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Summary. For the past four years, the University of Alberta has hosted a summer
school on mathematical biology, aimed at undergraduate students who have com-
pleted 2–3 years of study in mathematics or a similar quantitative science. The aim
of this summer school is to introduce the students to mathematical modelling and
analysis applied to real biological systems. In the span of 10 days, students attend
lectures and exercise sessions, learn how to set up mathematical models, and use
analytical and computational tools to relate them to biological data. They expe-
rience the modelling process by working on a research project. In this paper, we
explain our teaching philosophy, share some unique features of our summer school,
and exemplify key course components.
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1.1 Introduction

Mathematical modelling of biological systems requires a wide variety of meth-
ods and skills from multiple disciplines. Traditionally, these skills are taught
separately in standard courses in mathematics, biology, computer science, etc.,
but rarely are they integrated into a single undergraduate-level course that
focusses on the modelling process.

At the Centre for Mathematical Biology at the University of Alberta,
inspired by a similar summer school at the University of Tübingen, we have
developed a 10-day summer school for motivated undergraduate students that
integrates the methods of applied mathematics in the context of mathematical
biology.

The summer school addresses questions of utmost importance to the math-
ematical biologist, namely what type of model to use, how to develop a math-
ematical model, how to relate a model to experimental data, and how to
validate and/or evaluate the model.

Our primary goal then is to teach the development of models based on bi-
ological observations and experimental data, and the interpretation of model
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results in order to make predictions, suggestions for further experiments, sug-
gestions for control measures or treatments. We include qualitative model
analysis, model simulation, and model validation.

In this paper, we describe how we accomplish all of the above in the short
time of 10 days. In section 1.2, we provide an overview of the summer school,
describing the schedule, typical participants, prerequisites for the course, etc.
The bulk of the paper is devoted to describing the course content, in sec-
tion 1.3. We conclude with our perspectives on the benefits and impact of the
summer school in section 1.4, and a brief discussion in section 1.5.

1.2 Overview of the Summer School

We aim to introduce undergraduate students to mathematical modelling and
analysis in the context of real biological systems, and provide them with a
simulated research experience. To that end, our summer school consists of
three integrated components:

1. Through lectures and exercises, focussing on four main topics (differ-
ence equations, ODEs, PDEs, and stochastic models and parameter esti-
mation), students are introduced to various techniques of mathematical
modelling.

2. Through a self-guided tutorial, students learn how to use Maple to
simulate mathematical models and relate them to biological data.

3. Through projects, students experience the modelling process.

The summer school consists of 10 instructional days. The schedule we use
is shown in Table 1.1. During the first 5 days, students attend lectures, work
through exercises, and complete the self-guided computer tutorial. The last 5
days are devoted to the research projects.

The summer school is attended by 15–25 students each year. In addition
to lecturing, our summer school involves a significant amount of one-on-one
mentoring and interaction with students. For that reason, we cap enrolment
at approximately 25.

Typical students have completed 2–3 years of undergraduate study in
mathematics or a similar quantitative science. While the majority of attendees
major in mathematics, some already are enrolled in a degree program com-
bining mathematics or computer science and biology. Undergraduates in their
third year are especially encouraged to attend. Beginning graduate students
in the biological and medical sciences interested in mathematical modelling
are welcome as well, and in fact serve as an excellent complement to the group
composition.

The prerequisites for attending our summer school are a basic knowledge
of calculus, linear algebra, and differential equations. Although not necessary,
we have found that some knowledge of computer programming is extremely
helpful.
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Table 1.1. Schedule for the mathematical biology summer school.

9:00–10:30 11:00-12:30 1:30–3:00 3:30–5:00 Evening

Day 1 Introduction Discrete I Maple Lab Discrete II Homework

Day 2 Exercises ODE I Maple Lab ODE II Homework

Day 3 Exercises PDE I Maple Lab PDE II Homework

Day 4 Exercises Stochastic I Maple Lab Stochastic II Homework

Day 5 Exercises Maple Lab Maple Lab Maple Lab Project Intro

Day 6 DAY OFF

Days 7–10 Projects Projects
Research
Lecture

Projects

Day 11 Presentations Presentations Presentations Presentations Graduation

We typically run the summer school with four core instructors, one high-
profile guest instructor, secretarial support staff, and approximately 20 volun-
teers (graduate students and postdoctoral fellows). The core instructors give
the lectures and guide the exercise sessions during the first half of the summer
school, and serve as primary project consultants for 2-3 student teams dur-
ing the second half. The guest instructor attends the summer school for the
last few days only, delivers a keynote address, and serves as roaming project
consultant, interacting with each student team. The graduate students and
postdoctoral fellows help with all aspects of the summer school.

1.3 Course Content

In this section, we elaborate on the three course components, namely lectures
and homework, the computer tutorial, and research projects.
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Part I: Lectures and Homework

We integrate theory and modelling in the lectures and homework component
of the summer school. We begin with a brief presentation on the history
of mathematical biology. The modelling lectures begin with a review of the
importance of distinguishing between dependent and independent variables,
and probabilities and rates, as well as an overview of the most common model
classes.

We elaborate on four of the model classes (difference equations, ODE’s,
PDE’s, and stochastic models and parameter estimation) in four units of lec-
tures and homework sessions. Each unit consists of 3 hours of lecturing and
1.5 hours of tutorial sessions during which homework problems (assigned dur-
ing the lectures) are discussed. Students receive extensive course notes that
fill in details not covered in the lectures. The course notes have been edited
and published [?].

The unit on difference equations covers scalar and two-dimensional sys-
tems, both linear and nonlinear. Students are introduced to the concept of
a fixed point, as well as the notions of stability and instability. For scalar
equations, we teach both graphical stability analysis (cobwebbing) and linear
stability analysis. The latter is extended to two-dimensional systems. We give
a full treatment of the discrete logistic equation, including period-doubling
and the Feigenbaum diagram, thereby introducing students to the concept of
a bifurcation.

The unit on ordinary differential equations builds on the previous unit,
and covers direction fields, nullclines, and phase plane analysis. Applications
include the investigation of 2-species interaction models such as predator-prey
or competition models, as well as standard SIR epidemiological models.

The unit on partial differential equations covers an age-structured popu-
lation model and reaction-diffusion equations. In particular, we focus on the
critical domain size problem and travelling waves.

The last unit covers stochastic modeling and parameter estimation. The
section on stochastic models covers random walk models and birth-death
processes. The section on parameter estimation includes the log-likelihood
method, the Akaike Information Criterion (AIC), and the likelihood ratio
test.

The following exercise, drawn from the lectures on difference equations,
illustrates our approach to integrating theory and modelling:

Consider the following model for drug prescription:

an+1 = an − kan + b,

where an is the amount (in mg) of a drug in the bloodstream after
administration of n dosages at regular hourly intervals.
(a) Discuss the meaning of the model parameters k and b. What can

you say about their size and sign?
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(b) Perform cobwebbing analysis for this model. What happens to the
amount of drug in the bloodstream in the long run? How does the
result depend on the model parameters?

(c) Sketch a graph of an versus n. How should b be chosen to ensure
that the drug is effective, but not toxic?

In the above, students are given the equation of the model, but they are
asked to figure out the structure of the model themselves, by determining
the meaning of each of the model parameters. In other exercises, students are
asked to construct their own model, based on explicitly stated assumptions.
The experience gained from working through exercises such as these prepare
students for the project work later during the summer school.

Part II: Self-guided Maple Tutorial

The structure of the Maple tutorial follows the lectures. The tutorial supports
the material discussed in the lecture, and provides a different perspective on
biological problems, but also covers topics not discussed in the lectures. In
particular, we use the tutorial to introduce students to data analysis, covering
linear regression and dealing with data sets, as well as numerical solutions of
differential equations.

The computational software of our choice is Maple. The point is not to
learn Maple per se, but to extend the range of interesting problems within the
grasp of students through computation. Other software, such as Mathematica,
or Matlab, or even C++, could be used instead.

Each student has access to a computer, and works through the tutorial
document at his/her own pace. We typically schedule about 12 hours of lab
time for the Maple tutorial. An instructor and several teaching assistants are
present during the Maple lab sessions to provide help when needed.

The tutorial is extensive, and contains many examples and exercises, rang-
ing from trivial to challenging in difficulty. We do not expect every student to
complete the entire tutorial, although each year there are a few who do (pri-
marily advanced students with some computer programming background).
Occasionally, a student already has some background with Maple. Those stu-
dents are free to skip sections of the tutorial with material that is familiar
to them. We have found that the tutorial is sufficiently wide-ranging and
challenging to keep the interest of those students.

Following is a sample exercise from the Maple tutorial illustrating the use
of data analysis in the modelling process:

Consider the Ricker model, written in the following form:

xn+1 = ae−bxnxn.

(a) Fit the Ricker model to Barlow’s data on the number of nests per
hectare for a population of the common wasp Vespula vulgaris [?],
shown below.
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1988 1989 1990 1991 1992
8.6 31.1 7.0 11.7 10.2

That is, find the values of the parameters a and b that best fit the
data.

(b) Check the fit for the data two ways: (1) in a plot of ln(xn+1/xn)
versus xn, and (2) in a plot of xn+1 versus xn.

(c) What behaviour is predicted for the wasp population, based on the
results of your earlier bifurcation analysis of the Ricker model?

The above exercise is one in which we expect students to integrate knowledge
obtained in preceding exercises. In particular, students learned linear regres-
sion in an earlier set of exercises. Here, students are expected to recognize
the linear relationship ln(xn+1/xn) = ln(a)− bxn, and then use linear regres-
sion to obtain the best-fit values for ln(a) and b. In another set of preceding
exercises, students were asked to systematically investigate the behaviour of
the Ricker model written in the form yn+1 = ryne−yn over a range of the
parameter value r, and summarize the behaviour in a bifurcation diagram.
Here, they are asked indirectly to determine the relationship between the two
forms of the Ricker model, and use the results of the bifurcation analysis to
predict the behaviour of the model obtained for the wasp population.

Part III: Research Projects

Students choose a modelling problem from a set of approximately 25 project
descriptions, loosely grouped in four topic areas (epidemic models, population
dynamics, models for spatial spread, and physiology).

Students work in teams of 2–3, under the guidance of one of the instruc-
tors. Students are expected to develop a model, analyze and/or simulate their
model, and prepare a presentation.

Many of the problems have not been studied previously with a mathemat-
ical model, and are open-ended, with no “right solution” per se. Because of
the open-ended nature of the research projects, instructors are flexible. Very
often, students take the project in different, sometimes better, directions than
the instructor might have.

In many cases, students will need to simplify their problem, and build a
hierarchy of models, each model incorporating additional realism from the
original problem at hand. We emphasize to students that success is not mea-
sured in terms of the end product, but in terms of the amount of learning
that is taking place during the model development and analysis. It is not
uncommon that the team apparently making the slowest progress actually is
learning the most.

For some of the projects, we provide some supplementary reference mate-
rials. For others, students easily can obtain additional information from the
internet. We do not require students to study the biological topic at length
(we believe that initial efforts in mathematical modelling require only the
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identification of basic mechanisms). The point of the project work is not to
produce publishable results, but rather for students to experience the mod-
elling process.

Sample project topics include the spread of HIV in Cuba, cholera in South
Africa, the extinction of a wolf population in Sweden, the pupil control system,
and radiation treatment of cancer. The complete set of project descriptions
can be found in [?].

Following is a sample project description, dealing with the outbreak of
Yellow Fever in Senegal:

Yellow Fever (YF) is a viral disease transmitted to primates (including
humans) by infected mosquitoes. The disease is endemic in populations
of monkeys living in the jungle. The disease is spread into the human
population in three stages:
1. Sylvatic transmission occurs when mosquitoes which have fed on

infected monkeys next bite a human working in the jungle.
2. Intermediate transmission occurs when mosquitoes pass the virus

among humans living in rural areas.
3. Urban transmission occurs when mosquitoes pass the virus among

humans living in urban areas.
Below is a data set of YF cases reported during an outbreak in the city
of Touba in Senegal in 2002 [?]. As soon as the virus was identified
(October 11), a vaccination program was started. YF vaccine is safe
and effective, and provides immunity within one week in 95% of those
vaccinated.
Date Jan 18 Oct 4 Oct 11 Oct 17 Oct 24 Oct 31 Nov 20 Nov 28

Cases (total) 18 12 15 18 41 45 57 60

Deaths (total) 0 0 2 2 4 4 10 11

Develop a model for the three stages of YF as outlined above, including
vaccination in urban areas, and fit your model to the data. Would you
expect that the disease dies out or that it becomes persistent? What
would have happened without vaccination?

The student team that tackled this problem in one of our recent summer
schools decided to simplify the problem significantly, and focussed on the
outbreak of YF within urban areas only. They constructed a model describ-
ing the transmission of the virus within the population of mosquitoes and
from mosquitoes to humans. The mosquito population was divided into two
classes (susceptible and infective), and the human population was divided
into five classes (susceptible, exposed, infective, recovered, and vaccinated).
Parameterizing a model of this size is a daunting task, even for experienced
researchers. The students were able to obtain estimates for a number of pa-
rameters (such as the biting rate of mosquitoes) from the internet and journal
articles, and adjusted the value of remaining parameters with a “fit-by-eye”
procedure. They obtained a reasonable fit of the model to the data supplied,
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and then investigated the predictive power of the model in terms of suggesting
strategies for controlling the outbreak of the disease.

Projects such as the above allow students to experience the entire mod-
elling process, from model development to simulation/analysis to the inter-
pretion of results.

1.4 Benefits and Impact of the Summer School

Students are very enthusiastic about the summer school. They are grateful
for the challenging extracurricular experience, and appreciative of the oppor-
tunity to interact with other bright and motivated students from varied ed-
ucational backgrounds. Following are examples of typical comments received
from students upon the completion of the summer school:

I think the biggest thing I got out of the workshop was an appreciation
of the wide variety of modeling applications (especially through the
projects) – and also the immense power of a relatively limited set of
techniques.

This workshop not only helped me to gain experience in Mathematical
Biology, but also to decide my direction in my academic career.

It gave me a good overall look at math modeling . . . I now know what a
“mathematical model” is. It’s a phrase I hear a lot, but wasn’t exactly
sure what that meant. I also now have a clearer vision of a direction
that I’d like to take in graduate studies.

The comments quoted above illustrate that the summer school is highly
useful to these students in guiding them towards future studies or careers in
mathematical biology. Indeed, a significant number of past participants have
continued their graduate studies in mathematical biology. To our knowledge,
at least 12 out of 64 participants have found a place at different Canadian or
US institutions.

The immeditate benefits of the summer school for both the core and guest
instructors are infectious enthusiasm and exposure to potential graduate stu-
dents committed to the field of mathematical biology. But there are additional
benefits. In particular, the instructional materials developed for the summer
school have grown over the years, and now are published as an undergraduate
textbook [?]. Also, we are starting to use modules developed for the summer
school in our regular classes, and have plans to offer an undergraduate course
on mathematical biology in the near future using the same philosophy that
we use in the summer school.

Last but not least, the summer school contributes significantly to the career
development of the many graduate students and postdoctoral fellows who
help run the summer school. Both graduate students and postdoctoral fellows
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participate as teaching assistants for the exercise sessions and Maple labs
during the first half of the summer school. In addition, the postdoctoral fellows
serve as project consultants during the second half.

1.5 Discussion

Our summer school is an academically stimulating program that teaches the
following applied math skills in the context of mathematical biology: the-
ory, modelling, analysis, computation, data fitting, and making predictions.
Through lectures and exercises, the Maple tutorial, and project work, partic-
ipants not only gain a wide knowledge of mathematical biology, but also are
introduced to research.

Although our formal instructional time with the students is very limited,
we cover enough aspects of modelling that students can find and learn re-
quired advanced techniques while working on their projects. In fact, students
relish the challenge provided in the projects, and it is during this part of the
summer school that we observe a phenomenal increase in knowledge and skill
development. Participants are highly motivated and often achieve much more
than expected.

For more information about the summer school, and to view student work,
we invite readers to visit our website [?].
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