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Abstract: Quiescence or dormancy plays an important role in biological systems, from
spore formation in bacteria to predator-prey cycles. In a mathematical framework, quies-
cence is modeled by diffusive coupling of the active dynamics to quiescent phases. Al-
though coupling a given vector field to the zero field may appear simple at first glance,
quiescent phases have biologically relevant effects which can be cast into rigorous math-
ematical formulations: permanence of stationary points, stabilization against oscillations
and Hopf bifurcations, decrease in amplitude of periodic orbits. These features are com-
mon to ordinary and partial differential equations and delay equations and persist to some
extent even for density-dependent transition rates. Applications range from tumor growth
to engineered bacteria.

6.1 Introduction

On all levels of biological organization we find quiescent phases although these may
occur with different names. Genes may be suppressed, tumor cells quiescent, nerve
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102 BIOLOGICAL MODELING WITH QUIESCENT PHASES

cells at rest, animals hibernating or just inactive. Although these phenomena are quite
diverse, there are some common general features. There is an active phase and a
quiescent phase and there are transition laws which govern the exit to the quiescent
phase and reentrance into the active phase.

In this chapter we investigate mathematical models for biological systems which
have a sedentary, quiescent, removed or immobile phase. A quiescent phase typi-
cally describes immobile periods of mobile individuals, or refuges from predation,
shelters and nests, as well as quiescent phases in a cell cycle, or bound state of dif-
fusible proteins. For the purpose of the general analysis, we call all these phenomena
quiescent phases. Later, in the application section, we come back to the more specific
notions.

Modeling with quiescent phases can be summarized in a common mathematical
framework. We will first introduce the general mathematical set up and then present a
selection of applications, including ecological and epidemiological models, and cell
and protein dynamics.

It is a general trend in all the results presented here, that a quiescent phase stabilizes
the system; stable equilibria become more stable in the presence of a quiescent state,
Hopf bifurcations become less likely, attractors become more stable, and traveling
waves slow down.

In the following section, we introduce the class of models with quiescent phase and
we summarize some basic mathematical properties.

6.2 Diffusive Coupling and Quiescence

Supposen types of particles can exist in two different phasesv, w ∈ IRn that are
governed by two systems of ordinary differential equations

v̇ = f(v)
ẇ = g(w). (6.1)

Particles switch between phases according to Poisson processes with rates depending
on the type of particle. Then we have a system inIR2n,

v̇ = f(v)− Pv + Qw
ẇ = g(w) + Pv −Qw

(6.2)

with diagonal matricesP,Q with positive entries. We say that the vector fieldsf, g
are diffusively coupled. This type of coupling is very different from seasonal switch-
ing which leads to non-autonomous systems.

The vector of total particle densitiesu = v + w and the vector of probability flows
z = Pv −Qw satisfy the equations

u̇ = f(Q̃u + Sz) + g(P̃ u− Sz)
Sż = P̃ f(Q̃u + Sz)− Q̃g(P̃ u− Sz)− z

(6.3)
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with positive diagonal matrices

P̃ = (P + Q)−1P, Q̃ = (P + Q)−1Q, S = (P + Q)−1.

If the particles switch frequently (rates going to infinity with fixed proportions) then
we get the limiting system, again inIRn,

u̇ = f(Q̃u) + g(P̃ u). (6.4)

The situation of quiescent phases occurs wheng is the zero vector field. Then we
compare the system

u̇ = f(u) (6.5)

in IRn to the system

v̇ = f(v)− Pv + Qw

ẇ = Pv −Qw (6.6)

in IR2n. One may think that adding a zero field does not change much. But from (6.6)
we get the three following equations

v̈ = f ′(v)v̇ − P v̇ + Qẇ

Qẇ = QPv −Q2w

Qv̇ = Qf(v)−QPv + Q2w.

We add these equations, multiply byS, and get an equivalent second order equation
in IRn for the active componentv,

Sv̈ + (I − Sf ′(v))v̇ = Q̃f(v). (6.7)

This equation has the general form of a damped oscillator. Hence introducing a qui-
escent phase may lead to new phenomena. The following examples suggest that this
is indeed the case.

From (6.4) we get the limiting equatioṅu = f(Q̃u) for u = v + w (the total popu-
lation) and from (6.7) the limiting equatioṅv = Q̃f(v) for v (the active population).
These are equivalent byv = Q̃u.

Example 6.1 The equation for exponential growth,u̇ = au, with a > 0, leads to
the system, withp, q > 0,

u̇ = au− pu + qx
ẋ = pu− qx.

(6.8)

For the system (6.8) the exponent of growth is

ρ = ρ(a, p, q) =
1
2

[
a− p− q +

√
(a− p + q)2 + 4pq

]
. (6.9)

It is easy to see that0 < ρ < a and thatρ is a decreasing function ofp and an
increasing function ofq. In the limiting cases we have

ρ(a, p, 0) = max(a− p, 0), ρ(a, 0, q) = a.
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The first formula shows that there may be population growth even if there is no return
from the quiescent phase.

If we choosea negative, the result is reverted, we geta < ρ < 0.

Example 6.2 (Hadeler and Hillen, 2006) The logistic equationu̇ = au(1 − u/K)
is coupled to a quiescent phase and the limiting equation for the total population
becomeṡu = aq̃u(1− q̃u/K), whereq̃ = q/(q + p).

Hence the growth rate is reduced by the factorq̃, and the carrying capacityK is
enlarged toK/q̃. A quiescent phase slows down population growth and increases the
capacity.

The equation with an Allee effecṫu = u(1 − u)(u − α), with 0 < α < 1, leads to
the limiting equationu̇ = q̃u(1− q̃u)(q̃u− α). Here the thresholdα is increased to
α/q̃.

Example 6.3 The harmonic oscillator (which can be seen as the linearization of a
Volterra population system)

u̇ = v
v̇ = −u

(6.10)

becomes
u̇ = v − pu + qx
v̇ = −u− pv + qy
ẋ = pu− qx
ẏ = pv − qy.

(6.11)

The characteristic polynomial of the matrix is

λ2(p + q + λ)2 + (q + λ)2

or
λ4 + 2(p + q)λ3 + (1 + (p + q)2)λ2 + 2qλ + q2

and hence the Routh-Hurwitz criterion tells that all roots have strictly negative real
parts. The example shows that quiescence stabilizes the system.

In the following we show that the features of the examples are not accidental. In
systems with quiescence (and equal rates) real eigenvalues move towards zero while
purely imaginary eigenvalues move into the left half-plane (as has been observed first
in Neubertet al. (2002)).

We mention in passing that quiescent phases need not be exponentially distributed. In
fact, allowing other distributions and studying the stability properties of the resulting
systems is a challenging problem (Hadeler and Lutscher, 2008). A case of particular
interest is when exit to the quiescent phase is Poisson distributed with ratep and the
length of the quiescent phase is exactlyτ > 0. Then the limiting equation is

v̇(t) = f(v(t)) + p(v(t− τ)− v(t)). (6.12)

Again, the model is controlled by two parameters,p, τ instead ofp, q above.
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6.3 Stationary States and Stability

From a biological point of view we want to know how the dynamics of the system
(6.5) is changed by introducing quiescent phases. This problem is also interesting
from a mathematical point of view. Some aspects concerning global existence of so-
lutions and of compact global attractors are presented in Hadeler and Hillen (2006).
General results on global attractors are surprisingly difficult. On the other hand we
have some detailed results on stationary points and their stability and some prelimi-
nary results for periodic orbits.

At first glance introducing quiescent phases seems similar to introducing delays. For
delay equations we know that combining a negative feedback with sufficiently large
delays leads to oscillations and then periodic orbits. Quite on the contrary, quiescent
phases stabilize against oscillations.

Supposēu is a stationary point of the system (6.5), i.e.,f(ū) = 0. Then

(v̄, w̄) = (ū, Q−1Pū) (6.13)

is a stationary point of (6.6). LetA = f ′(ū) be the Jacobian matrix of (6.5) at the
stationary point. Then the Jacobian matrix of (6.6) is given by

B =
(

A− P Q
P −Q

)
. (6.14)

The eigenvalue problem of the matrixB is equivalent to that of the matrix pencil

λ2I + λ(P + Q−A)−AQ. (6.15)

Equal rates: In the case of equal rates we haveP = pI, Q = qI, the matrices
P, Q, A commute and we can apply the spectral mapping theorem to the pencil
(6.15). To each eigenvalueµ of the matrixA there are two eigenvaluesλ1 andλ2,
ordered by<λ2 ≤ <λ1, which can be obtained from the equation

λ2 + λ(p + q − µ)− µq = 0. (6.16)

This is a very simple quadratic equation. In principle the two solutions can be rep-
resented by an explicit formula. The problem is thatµ is a complex number. The
following can be shown. Always<λ2 < 0. Henceλ2 does not affect stability. Sta-
bility is governed by the eigenvalueλ1.

Now there are three quite distinct cases: Ifµ = 0 thenλ1 = 0. If µ is real thenλ1

is located betweenµ and0. Hence, with respect to real eigenvalues, quiescence does
not change stability. Ifµ is complex (with non-vanishing imaginary part) then, gen-
erally speaking, for eigenvalues with positive real parts the real parts are decreased
by introducing quiescence and may eventually become negative. This effect is most
prominent for eigenvalues with large imaginary parts, i.e., high frequency oscilla-
tions are damped. Detailed information is given by the following theorem.

Theorem 6.1 (Hadeler, 2008a)Letµ = α+ iβ be an eigenvalue of the linearization
of (6.5) at a steady statēu. Then the linearization of (6.6) at(ū, pū/q) has two
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corresponding eigenvaluesλ1, λ2 with <λ2 ≤ <λ1. The eigenvaluesµ andλ1, λ2

are related as follows:

(a)Letµ = α ∈ IR. Thenλ1, λ2 are real.

(a.i) If α < 0 thenλ2 < α < λ1 < 0.

(a.ii) If α = 0 thenλ2 = −(p + q) < 0 = λ1.

(a.iii) If α > 0 thenλ2 < 0 < λ1 < α.

(b) Letµ = α± iβ, β > 0. Then<λ2 < 0.

(b.i) If α ≤ 0 then<λ1 < 0.

(b.ii) If α > 0 then<λ1 < α.

(b.iii) If α ≤ 0 and

β2 + (p + q + α)2 + 4αp > 0 andβ2(q + α) + α(p + q + α)2 > 0,

then<λ1 < α.

(b.iv) If α > 0 and

β2 > 4αq − (p + q − α)2 andβ(p− α) > α(p + q − α)2,

then<λ1 < 0.

Unequal rates: If the matricesP andQ are not multiples of the identity and the
various types of particles go quiescent and return with pairwise distinct rates, then the
situation is quite different and the stability problem has about the same complexity
as the Turing stability problem. Indeed, here as in the Turing problem we have a
given stable matrix and a matrix pencil depending on positive diagonal matrices. So
far only the casen = 2 of two types has been dealt with (Hadeler, 2008a). Recall
that a2 × 2 matrix A = (aij) is stable iftrA = a11 + a22 < 0 anddetA =
a11a22 − a12a21 > 0, and strongly stable (in the sense of Turing) if, in addition,
a11 ≤ 0, a21 ≤ 0. (A is excitable ifA is stable, but not strongly stable). Suppose
thatA is stable. Then the matrixB is stable for all choices ofP andQ if and only
if A is strongly stable. Thus, ifA is excitable in the sense of Turing, the system may
become destabilized by introducing quiescent phases with suitably chosen distinct
rates. The problem forn > 2 is open.

However, there are classes of problems for which additional mathematical tools are
available (Hadeler and Thieme, 2008). For example, if the system (6.5) is cooperative
then the system (6.6) is cooperative as well; or if the system (6.5) is competitive then
the system forv and−w is competitive as well.

6.4 Periodic Orbits

Numerical simulation of standard biological systems like the MacArthur-Rosenzweig
model (Holling type II predator response) as well as analytic results on highly sym-
metric systems show that limit cycles of the system (6.5) undergo some systematic
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changes if quiescent phases are introduced. From the local stability analysis at a
stationary point it is evident that introducing a quiescent phase works against Hopf
bifurcations. Suppose we have a system depending on some parameterα which un-
dergoes a Hopf bifurcation. A stationary state is stable forα < 0 and unstable for
α > 0 in such a way that a pair of eigenvalues crosses the imaginary axis atα = 0.
The stability Theorem 3.1 suggests that by introducing a quiescent phase the Hopf
bifurcation is shifted to some parameter valueα > 0. This is what indeed happens in
concrete examples.

Example 6.4 (Bilinsky and Hadeler, 2008) The MacArthur-Rosenzweig model with
quiescence reads

u̇ = au(1− u

K
)− b

uv

1 + mu
− p1u + q1w

v̇ = c

(
u

1 + mu
− B

1 + mB

)
v − p2v + q2z

ẇ = p1u− q1w (6.17)

ż = p2v − q2z.

It is known that the two-dimensional system without quiescence has either a stable
coexistence point or a unique (stable) limit cycle. In the latter case the system with
quiescence either has no limit cycle at all or again a limit cycle, this time in dimension
four, whereby the “size” of the projection in the active phase gets smaller. If the
coexistence state in the problem without quiescence is stable then it is strongly stable.
For every choice ofP andQ there is a gain in stability. Letδ andτ be the determinant
and the trace at the coexistence state of the system without quiescence. In theτ, δ-
plane the stability domain is given byδ > 0, τ < 0. For givenP, Q the stability
domain extends into the rangeτ > 0. The boundary of the stability domain can be
found explicitly as a curveτ = φ(δ) with φ(0) = 0 andφ(δ) > 0 for δ > 0 (Bilinsky
and Hadeler, 2008).

In numerical experiments, the four-dimensional limit cycle of (6.17) can be visual-
ized by presenting the total population sizesu+w andv+z for prey and predator. In
this projection the effect of a quiescent phase is not easily recognized because the po-
sition of the (projection of) the stationary point is shifted. It is easier to project to the
u, v-plane and also to thew, z-plane. Then one sees that the “size” of the projected
limit cycle in theu, v-plane is smaller than the limit cycle in the system without qui-
escence and gets ever smaller if the rates are increased. Eventually the limit cycle
may contract to the stationary point.

Here “size” is used as a phenomenological description. For the typical egg-shaped
limit cycles of predator prey models area and circumference and diameter all shrink
(see Figure 6.1) . It is interesting to observe that at the same time the projection onto
thew, z-plane gets larger. For symmetric systems the shrinking of the periodic orbit
can be rigorously proven, see Hadeler and Hillen (2006).
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Figure 6.1 (Bilinsky and Hadeler, 2008) Phase plane for the MacArthur-Rosenzweig system
(solid) and projection to theu, v-plane for the system with quiescence (dashed). Both systems
have limit cycles. The projected limit cycle of the quiescent system is much smaller.

6.5 Rates Depending on Density

There are various biological models that can be interpreted in terms of quiescence
and in which transition rates depend on the state. An example is Malik and Smith
(2006, 2008), where chemostat models are extended by quiescent phases. A general
formulation of the problem is

v̇ = f(v)− p(v, w)v + q(v, w)w
ẇ = −q(v, w)w + p(v, w)v.

(6.18)

Such a model, withf(v) = ∆v, has been used in the discussion of swarming be-
havior (Edelstein-Keshetet al., 1998). Forf(v) = 0 this system is equivalent to a
scalar differential equation. Here we consider the case where particles in the active
compartment avoid crowding,p = p(v), with p′(v) > 0, andq constant,

v̇ = f(v)− p(v)v + qw
ẇ = p(v)v − qw.

(6.19)

This system is equivalent to the second order equation for the active phase

v̈ + [q + (p(v)v)′ − f ′(v)]v̇ = qf(v) (6.20)

and then, for large transition rates, we get the limiting equation

v̇ =
q

q + (p(v)v)′
f(v) (6.21)
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which may be used (for instance in ecological applications) to estimate the total
population from the observed active phase. The equations (6.5) and (6.21) have the
same stationary points. The derivative at a stationary point of (6.21) becomes

q
f ′(v̄)

q + p(v̄)
. (6.22)

Hence the sign of the derivative does not change but the absolute value gets smaller
than|f ′(v̄)|.

Example 6.5 Some bacteria go quiescent (become spores) if conditions are unfa-
vorable. Letv, w denote active and quiescent bacteria ands a substrate. Assume that
the rate of going quiescent is increasing with decreasing substrate concentration. As-
sume further that substrate uptake is fast in comparison to reproduction and making
spores. Then we have a system

v̇ = F (s, v)− P (s)v + qw − µv

εṡ = −sv + r

ẇ = P (s)v − qw.

Consider the limiting caseε → 0. Thens = r/v. Define

p(v) = P (
r

v
), f(v) = F (r/v, v)− µv.

Hence we arrive at the system (6.19) and the rate (6.22) (which determines stability)
can be computed.

6.6 Slow Dynamics

Rather than assuming that individuals switch between an active and a quiescent phase
one can assume that they switch between a vector fieldf and a “slow field”κf where
κ ∈ (0, 1). Then we have the system (with equal rates)

v̇ = f(v)− pv + qw
ẇ = κf(w) + pv − qw.

(6.23)

Suppose thatf(ū) = 0. We look for a related stationary point of (6.23). The choice
v = w = ū works only for the special casep = q. Otherwise it is not evident how to
proceed. In (Hadeler, 2008c) it has been assumed thatf is homogeneous of degree1
and that̄u exp{λ̂t} is an exponential solution. Then we find two related exponential
solutions of the form

(v, w) = (αiū, βiū) exp{λit}, i = 1, 2

from the eigenvalue problem
(

λ̂− p q
p κλ̂− q

)(
αi

βi

)
= λi

(
αi

βi

)
, i = 1, 2.
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It can be shown that both solutions are real and that the larger eigenvalue is between
λ̂ and0. It can further be shown that if̄u is stable then the solution corresponding
to the larger eigenvalue is also stable (Hadeler, 2008c). We illustrate the use of this
result on a predator prey system with Holling type II functional response:

Example 6.6 (Hadeler, 2008c) Consider the homogeneous predator-prey system

u̇ = au− b uv
u+v

v̇ = c uv
u+v − dv,

(6.24)

with a, b, c, d > 0. This system can be completely analyzed e.g. in terms of the
variableξ = u/(u + v) for which we get a scalar equation

ξ̇ = ξ(1− ξ)[a + d− b− (c− b)ξ]. (6.25)

From this equation we can determine the stationary points and their stability. A
stationary solution of (6.25) corresponds to an exponential solution of (6.24): If
(ū, v̄) exp{λ̂t} is an exponential solution of (6.24) thenξ̄ = ū/(ū+ v̄) is a stationary
point of (6.25). And ifξ̄ is a stationary point of (6.25) then there is a correspond-
ing exponential solution of (6.24). Furthermore, the exponential solution is stable (in
the sense of stability of exponential solutions) if and only if the stationary pointξ̄ is
stable. Hence the existence of exponential solutions and their stability follows from
the scalar equation, but the exponents cannot be retrieved from (6.25). It turns out
that for the equation (6.25) there are four orthants in parameter space with different
qualitative behavior (as in a Lotka competition model).
I) c < a + d < b: Unstable coexistence point, attractors0 and1.
II) a + d < b anda + d < c: No coexistence point. The point0 attracts[0, 1).
III) c > a + d > b: Coexistence point globally attracting in(0, 1).
IV) a + d > b anda + d > c: No coexistence point. The point1 attracts(0, 1].

In cases I) and III) the exponent of the coexistence solution isρ = (bc−ac−bd)/(b−
c). The exponentρ is negative in the unstable case I and positive in the stable case
III.

These observations are easy to verify but a similar analysis of the problem with slow
dynamics is very difficult. However, the general results guarantee that to each stable
exponential solution of the two-dimensional system corresponds one stable exponen-
tial solution of the four-dimensional system. In particular, in case III, the system with
slow dynamics has a stable exponential solution where prey and predator coexist.

6.7 Delay Equations

In section 6.3 we have seen that a quiescent phase and a delay have different effects.
Hence it may be worthwhile to study the effect of a quiescent phase in a scalar delay
equation with constant delayθ > 0

u̇(t) = f(u(t), u(t− θ)) (6.26)
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with f(0, 0) = 0. The system

v̇(t) = f(v(t), v(t− θ))− pv(t) + qw(t)
ẇ(t) = pv(t)− qw(t) (6.27)

could be called the natural quiescent extension of (6.26). We linearize atu = 0
and at(v, w) = (0, 0), respectively, and test with exponentials. Then we get the
characteristic equation (β andα are the partial derivatives off )

αe−µθ + β − µ = 0 (6.28)

for (6.26) and

det
(

αe−λθ + β − p− λ q
p −q − λ

)
= 0 (6.29)

for the system (6.27). The connection between the eigenvaluesλ andµ is clearly not
as simple as in (6.16). Hence the “natural extension” is not covered by Theorem 6.1.
One easily understands this fact if one replaces the delay equation by a succession
of ordinary differential equations representing the state att, t− h, t− 2h, . . . . Then
Theorem 6.1 requires that each component, and not just the first, goes quiescent with
the same rate.

Hence, in order to get the analogue of Theorem 6.1 for the delay equation, we should
write the delay equation as an evolution equation inC[−θ, 0],

d

dt
ut(s) =

{
d
dsut(s) −θ ≤ s < 0
f(ut(0), ut(−θ)) s = 0

(6.30)

(as usual,ut denotes the “segment”, i.e., the restriction ofu to the interval[t− θ, t]).
Now each “component”ut(s) must go quiescent with the same rate. So we get the
system

d

dt
vt(s) =

{
d
dsvt(s)− pvt(s) + qwt(s) −θ ≤ s < 0
f(vt(0), vt(−θ))− pvt(0) + qwt(0) s = 0

d

ds
wt(s) = pvt(s)− qwt(s) − θ ≤ s ≤ 0. (6.31)

We write the equations in an elementary notation (v(t, s) = vt(s), w(t, s) = wt(s))
∂
∂tv(t, s) = ∂

∂sw(t, s)− pv(t, s) + qw(t, s)
∂
∂tw(t, s) = pv(t, s)− qw(t, s), −θ ≤ s < 0
∂
∂tv(t, 0) = f(v(t, 0), v(t,−θ))− pv(t, 0) + qw(t, 0)
∂
∂tw(t, 0) = pv(t, 0)− qw(t, 0).

(6.32)

Again we linearize atv = w = 0, test with exponentials, and get a differential
equation and three further equations

v̇(s) = (λ + p)v(s)− qw(s)
(λ + q)w(s) = pv(s), −θ ≤ s < 0
(λ + p)v(0) = αv(−θ) + βv(t) + qw(0)
(λ + q)w(0) = pv(0).
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We eliminate the functionw and arrive at a differential equation forv and a boundary
condition,

v̇(s) = µv(s)

(λ + p− pq

λ + q
)v(0) = αv(−θ) + βv(0)

where at this stage

µ = λ + p− pq

λ + q
(6.33)

is just an abbreviation. We solve this linear differential equation and insert the solu-
tion into the boundary condition. We find thatλ andµ satisfy the equation

αe−µθ + β − µ = 0 (6.34)

which is again (6.28). If we would insert (6.33) into (6.34) then we would get the
characteristic equation forλ. Assumeµ is a solution of (6.28). Thenµ andλ are
indeed connected by the equation (6.16) simply because (6.33) and (6.16) are equiv-
alent.

Equation (6.27), however meaningful it may be from a modeling point of view, within
the framework of quiescent phases is a system with distinct transition rates while
(6.32) is a system with equal transition rates.

Example 6.7 The difference between the two approaches can be shown in the ex-
ample of the blowfly equation (τ is the duration of the juvenile state)

u̇(t) = b(u(t− τ))e−µ0τ − µ(u(t))u(t) (6.35)

which can be derived from the Gurtin-MacCamy system (Nisbetet al., 1980; Bocharov
and Hadeler, 2000; Hadeler and Bocharov, 2003; Hadeler, 2008b) with adult birth
rateb(u), adult death rateµ(u), and constant juvenile mortalityµ0. If there is no qui-
escence in the juvenile state (which amounts top = q = 0 for the juvenile state and
hence to different rates in the adult and in the juvenile state) then we get the “natural
quiescent extension” in the form

u̇(t) = b(u(t− τ))e−µ0τ − µ(u(t))u(t)− pu(t) + qv(t)
v̇(t) = pu(t)− qv(t). (6.36)

If there is juvenile quiescence with the same rates as in the adults, then we get a
similar system where the factorexp{−µ0τ} is replaced by a larger numberκ =
κ(µ0, p, q, τ) which accounts for reduced juvenile mortality due to quiescence. For
largep, q we haveκ ≈ exp{−qµ0τ/(p + q)} (which follows immediately from the
properties of Poisson processes).
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6.8 Spread in Space

6.8.1 Reaction-Diffusion Equations

The idea of coupled dynamics as in (6.2) can be applied to the parabolic system of
two coupled scalar reaction diffusion equations:

vt = D1∆v + f1(v)− pv + qw
wt = D2∆w + f2(w)− qw + pv.

(6.37)

If we imitate the procedure of (6.7), replacingf(v) by D∆v + f(v) etc., we end up
with rather clumsy “viscous damped wave equations” where there are spatial deriva-
tives within the non-linearities, see Hadeler and Lewis (2002). If eitherD1 andf1 or
D2 andf2 vanish, then one arrives at a single standard damped wave equation. The
limiting equation of (6.37) for largep, q is

ut = (q̃D1 + p̃D2)∆u + f1(q̃u) + f2(p̃u).

The following two systems have been studied in Hadeler and Lewis (2002). In the
first scenario thev particles diffuse and are subject to mortality and thew particles
react,

vt = D∆v − µv − pv + qw
wt = f(w)− qw + pv

(6.38)

(see also Lewis and Schmitz (1996)), while in the second scenario a quiescent phase
is coupled to a reaction diffusion equation,

vt = D∆v + f(v)− pv + qw
wt = −qw + pv.

(6.39)

A single equation in the form of a damped wave equation results if one chooses to
focus on one of the two variablesv, w. For the system (6.38) withµ = 0 we choose
w and get the equation, withτ = 1/(p + q),

τwtt + (1− τf ′(w))wt − τD∆wt + τD∆f(w) = q̃D∆w + p̃f(w), (6.40)

while for (6.39) we choosev and get

τvtt + (1− τf ′(v))vt − τD∆vt = q̃D∆v + q̃f(v). (6.41)

These equations have features of damped wave equations (terms like∆wt correspond
to viscous damping) but they are parabolic because of the (almost) equivalence with
(6.38) and (6.39), respectively. These systems have been studied in bounded domains
with zero Dirichlet boundary conditions in Hadeler and Lewis (2002).

The problem of traveling fronts and the spread rate has been discussed in Lewis and
Schmitz (1996) and Hadeler and Lewis (2002). Traveling waves are those solutions
that can be expressed in terms of a single moving reference framez = x − ct. The
spread rate is the speed at which a locally introduced population spreads spatially.
The two problems are connected. Traveling waves connecting the trivial steady state
to a nontrivial steady state describe population spread with speedc. In the case that
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the nonlinear growth functions satisfy a convexity constraint (no Allee effect), the
cooperative nature of the interaction dynamics in (6.38) and (6.39) mean that the
traveling wave solutions and spread rates can be fully characterized using the meth-
ods of Weinbergeret al. (2002). Specifically, there exists a family of traveling wave
solutions for various speedsc. Solutions exist for all speedsc greater than or equal
to a minimum speedc∗. The minimum traveling wave speed is also the spread rate
for a locally introduced population. Finally, the value ofc∗ can be determined by
linear analysis about the leading edge of the invasive wave. Details are in Lewis and
Schmitz (1996) and Hadeler and Lewis (2002).

6.8.2 Reaction-Transport Equations

In Hillen (2003) transport equations for spatial spread have been coupled to qui-
escent phases. Transport equations present alternative models to classical reaction-
advection-diffusion equations, if detailed information about the movement of indi-
viduals is available. Modern tracking techniques, such as GPS data for collared mam-
mals or birds, allow one to follow the paths of individuals and measure their mean
speed, mean rate of change of direction and the distribution of turning angles. These
measurements can be directly used for transport equations.

Besides moving, individuals will also stop movement to rest, to find shelter, or to
forage. To model the dynamic between activity and resting the transport equation
is coupled to an equation for the resting compartment, whereby the rate of stop-
ping is spatially dependent. Letu(t, x, s) denote the density of moving individuals,
wheret ≥ 0 denotes time,x ∈ IRn space ands ∈ V velocity. The set of possi-
ble velocities,V , is assumed to be a spherical shell and|V | denotes its Lebesgue
measure. The resting compartment is denoted byr(t, x) and the total density by
N(t, x) =

∫
V u(t, x, s)ds+r(t, x). Resting individuals that start moving can choose

any velocity uniformly inV , hence a factor|V |−1 shows up in the corresponding
transition term. The stopping ratep(x) is spatially dependent, while the rateq at
which individuals start moving is constant. Also the turning rateµ > 0 is assumed
to be constant. The distribution of the newly chosen velocity is given byT (s, s′) .
The functionsl(N), g(N) denote loss and gain-terms, respectively. The full transport
model reads

ut + s · ∇u = −µu + µ

∫

V

T (s, s′)u(., ., s′)ds′

−p(x)u +
q

|V |r − l(N)u (6.42)

rt = p(x)
∫

V

u(., ., s)ds− qr + g(N)r − l(N)r.

Notice that the arguments of the functions have been suppressed, except in the in-
tegrals. The turning kernelT (s, s′) needs to satisfy certain positivity conditions as
described in detail in Hillen (2003). It is sufficient ifT is positive and square inte-
grable.
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A useful tool to study transport equations is the so called “parabolic limit” (see Alt,
1980; Hillen and Othmer, 2000; Dickinson, 2000; Hillen, 2003; Chalubet al., 2004).
This is in fact a scaling method for large speeds and large turning rates, or equiva-
lently, for macroscopic time and space scales of the form

τ = ε2t, ξ = εx

for a small parameterε > 0. The details of the formal asymptotics and the corre-
sponding convergence estimates are given in the literature cited above. Here, we only
summarize the results. Up to leading order, the total populationN(τ, ξ) satisfies the
parabolic reaction-advection-diffusion equation

Nτ = ∇ξ

(
Dpq(ξ)∇ξN −Dpq(ξ)

N

q + p(ξ)
∇ξp(ξ)

)

+
p(ξ)

p(ξ) + q
g̃(N)N − l̃(N)N, (6.43)

whereDpq(ξ) denotes thediffusion tensor

Dpq(ξ) =
q

|V |(p(ξ) + q)

∫

V

vFp(ξ)v dv;

Fp(ξ) is a pseudo inverse:

Fp(ξ) =
(Lp|〈1〉⊥

)−1

andLp denotes theeffective turning operator

LpΦ(s) = −(µ + p(ξ))Φ(s)

+(µ + p(ξ))
∫

V

(
µ

µ + p(ξ)
T (s, s′) +

p(ξ)
|V |(µ + p(ξ))

)
Φ(s′)ds′

and〈1〉 ⊂ L2(V ) denotes the linear subspace of functions constant ins ∈ V . The
functionsg̃, l̃ are rescaled versions ofg = ε2g̃, l = ε2 l̃, ensuring that death and repro-
duction occur on the macroscopic scale, and not on the scale of individual movement.

Remarks: The diffusion limit in (6.43) is remarkable in several ways:

1. The procedure quite naturally leads to non-isotropic diffusion expressed through
the diffusion tensorDpq. In many situations, however, the diffusion will be isotropic
in which caseDpq = dpqI with a diffusion constantdpq and the identityI. For
example, if individuals have a constant speedσ > 0, V = σSn−1 and change of
direction is uniformly distributed,T (s, s′) = |V |−1 then, as shown in Hillen and
Othmer (2000), we obtain isotropic diffusion with

dpq =
σ2

n|V |
q

(p(ξ) + q)(p(ξ) + µ)
.

More general conditions for isotropy and examples for non-isotropic diffusion are
given in Hillen and Othmer (2000) and Othmer and Hillen (2002).
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2. It is remarkable that (6.43) shows a taxis term including∇p(ξ). This is a drift
term in direction of higher levels ofp(ξ). Since the stopping rate,p(ξ) is larger
in favorable environments (more food, better shelter), the corresponding term de-
scribes taxis towards favorable environments. Reaction-diffusion equations with
drift towards favorable environments were studied by Cosner and Lou (2003). Al-
ternatively, the appearance of this additional taxis term can be directly motivated
from a quiescent-diffusion equation, where the stopping rate is spatially depen-
dent:

vt = D∆v − p(x)v + qw
wt = p(x)v − qw,

(6.44)

wherev describes individuals moving in space andw individuals at rest. Notice
that this model corresponds to model (6.38) and model (6.39) forf = 0 and
spatially dependent stopping ratep(x).
For large transition ratesp, q we obtain the limiting equation

ut = D∆
(

qu

q + p(x)

)

= D∇
(

q

q + p(x)
∇u− qu

(q + p(x))2
∇p(x)

)
,

which shows the same taxis term as in (6.43).

3. To look at steady states that are induced by the taxis term, we assume there is no
birth and death (f = g = 0). We consider a one-dimensional version of (6.43) on
an interval[0, l] with homogeneous Neumann boundary conditions. We find that
for steady states we have the relation

N(ξ) = κ(q + p(ξ)),

with an integration constant

κ =

∫ l

0 N(ξ)dξ

ql +
∫ l

0 p(ξ)dξ
.

This means that the shape ofN(ξ) follows the shape of the stopping rate, i.e.
N(ξ) andp(ξ) have common maxima and minima.

6.9 Applications

Applications of systems with quiescent phases have been mentioned throughout the
previous sections. Here we specifically discuss applications to the river drift paradox,
to radiation treatment of tumors, to engineered bacteria and to infectious diseases.

6.9.1 The River Drift Paradox

The “river drift paradox” describes the phenomenon that various animal species per-
sist in rapidly flowing rivers although continually individuals are drifting down the
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river. Apparently this problem is of a kind that showed up in example 6.1 and also in
a chemostat with washout.

Pachepskyet al. (2005) investigated the interaction of a benthic reproducing phase
w and a moving phasev where individuals move (by diffusion) and can be carried
away by convection. In a non-dimensional form their model reads (compare (6.38))

vt = vxx − νvx − pv + qw
wt = w(1− w) + pv − qw,

(6.45)

whereν denotes the drift velocity.

The river drift paradox can be approached in several ways. First one can consider
a classicalcritical domain size problemwith advection. When the link between the
stationary and the mobile phases is weak (q < 1) thenwt remains positive for small
w, and the population persists unconditionally. However, when the link is strong
(q > 1), then persistence depends upon both the advection speedν and the domain
(river) lengthL. A necessary condition for persistence is that the advection speed lie
below a critical threshold (ν < ν∗ = 2

√
p/(q − 1)). When this threshold condition

is satisfied, the critical domain size approach employs the domain lengthL as a bifur-
cation parameter for existence of nontrivial solutions (i.e., persistence). Reasonable
boundary conditions for the moving phase are zero flux at the top end of the stream
(x = 0) and hostile at the bottom end of the stream (x = L) (Pachepskyet al., 2005).
The condition for persistence is then

L >
2√

4p
q−1 − ν2

tan−1

(
−1

ν

√
4p

q − 1
− ν2

)
. (6.46)

Second, the authors consider spread in a river of infinite length, and calculate up-
stream and downstream traveling wave speeds. The methods for this traveling wave
analysis are similar to those outlined in Lewis and Schmitz (1996) and Hadeler and
Lewis (2002), but now with advection included (Pachepskyet al., 2005). The anal-
ysis can be connected to the critical domain size analysis through the thresholdν∗.
A positive upstream traveling wave speed is conditional uponν < ν∗. At ν = ν∗

the upstream invasion stalls. Thus, quite separate approaches, traveling wave speeds
and critical domain size, are linked together by the critical advection speed. This ap-
proach has been extended to include generalized dispersal behavior in Lutscheret al.
(2005).

Pachepskyet al. (2005) also derived the limiting equation under rapid transfer be-
tween mobile and stationary phases (p, q → ∞, with q/p = ρ), which they call the
“second Fisher approximation” for the total density of individuals,

(1 + ρ)ut = u(1− u) + ρuxx − ρνux. (6.47)

They use the limiting equation to find simple conditions for persistence and inva-
sion under the assumption of strongly linked mobile and stationary populations. In
agreement with our general results the authors state that “... finite residence time on
the benthos (p, q < ∞) enhances persistence of a population.” (Pachepskyet al.,
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2005, page 12). Also, in this problem the resting phase (immobile phase) stabilizes
the dynamics.

6.9.2 Spread of Genetically Engineered Microbes

Genetically engineered microbes (GEMs) can provide useful services in agriculture,
and field trials are likely to increase in the future. Services include, for example, an
extension of the growing season. This is due to prevention of ice nucleation on crops
by engineered “ice-minus” bacteria (Lewiset al., 1996). However, concerns remain
regarding proliferation and spread of GEMs, as well as the potential for ecosystem
disruption and gene transfer.

Lewis et al. (1996) modeled spread of GEMs in the presence of competition with
wild bacteria. For example, the wild counterpart to “ice-minus” bacteria is a naturally
occurring “ice-plus” strain that nucleates ice crystals. While a traditional ecological
approach would emphasize details of local competition, a key to modeling spread of
GEMs is inclusion of a mobile compartment, describing aerosols, or surface water
and groundwater suspensions, where there is rapid movement but high mortality.
Here the model is

∂sw

∂t
= sw(1− sw − γwse) + pmw − qsw

∂se

∂t
= rse(1− se − γesw) + pme − qse

∂mw

∂t
= −µwmw − pmw + qsw +

∂2mw

∂x2

∂me

∂t
= −µeme − pme + qse + δ

∂2me

∂x2
.

(6.48)

wheres andm refer to stationary and mobile compartments, and subscriptsw ande
denote wild and engineered strains. Note that spatial spread of strains requires linked
growth and dispersal and hence nonzero transfer ratesq andp.

The simplest case, which we consider here, is where wild and engineered strains are
identical in all aspects but their ability to compete (r = δ = 1 andµw = µe = µ).
The case with competitive exclusion of one strain by another requires one competi-
tion coefficient larger than one, and the other less than one. When one strain is only a
slightly better competitor, it is reasonable to also assumeγw + γe ≈ 2. Without loss
of generality we consider the case where the engineered strain is the better competi-
tor (γe < 1). Although this may not always be true, it is the case of interest when it
comes to the spread of GEMs.

We start by considering the limiting equation, where there are strong, balanced links
between sedentary and mobile classes (q, p → ∞, with q/p = ρ). Here the system
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(6.48) simplifies to a modified spatial Lotka-Volterra competition equation∗

(1 + ρ)
∂sw

∂t
= sw [1− ρµ− sw − γwse] + ρ

∂2sw

∂x2

(1 + ρ)
∂se

∂t
= se [1− ρµ− se − γesw] + ρ

∂2se

∂x2
.

(6.49)

In this case the approach of Okuboet al. (1989) can be employed: addition of the
two equations and application of the conditionγw + γe = 2 yields a single equation
of Fisher form for the sedentary individuals

(1 + ρ)
∂s

∂t
= s [1− ρµ− s] + ρ

∂2s

∂x2
. (6.50)

Although the sedentary individuals do not actually diffuse, their behavior is con-
sistent with the diffusion-type term in equation (6.50), because they are coupled
strongly to a diffusive mobile component. This equation has a globally attracting
invariant manifolds = 1 − ρµ, which is positive, providing the growth during time
spent in the stationary class exceeds mortality during time spent in the mobile class.
We expect initial conditions to start close to this invariant manifold, withsw ≈ 1−ρµ
andse ≈ 0 except at a local perturbation which corresponds to localized introduc-
tion of the engineered strain. Hence it is reasonable to consider the case of population
spread on the invariant manifold. Substitution ofse = 1 − ρµ − sw into the second
of equation (6.49) yields another Fisher type equation

∂se

∂t
=

(1− ρµ)(1− γe)
(1 + ρ)

se

[
1− se

1− ρµ

]
+

ρ

1 + ρ

∂2se

∂x2
, (6.51)

with asymptotic spread rate

c∗ = 2

√
(1− ρµ)(1− γe)ρ

1 + ρ
. (6.52)

Note that spread is slowed by interstrain competitionγe and mortalityµ, but is non-
monotonic with respect to the transfer rate balanceρ = q/p. Indeed, the worst,
or speediest, invasion occurs when the mobile to stationary transfer rate slightly
exceeds the stationary to mobile rate so thatp = q(1 + 2µ), with speedc∗ =√

(1− γe)/(1 + µ). As the mortality rate in the mobile class,µ, approaches zero,
the speed simplifies toc∗ =

√
1− γe, which is exactly half the rate calculated by

Okuboet al. (1989) for the spread of a competitively superior species into another
via Lotka-Volterra with simultaneous competitive growth and diffusion. The halving
of the spread rate comes from differing original assumptions. Rather than allowing
for simultaneous competitive growth and diffusion, equation (6.48) assumes that in-
dividuals either compete and grow, in one class, or diffuse, in another.

The case with weakly linked mobile and stationary classes can be understood using
similar mathematical methods (see Lewiset al. (1996), Appendix). The invariant
manifolds are found by adding the first two and second two equation of (6.48), under

∗ Note the typo in the equivalent equations (16) and (17) from Lewiset al. (1996).
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the assumptionγw + γe = 2, to obtain a reduced system

∂s

∂t
= w(1− w) + pm− qs

∂m

∂t
= −µm− pm + qs +

∂2m

∂x2
.

(6.53)

Here the variabless = sw + se andm = ms + me represent the total number of
microbes, both genetically engineered and wild, in the stationary pool and the mobile
pools, respectively. Spatially homogeneous steady-state solutions to this system are
(0, 0) and(s̄, m̄), where

s̄ =
µ(1− q) + p

µ + p
m̄ =

q

µ + p
w̄. (6.54)

Contracting rectangle arguments (Smoller, 1982) show that(s̄, m̄) is a globally stable
equilibrium point for (6.53) (Schmitz, 1993), and hencesw +se = s̄ andms +me =
m̄ is a globally attracting invariant manifold. On this manifold, the invading GEMs
obey

∂se

∂t
= se(1− se − γe(s̄− se)) + pme − qse

∂me

∂t
= −µme − pme + qse +

∂2me

∂x2
.

(6.55)

Becausēs < 1 (6.54) andγe < 1, equation (6.55) describes logistic growth in
the stationary state and switching between sedentary phase and a mobile state (see
Section 6.8.1). Here the spread of GEMs can be calculated as for equation (6.38). As
with the strongly coupled case (above), zero mortality (µ = 0) and balanced transfer
ratesq andp lead to a spread rate ofc∗ =

√
1− γe. Figure 2 of Lewiset al. (1996)

shows spread rates for nonzeroµ and unbalanced transfer rates.

6.9.3 Tumor Growth: The Linear-Quadratic Model

We can use the mechanism of quiescent dynamics to derive the linear quadratic
model in cancer radiation treatment. There it is assumed that the surviving fraction
S(D) of a tumor after radiation treatment with doseD(t) can be expressed as

S(D) = e−αD(t)−βD(t)2 . (6.56)

whereα andβ are non-negative constants. It has been shown that this model fits
many data really well (Wheldon, 1988).

It is known that proliferating cells can enter a quiescent phase to eventually enter the
cell cycle again. The quiescent phase is of particular interest in radiation treatment of
cancer because radiation is most damaging to highly active proliferating cells. Qui-
escent cells are hit by radiation as well but they have time enough to repair DNA
damage and recover. Hence for treatment to be successful it is important to estimate
the quiescent phase. Cancer control cell cycle models were studied by Dawson and
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Hillen (2005) and Swierniaket al. (1996) and many others. Here we study the fol-
lowing model.

Let N(t) denote the active tumor cells andR(t) the resting tumor cells. It is assumed
that cells randomly switch between the active and quiescent phases. An alternative
model, where cells after proliferation directly enter the quiescent phase has been
studied in Dawson and Hillen (2005). Here we study:

Ṅ = µN(1−N/K)− pN + qR− (A1 + BD(t))Ḋ(t)N,

Ṙ = −qR + pN −A2Ḋ(t)R.

The growth of the tumor is modeled through a logistic term. Alternative models use
a Gompertz law, the Bernoulli equation or a von Bertalanffy growth law (see Gyllen-
berg and Webb (1989), Britton (2003)). We describe the radiation damage through
thehazard functionh(t) = (A1 + 2BD(t))Ḋ(t) (see Zaider and Minerbo (2000)),
whereD(t) is the total dose anḋD(t) is the dose-rate. The parametersA1 andA2

describe the radiation damage caused by single hit events while the coefficientB de-
scribes double hit damage. It is assumed that quiescent cells can recover from double
hit events, since they have time to repair the damage. We also assume thatA2 < A1.

The limiting equation reads

u̇ = q̃u(1− q̃u/K)− ((q̃A1 + p̃A2)Ḋ(t) + q̃BḊ(t)D(t))u. (6.57)

To derive the linear-quadratic model (6.56) we assume that cell proliferation is slow
on the time scale of radiation treatment. Hence we study

u̇ = −((q̃A1 + p̃A2)Ḋ(t) + q̃BḊ(t)D(t))u (6.58)

which has the solution

u(t) = u(0) exp(−αD(t)− βD(t)2),

with

α = q̃A1 + p̃A2, β = q̃B.

Theα/β-ratio is used in clinical applications to choose the best radiation protocol.
It has been observed experimentally that cells in a long cell cycle have a largeα/β-
ratio, while cells in a short cell cycle have a lowα/β-ratio. The model shows thatα
is a weighted mean ofA1 andA2, while β is proportional tõq andB. Then a large
α/β-ratio corresponds to small̃q, or smallB. Small q̃ implies that a small fraction
of the population is in the active compartment.

6.9.4 Infectious Diseases

Introducing quiescent phases in the classical Kermack-McKendrick model amounts
to assuming that individuals avoid contacts at random intervals (Castillo-Chavez and



122 BIOLOGICAL MODELING WITH QUIESCENT PHASES

Hadeler, 1995; Hadeler and van den Driessche, 1997). One obtains

Ṡ = −β
SI

N
− p1S + q1W

İ = β
SI

N
− αI − p2I + q2Z

Ṙ = αI + αZ

Ẇ = p1S − q1W

Ż = −αZ + p2I − q2Z

N = S + I + W + Z + R

whereS denotes active susceptible,I active infected,R the recovered, andW,Z in-
dividuals that temporally leave the risk group. The parameterβ denotes the infection
rate andα is the recovery rate. Here one can assume thatN is constant. Hence it does
not matter whether one uses mass action kinetics or standard incidence.

However, the interpretation of a quiescent phase matters. It makes a difference if
people avoid social contact at all or just contacts that could cause transmission of
the disease. It also matters if the total number of contacts is reduced or if it remains
constant and hence the same number of contacts is distributed in the smaller then
active population.

The basic reproduction number is

R0 =
β

α

q1

p1 + q1

q2 + α

p2 + q2 + α
. (6.59)

In view ofd(S+I+W +Z)/dt = −α(I+Z) it is evident that eventuallyI+Z → 0.
Fromd(S + I)/dt = −βSI it follows that the total number of potential susceptibles
S + W is decreasing. Hence on limit setsS + W is a constant andp1S = q1W . In
contrast to the classical case there is no explicit formula or equation for the proportion
of individuals which have never been infected.

Hence the model behaves essentially as the classical Kermack-McKendrick model
but the quiescent phase reduces the basic reproduction number. Hadeler and van den
Driessche (1997) discussed more general (and more realistic) situations where the
rates depend on the prevalence of the disease.

6.9.5 Contact Distributions Versus Migrating Infective

Traditionally, the spread of epidemic diseases in space has been modeled in different
ways, by contact distributions (Kendall) and by migrating individuals (Noble). A
contact distribution describes the infectious force which one infectious individual at
positiony exerts upon a susceptible individual at positionx. The contact distribution
is a non-negative symmetric convolution kernelk with k ∗ 1 = 1,

(k ∗ u)(x) =
∫

IRn
k(x− y)u(y)dy.
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The model assumes the form

St = −β(k ∗ I)S
It = β(k ∗ I)S − αI.

(6.60)

On the other hand, one can model the motion of individuals by migration processes
via

St = −βIS + dS(k ∗ S − S)
It = βIS − αI + dI(k ∗ I − I) (6.61)

where againk is a non-negative symmetric convolution kernel withk ∗ 1 = 1 and
dS , dI are diffusion coefficients, typically different for susceptible and infected. For
instance, in rabies models one assumes that only infectious individuals move,dS =
0.

The contact model and the diffusion model describe different scenarios. In the con-
tact model each individual “sits” at some location and meets other people at other
locations with probability of contact decreasing with distance. The diffusion model
is based on the idea that people move around and get into contact with other people.
Of course this model does not imply that every person has a home base to which
he/she will eventually return.

In either model, one can perform a diffusion approximation (using that the kernel is
normalized and symmetric)

k ∗ u ≈ u +
1
2

∫

IRn
k(z)z2

1dz∆u. (6.62)

Then the contact model (6.60) becomes Kendall’s model and the diffusion model
(6.61) becomes a standard system of reaction diffusion equations.

In practice the contact models and the migration models show very similar behavior.
In order to compare the two approaches we consider the SIS case for both models.
The contact model:

St = −βS(I + σIxx) + αI

It = βS(I + σIxx)− αI

and thus
It = β(1− I)(I + σIxx)− αI.

The diffusion model:

St = −βSI + αI + DSxx

It = βSI − αI + DSxx

and thus
It = β(1− I)I − αI + DIxx.

Notice that this last equation is essentially the logistic equation with diffusion. We
get the wave speed simply by linearizing at the leading edge (this argument can be
made rigorous):
c0 = 2

√
(β − α)βσ for the contact model.
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c0 = 2
√

(β − α)D for the diffusion model.
Hence the two formulas agree if we putD = βσ.

The question is whether these are just two similar but different models or whether
there is some deeper connection. One connection can be made by designing a larger
model for two types of stochastically moving individuals, the “quiescent” who move
only in their neighborhood and the “active” who travel far. Then the two models
before can be obtained as limiting cases of a larger model. Such a larger model is

St = −S(β1I
(1) + β2I

(2))
I
(1)
t = δ(k̃ ∗ I(1) − I(1))− αI(1) + qI(2) − pI(1)

I
(2)
t = S(β1I

(1) + β2I
(2))− αI(2) − qI(2) + pI(1)

(6.63)

with a non-negative convolution kernelk̃, k̃ ∗ 1 = 1 and a coefficientδ > 0.

There are susceptibleS and infected individuals of two kinds, migratingI(1) and
sedentaryI(2). The parametersβ1 andβ2 are the transmission rates for sedentary
and migrating infected individuals, respectively. A sedentary susceptible can be in-
fected by either an infected individual residing at the same position or by a passing
migrating infected.I = I(1) + I(2) is the total number of infected individuals.

Hadeler (2003) showed that different scalings of this system lead to limiting models
with contact distributions (6.60) or to limiting models with migrating infective (6.61).
The migration models correspond to the situation of slow progression of the disease
within the population while contact models describe spread by rapid excursions of a
few highly infectious individuals.

Hence migration models and contact models can be seen as limiting cases of models
with different levels of mobility.

We sketch a proof of (6.62) for normalized symmetric kernels with existing second
moments. By Taylor expansion we find

∫

IRn
k(x− y)u(t, y)dy =

∫

IRn
k(z)u(x + z)dz

=
∫

IRn
k(z)(u(x) + ux(x)z +

1
2
zT uxx(x)z + o(|z|))dz

= u(x) +
1
2

∫

IRn
zT uxx(x)z + o(|z|).

We have usedk ∗ 1 = 1; theux term goes away because of symmetry;uxx is the
Hessian matrix. Now∫

k(z)zT uxx(x)zdz =
∫

k(z)
∑

ij

uxixj
(x)zizjdz

and ∫
k(z)zizjdz =

{
0 i 6= j∫

k(z)z2
i dz i = j
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and, because of the symmetry,
∫

k(z)z2
i dz =

∫
k(x)z2

1dz.

Hence ∫
k(z)zT uxx(x)zdz =

∫
k(z)z2

1dz (∆u)(x).

6.10 Discussion

Throughout this chapter, biological systems have emerged in which quiescent phases
drastically change the dynamics quantitatively or even qualitatively. Generally, qui-
escent phases tend to slow the dynamics near equilibria, stabilize equilibria against
the onset of oscillations, and enhance persistence of certain species or types.

The effect of quiescent states may be significant with respect to outcomes in specific
biological systems. In fact, quiescent phases can have a quite surprising effect on the
population as a whole. For example, quiescent states can induce taxis terms in move-
ment equations. The extinction of populations (through washout) in river ecosystems
can be prevented when there is a stationary phase weakly coupled to the mobile state.
Cancer tumors can resist radiation treatment when cells have refuge in a quiescent
state, which needs to be accounted for in radiation treatment planning. A similar ef-
fect is known for antibiotic resistance in bacteria. Balabanet. al. (2004) have used
a model involving a quiescent state (they called it "persisters") to fit survival data of
E. coli bacteria which were exposed to the antibioticampicillin. They show that the
existence of a persisting compartment can explain population survival and re-growth
after treatment.

Moreover, our systematic approach to quiescent phases solves the longstanding dis-
crepancy between diffusion and contact distribution models for spatial spread of epi-
demics, which can now be understood in terms of different scaling limits of a larger
model with quiescence. It further highlights a risk of potentially erroneous conclu-
sions about the joint effects of quiescent phases and delays.

In general, systems with quiescent phases have twice the dimension compared to sys-
tems without. Hence the mathematical analysis of such systems may become quite
cumbersome (in particular in the transition from dimension two, where phase plane
analysis is available, to dimension four). The methods and examples presented here
provide tools to handle such systems provided the qualitative behavior of the systems
without quiescent phases is well understood. However, further mathematical chal-
lenges remain, in particular to derive a solid theory for infinite dimensional systems,
such as PDE’s and to understand the effects of quiescent phases on global behavior,
specifically the existence of compact global attractors.
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