t, 0) = v(t, l) if and only if
∫ l

0
(f(a0(s))− a1(s))ds = 0.

qed.

6.4 Dirichlet Boundary Conditions

The homogeneous Dirichlet boundary conditions of (60), (61) are

u(t, 0) = −v(t, 0), u(t, l) = v(t, l), t ∈ [0, T ), (72)

and for (62), (63)
u(t, 0) = 0, u(t, l) = 0, t ∈ [0, T ). (73)

These boundary conditions only match if v(t, 0) = v(t, l) = 0. These are, in fact,
Neumann boundary conditions (60) for the hyperbolic system. From Section 6.2 we
know that then the solution of the reaction-telegraph equation satisfies ux(t, 0) =
ux(t, l) = 0, which is not generally true for the Dirichlet problem. It is quite surprising
that there is no direct equivalence between the two models for homogeneous Dirichlet
conditions.
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7 Global Existence for Reaction–Telegraph Equa-

tions

In this section we review results on existence and uniqueness for reaction telegraph
equations. The equivalences from the previous section make some of these results
available to the reaction random walk systems as well.

Matsumura [32] studies a general class of damped wave equations of the form

utt − A0(t, x, u, ut,∇u)u + αut + f(u, ut,∇u) = 0. (74)

He proves global existence and uniqueness of solutions u(t, x) ∈ IRm in IRn. He
assumes that A0 is smooth, symmetric with respect to the spatial coordinates, coercive
with respect to u, and some further regularity properties of A0. For f he assumes
that there is a 0 < s ∈ IN such that for all multi indices |α| ≤ s + 1

f(y) ∈ Cs+1(IRn+2), Df(0) = 0, |Dαf(y)| ≤ h1(|y|)

and that
f(u, ut,∇u) = f1(u) + f2(u, ut,∇u)

with
f1(u) u ≥ 0, f2(y) ≤ |y|2h1(|y|), ∀ |y| ≤ 1.

Where h1 denotes a continuous non negative and non decreasing function. Notice
that the nonlinearity is used with the opposite sign as in (62).

Reed [39] shows global existence of solutions for equations of the form

utt − uxx = f(x, t, u, ux, ut) (75)

on IR. Reed uses energy estimates and assumes f ∈ C∞ and that ∂/(∂ux)f and
∂/(∂ut)f are uniformly bounded on compact sets for (x, u) and there exists a potential
function F ∈ C∞ with the properties that

d

dt
F (x, u, ux, ut) = f(x, u, ux, ut) ut and F (x, 0, 0, 0) = 0.

It appears that we also need F ≥ 0 (see [39], p.165 middle), which is not spelled out
in [39].

Ball [2] studies the telegraph equation

utt + a(u, t)ut −∆u + f(u) = 0 in Ω ⊂ IR
u = 0 on ∂Ω.

(76)

31



To prove global existence it is assumed that a(u, t) and f(u, t) are smooth and there
exists a continuous function θ1 : IR → IR and a locally integrable function m(t) with
lims→0 supt≥0

∫ t+s

t
m(τ)dτ = 0 such that

|a(u, t)|+ |f(u, t)| ≤ m(t)θ1(u).

Webb [45] studies an eigenvalue problem for the telegraph equation

utt + 2αut − uxx = λf(u), auf (0, π), (77)

with periodic boundary conditions. The assumptions on f are

(i) f ∈ C2, f(0) = 0, f ′(0) > 0,

(ii) lim sup
‖x‖→∞

f(x)

x
≤ 0, signf ′′(x) = −signx.

To prove existence of eigenfunctions, Webb uses an explicit representation of solutions
as given in Weinberger [46] and the following Lyapunov function. Let w = ut and
define

V (u,w) =
1

2
(‖u‖2

B + ‖w‖2)− λ

∫ π

0

F (u(x))dx, with F (u) =

∫ u

0

f(s)ds, (78)

where the B–Norm denotes a norm of an appropriate dense subspace of L2([0, π]).

Lopes [29] [30] studies telegraph equations

utt −∆u + cut + f(u) = h(t, x) (79)

on [0, 2π]3 with periodic boundary conditions. He assumes that f(u) is twice contin-
uously differentiable and that there are constants k1 > 0, k2, k3, 0 ≤ β < 4 with

uf(u) ≥ k1u
2 + k2, |f ′(u)| ≤ k3(1 + |u|β).

Lopes shows a–priori estimates for the norms of the solution in appropriate Sobolev
spaces.

Li [28] shows existence of global classical solutions for

utt −∆u + g(ut) + f(u) = 0 (80)

in a bounded domain in IRn, n > 2 with Dirichlet boundary conditions. He assumes
that g and f are smooth enough and that

(i) g(0) = 0 and g is monotonically increasing,

(ii) ∀ y ∈ IR :

∫ y

0

f(s)ds ≥ 0,

(iii) |f ′(y)| ≤ k(1 + |y|p−1), ∀ y ∈ IR, with k > 0, 1 ≤ p ≤ n

n− 2
.
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As can be seen here, the existence of solutions to nonlinear telegraph equations has
been studied by many people. The same questions for the nonlinear random walk
models of this paper have not been studied in such detail. The relation between
telegraph equations and random walk systems as described in the previous section
allow us to apply many of the result of this section to reaction-random walk equations.
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1027–1032, (1893).

[39] M.C. Reed. Propagation of singularities for non–linear wave equations in one
dimension. Comm. Part. Diff. Eq., 3(2), 153–199, (1978).

[40] M. Renardy and R.C. Rogers. An Introduction to Partial Differential Equations.
Springer, New York, (1993).
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