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Abstract Cancer stem cells (CSCs) drive tumor progression, metastases, treatment
resistance, and recurrence. Understanding CSC kinetics and interaction with their
nonstem counterparts (called tumor cells, TCs) is still sparse, and theoretical models
may help elucidate their role in cancer progression. Here, we develop a mathematical
model of a heterogeneous population of CSCs and TCs to investigate the proposed
“tumor growth paradox”—accelerated tumor growth with increased cell death as,
for example, can result from the immune response or from cytotoxic treatments. We
show that if TCs compete with CSCs for space and resources they can prevent CSC
division and drive tumors into dormancy. Conversely, if this competition is reduced
by death of TCs, the result is a liberation of CSCs and their renewed proliferation,
which ultimately results in larger tumor growth. Here, we present an analytical proof
for this tumor growth paradox. We show how numerical results from the model also
further our understanding of how the fraction of cancer stem cells in a solid tumor
evolves. Using the immune system as an example, we show that induction of cell
death can lead to selection of cancer stem cells from a minor subpopulation to become
the dominant and asymptotically the entire cell type in tumors.
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1 Introduction

Cancer has been characterized as a collection of diseases described by uncontrolled
growth of cells and development of a tumor that invades the tissue of origin and
distant organs. Cancer cells are generally assumed to have acquired a series of mu-
tations to express a phenotype with the so-called six “Hallmarks of Cancer”: evad-
ing apoptosis, limitless replicative potential, self-sufficiency in growth signals, in-
sensitivity to antigrowth signals, sustained angiogenesis, tissue invasion and metas-
tasis, plus four recently identified additional traits of deregulation of cellular ener-
getics, avoidance of immune destruction, genome instability, and tumor promoting
inflammations (Hanahan and Weinberg 2000, 2011). One long-held paradigm in can-
cer research has been that once a cancer cell has successfully developed it will in-
evitably form a frank tumor. Recent research suggests, however, that early tumor
growth and progression is challenged by intrinsic and environmental bottlenecks
such as the angiogenic switch (Folkman and Hanahan 1991; Almog et al. 2009;
Hahnfeldt et al. 1999), immune surveillance (Dunn et al. 2002; Teng et al. 2008;
D’Onofrio 2005), or the epithelial-mesenchymal transition (EMT) (Hanahan and
Weinberg 2011). Furthermore, it is increasingly argued that only a small subset of
cancer cells is intrinsically able to initiate and repopulate the tumor. Distinct prop-
erties of these so-called cancer stem cells (CSCs) are longevity or even immortality,
self-renewal, unlimited proliferation and the ability to produce more such cancer stem
cells as well as non-stem cancer cells (or tumor cells, TCs).

In this paper, we develop an integro-differential equation model that is based on the
same biological assumptions as the agent-based model of Enderling et al. (2009). We
reduce this integro-differential equation model to a simple nonlinear ordinary differ-
ential equation (ODE), which describes the time evolution of CSC and TC. We show,
using the geometric singular perturbation theory (Hek 2010), that the simple ODE
model is sufficient to explain the tumor growth paradox. The simplicity of the model
underlines the often-neglected pivotal role of intrinsic cell properties and cell-cell
interactions in tumor growth and morphological evolution. The presented approach
should be widely applicable to solid, avascular tumors in any organ. We propose that
the tumor growth paradox within the cancer stem cell hypothesis is a basic kinetic
feature, which has profound implications on treatment design. As applied specifically
to the immune response, we further show that selection for the (more resistant) CSCs
will take place, inevitably leading to an increasing CSC fraction in in-vivo tumors.

1.1 Cancer Stem Cells

The first evidence of a CSC subpopulation surfaced for leukemia, when it was dis-
covered some, but not all, cancer cells where able to initiate and reinitiate tumors of
the blood (Lapidot et al. 1994; Bonnet and Dick 1997). Recently, CSCs have also
been associated with solid tumors, for example, of the breast, brain, prostate, and
colon (Al-Hajj et al. 2003; Dick 2003; Singh et al. 2003, 2004; Fioriti et al. 2008;
Maitland and Colling 2008; Todaro et al. 2007; Cammareri et al. 2008). If a subpop-
ulation of CSCs exists in the tumor, then the others by exclusion are nonstem TCs,
which by definition have only limited replicative potential and a limited lifespan. TCs
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are produced during asymmetric stem cell division, during which the stem cell main-
tains its property and the daughter cell is fated to mature (Morrison and Kimble 2006;
Reya et al. 2001; Dingli and Michor 2006). Although different differentiation levels
of nonstem TC with respective terminologies are observed (transient cells, transit am-
plifying cells, progenitor cells, differentiated cells, mature cells), herein we combine
all cancer cells that lack stemness as tumor cells (TC).

Although CSC are necessary for tumor development, tumor progression is de-
pendent on many additional factors including oxygen and nutrient availability (Folk-
man 1971; Naumov et al. 2006), the tumor microenvironment (Barcellos-Hoff 2001;
Gatenby and Gillies 2008), immunosurveillance (Dunn et al. 2002; D’Onofrio
2005) and even the nonstem TC population (Prehn 1991; Enderling et al. 2009;
Morton et al. 2011). The complex dynamics emerging from cell-cell and cell-
microenvironment interaction are difficult to predict and novel experimental tools are
only just emerging. Therefore, mathematical models and agent-based computer mod-
els are increasingly utilized to find core mechanisms that drive tumor development
and progression (Alarcon et al. 2006; Anderson et al. 2006; Conde-Ramis et al. 2008;
Enderling et al. 2008; Gevertz and Torquato 2006; Mallet and De Pillis 2006;
Ribba et al. 2004; Smallbone et al. 2007; Quaranta et al. 2005, 2008; Liu et al. 2007).

1.2 Individual Based Modeling

Enderling et al. (2009) have previously developed a single-cell-focused agent-based
model to simulate the dynamics of CSCs and TCs and their competition for space
in-silico. In this model, cells live on a square lattice, and can only migrate or pro-
liferate if any of their neighboring lattice sites are vacant. When all adjacent grid
points are occupied the cells are forced into quiescence. In the early growth phases,
TCs quickly outnumber CSCs, causing the CSCs to become quiescent. Tumor pro-
gression dynamics then solely depend on progeny TC that eventually exhaust their
proliferation capacity, thereby stalling tumor growth. For tumor progression, CSCs
need to reenter the cell cycle and produce more CSCs that opportunistically migrate
away to form new tumor clusters nearby. Simulations of the agent-based model re-
vealed that an increasing rate of spontaneous cell death in TC shortens the waiting
time for CSC proliferation and migration, and thus facilitates tumor progression—
a phenomenon we call the tumor growth paradox. The emergence of many “self-
metastatic” (Norton 2005; Enderling et al. 2009b) clusters in the vicinity of each
other drives both tumor expansion and an aggressive tumor morphology. Figure 1
shows simulation results of how the total number of cancer cells increases with
increased cell death, and some representative morphologies of the emerging tu-
mors.

1.3 Mathematical Models of Stem Cells and Cancer

In the past few years, there has been a surge of mathematical models on stem cells
and cancer. Marciniak-Czochra et al. (2009) studied several models for stem cells and
a series of transient cell compartments with focus on the role of regulatory feedback
mechanisms that are necessary for homeostasis and efficient repopulation. While the
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Fig. 1 Simulations of tumor growth by the cellular automaton model from Enderling et al. (2009).
The growth dynamics of a tumor without cell death (pα = 0, red) is compared to tumor growth with
pα = 0.05,0.1,0.15,0.25,0.35 for (A) 15 months and (B) 85 months (ρ = 15, μ = 5). Initially, the tumor
growth is inhibited with increasing cell death rate. After t = 7–15 months, a complete reversal of the cell
death effect can be observed. (C) Representative simulations of tumors developing with spontaneous cell
death rates pα = 0,0.01,0.1 after t = 8 months (ρ = 15, μ = 15) (Color figure online)

works of Ganguli and Puri (2006) and Sole et al. (2008) focused on a model of trans-
forming normal stem cells to cancer stem cells through a series of mutations, Dingli
and Michor (2006) identified the dominating role of CSC in driving tumor progres-
sion with the hallmark conclusion that “Successful therapy must eradicate cancer
stem cells.” Enderling et al. (2009) developed a model of cancer stem cell-driven tu-
mor growth in which the contribution of different cell kinetic parameters to overall tu-
mor progression was rigorously investigated. In a series of papers, Wise et al. (2008)
and Youssefpour et al. (2012) developed a very detailed model for tumor growth that
includes many physical aspects of tumor interaction with the host tissue. This model
can readily be extended to include stem cell dynamics.

As evident in the above reviewed literature, different models and modeling tech-
niques can be used to simulate cancer stem cell kinetics. The models, however, differ
in the formal description of how (cancer) stem cells divide. Indeed, their assumptions
cover the full range of possibilities, i.e., the result of a CSC division can either be
(i) two CSC (symmetric division), (ii) one CSC and one TC (asymmetric division),
or (iii) two TC (symmetric commitment) (Fig. 2). Despite these several possibilities,
however, we show in the Appendix that under very broad conditions the two ma-
jor cell division strategies that have evolved lead to models that are fundamentally
equivalent.
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Fig. 2 Schematic representation of three conceptually distinct models of CSC division fates. CSC divide
with rate k, and produce either two CSC, two TC, or one CSC and one TC

2 A Mathematical Model of Cancer Stem Cell-Driven Solid Tumor Growth

To complement the computational model from Sect. 1.2, we develop a mathematical
model in form of integro-differential equations, that consists of cancer stem cells
(CSCs) and nonstem tumor cells (TCs). We use the following biological assumptions
as laid out in the agent-based model by Enderling et al. (2009):

Assumptions for Cancer Stem Cells CSCs are immortal (rate of cell death α = 0)
and have an infinite proliferation capacity. A CSC can give rise to two CSCs (sym-
metric division), or one CSC and one TC (asymmetric division), in line with the ‘No
Symmetric Commitment Model’ discussed in the Appendix.

Assumptions for Non-stem Cancer Cells TC proliferation always results in two
TCs, and TCs have a positive probability of cell death reflecting exhaustion of prolif-
eration potential as well as spontaneous death due to genomic instability (α > 0).

Simulations of the agent-based model (Enderling et al. 2009) revealed a tumor
growth paradox. With increased cell death in the TC compartment tumor growth is
accelerated. We define this paradox in the mathematical model as follows.

Definition 2.1 Let Pα(t) for times t ≥ 0 denote a tumor population with a sponta-
neous death rate α for TC. The population exhibits a tumor growth paradox if there
exist death rates α1 < α2 and times t1, t2, and T0 > 0 such that

Pα1(t1) = Pα2(t2) and Pα1(t1 + T ) < Pα2(t2 + T ) for (0 < T < T0).

To describe tumor growth on the population level, we use reaction-birth pro-
cesses (Greese 2006) and develop a mean-field integro-differential equation system.
A reaction-birth process refers to a stochastic process, where newly generated indi-
viduals are immediately dislocated at a different site. In our deterministic interpreta-
tion, it refers to the fact that if a cell divides, one daughter cell occupies the location
of the mother cell while the other cell distributes to additional space, usually in direct
proximity. For this analysis, cells are assumed to be very small compared to the size of
the tissue domain Ω (which we take without loss of generality to have unit volume),
and are small even compared to integration increments dx and dy. Let u(x, t) denote
the density (in “cells per unit cell space,” i.e., the fraction of the interval (x, x + dx)

physically occupied by cells) of cancer stem cells (CSCs) and v(x, t) the density of
nonstem cancer cells (TCs) at time t and location x. We define the total tumor density
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p(x, t) = u(x, t)+v(x, t). We also assume cells cannot pile on top of one another, so
there is a maximum density of one cell per unit cell space. This implies p(x, t) ≤ 1.
Cells can only proliferate if there is space for the cell to place a daughter cell, and
reproduction is inhibited otherwise (cellular quiescence). To model the spatial search
for space, we define a nonlinear integral term. In line with the agent-based model
(Enderling et al. 2009), we assume that all cells can migrate randomly, which we
model by simple diffusion. These assumptions lead to the following coupled system
of equations describing CSC and TC dynamics:

CSC: ∂u(x, t)

∂t
= DuΔu + δγ

∫
Ω

k
(
x, y,p(x, t)

)
u(y, t) dy (1)

TC: ∂v(x, t)

∂t
= DvΔv + (1 − δ)γ

∫
Ω

k
(
x, y,p(x, t)

)
u(y, t) dy

− αv + ρ

∫
Ω

k
(
x, y,p(x, t)

)
v(y, t) dy. (2)

The spatial distribution kernel k(x, y,p) describes the rate of progeny contribution
to location x from a cell at location y, per “cell cycle time” (i.e., the defined period
between divisions of a freely-cycling cell). Of note, it follows that k(x, y,p(x, t)) ≤
1, since one cannot distribute more than one cell to x, per cell at y, per cell cycle
time, and

∫
Ω

k(x, y,p(x, t)) dx is ≤ 1, because this integral is equal to the total rate
of progeny occupation over the domain, per parent cell at y, per cell cycle time, which
of course can also be no more than 1. Since greater density at x would be expected
to hinder progeny occupation, we further assume k is monotonically decreasing in
p with k(x, y,p(x, t)) = 0 at p = 1. The number of cell cycle times per unit time
of CSCs and TCs are denoted by γ > 0 and ρ > 0, respectively. The parameter δ

with 0 ≤ δ ≤ 1 denotes the fraction of CSC divisions that are symmetric, and α > 0
denotes the TC death rate. Background cell motility for CSCs and TCs is described
by diffusion with coefficients Du > 0, Dv > 0, respectively. The system is considered
to hold in the spatial domain Ω = R

n, a smooth bounded domain with homogeneous
Neumann or Dirichlet boundary conditions:

(bc1) Homogeneous Neumann boundary conditions correspond to a tissue sur-
rounded by membranes, smooth muscle tissue, or bone, which, for the purpose of
the model are impenetrable by cells. In that case, the boundary conditions are

∂

∂n
u = 0,

∂

∂n
v = 0 on ∂Ω, (3)

where ∂/∂n denotes the normal derivative at the boundary. The redistribution kernel
can only redistribute cells within this domain Ω , hence we impose:

k(x, y,p) = 0 for all x �∈ Ω.

(bc2) Homogeneous Dirichlet boundary conditions correspond to tissues that cells
can freely leave but not reenter again such as intravasation into adjacent blood ves-
sels (this assumption can later be relaxed as to allow for tumor self-seeding by cir-
culating cells (Kim et al. 2009)). Hence,

u = 0, v = 0 on ∂Ω. (4)
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The redistribution kernel describes transport of cells out of the domain but does not
allow entering from the outside if

k(x, y,p) = 0 for y �∈ Ω.

Based on the two boundary conditions we can model any combination of domains
(such as partly covered by membranes, partially permeable membranes and adja-
cent blood vessels). Herein, however, for simplicity, we only demonstrate two basic
cases.

2.1 Model Reductions

The system of integro-differential equations (1) and (2) is difficult to analyze analyt-
ically. We therefore introduce two simplifying assumptions to reduce the model to a
system of two ODEs.

Reduction 1: Progeny Placement Depends Only on the Density at the Destination
In this case:

k = k
(
p(x, t)

)
.

We introduce mean densities, which, if we now assume (without loss of generality)
that the domain Ω has unit volume, can be written as

ū(t) :=
∫

Ω

u(y, t) dy, v̄(t) :=
∫

Ω

v(y, t) dy, p̄(t) = ū(t) + v̄(t). (5)

Then (1) and (2) become

ut (x, t) = DuΔu + δγ k
(
p(x, t)

)
ū(t), (6)

vt (x, t) = DvΔv + (1 − δ)γ k
(
p(x, t)

)
ū(t) − αv(x, t) + ρk

(
p(x, t)

)
v̄(t), (7)

with appropriate boundary conditions as described above.

Reduction 2: Density is Uniform Across the Domain We next assume tumor growth
to be uniform across the domain, in which case, k(p(x, t)) can be expressed as
k(p̄(t)), u(x, t) and v(x, t) can be replaced with their spatially-averaged values, and
diffusion is zero everywhere. Equations (6) and (7) now become

ūt (t) = δγ k
(
p̄(t)

)
ū(t), (8)

v̄t (t) = (1 − δ)γ k
(
p̄(t)

)
ū(t) − αv̄(t) + ρk

(
p̄(t)

)
v̄(t). (9)

We assume

(A1) k(p̄(t)) is piecewise differentiable, k(p̄(t)) > 0 for 0 ≤ p̄(t) < 1, k(p̄(t)) = 0
for p(t) ≥ 1 and k(p̄(t)) is decreasing for 0 ≤ p̄(t) < 1.

For the numerical simulations below, we will consider the standard example for k

k(ξ) = max
{
1 − ξσ ,0

}
, σ ≥ 1. (10)

An exponent of σ = 1 corresponds to a linearly decreasing rate of occupancy for
newborn cells as the target density p̄(t) increases. However, cells are nonrigid and
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Fig. 3 Comparison of two
volume filling constraints
k(P ) = max{1 − P 4,0} (black,
solid) and 1 − P (blue, dotted)
(Color figure online)

deformable and able to squeeze into available open spaces. Therefore, k(p̄(t)) should
be decreasing in p̄(t) but be greater than 1 − p̄(t) for 0 < p̄(t) < 1 (see Fig. 3).
Comparable to a chemotaxis model (Wang and Hillen 2007) we choose σ > 1 (e.g.,
σ = 4 in Fig. 3).

For simplicity, we further assume the CSC and TC growth rates to be

(A2) γ = ρ = 1.

Under assumption (A1), Eqs. (8) and (9) become:

ūt (t) = δk
(
p̄(t)

)
ū(t), (11)

v̄t (t) = (1 − δ)k
(
p̄(t)

)
ū(t) + k

(
p̄(t)

)
v̄(t) − αv̄(t). (12)

We show the following main result for model (11, 12).

Theorem 2.2 Assume (A1). Then model (11, 12) shows the tumor growth paradox as
defined in Definition 2.1.

This is now demonstrated, along with a full model analysis, in the next section.

3 Analysis of the Reduced ODE System

Some Basic Properties By adding Eqs. (11, 12), we obtain the behavior of the total
tumor population density p̄(t) = ū(t) + v̄(t) over time:

p̄t (t) = k
(
p̄(t)

)
p̄(t) − αv̄(t).

The growth rate p̄t (t)/p̄(t) of the total population is given by k(p̄(t)) and reduced
by −αv̄(t)/p̄(t). In line with observations in the computational model (Enderling
et al. 2009), a large v̄-compartment (TC) decelerates overall tumor progression.

Without a CSC population density ū(t), the population density of TC, v̄(t), satis-
fies the equation

v̄t (t) = k
(
v̄(t)

)
v̄(t) − αv̄(t).
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Since k(v̄(t)) is a decreasing function of v̄(t) per (A1), the differentiated cell pop-
ulation dies out when

α > k(0). (13)

Since there is no proliferation for ū(t) + v̄(t) > 1, we can restrict analysis to the
triangular domain:

Δ := {(
ū(t), v̄(t)

) : 0 ≤ ū(t) ≤ 1, v̄(t) ≥ 0, ū(t) + v̄(t) ≤ 1
}
.

From (11, 12), it is obvious that Δ is positively invariant. Note that along the line
ū(t) + v̄(t) = 1 the vector field is given by (0,−αv̄(t))T , which points into Δ.

3.1 Steady States

The steady states of system (11, 12) are given by

X0 = (0,0), Xv = (0, v0) and Xu = (1,0),

where v0 solves k(v0) = α. The Jacobian of the vector field f (ū(t), v̄(t)) is given by

Df (ū, v̄) =
(

δk′ū + δk δk′ū
(1 − δ)(k′ū + k) + k′v̄ (1 − δ)k′ū + k′v̄ + k − α

)
.

The eigenvalues of Df (0,0) are λ1 = δk(0) > 0 and λ2 = k(0) − α. Hence,
X0 = (0,0) is a saddle point for α > k(0) and an unstable node for α < k(0). The
eigenvectors corresponding to λ1 and λ2 are ζ1 = (α − (1 − δ)k(0), (1 − δ)k(0))T

and ζ2 = (0,1)T , respectively. If α > (1 − δ)k(0), the eigenvector ζ1 has two positive
entries and a decreasing slope in α (a fact that will become important later).

The eigenvalues of Df (0, v0) are λ1 = αδ > 0 and λ2 = k′(v0)v0 < 0 with corre-
sponding eigenvectors

ζ1 =
(

δα − k′(v0)v0
(1 − δ)α + k′(v0)v0

)
, ζ2 =

(
0
1

)
. (14)

For the steady states of the form XU = (1,0), the linearization becomes

Df (1,0) =
( −δκ −δκ

−(1 − δ)κ −(1 − δ)κ − α

)
,

where κ = −k′(1) denotes a positive constant. We find a trace of −κ − α and a posi-
tive determinant of δκα. Hence, (1,0) is a stable node or stable spiral. Consequently,
(1,0) is the only attractor in the positively invariant region Δ and there are no other
fixed points inside Δ. By the Poincare–Bendixson theorem, we obtain the following
lemma.

Lemma 3.1 The steady state (1,0) of (11, 12) is globally asymptotically stable in
the simplex region Δ.

We have shown that the pure stem cell state (1,0) is a global attractor. If time
goes to infinity, the tumor will consist of stem cells only. In Fig. 4, we present a
corresponding long-time simulation of the individual based model (Enderling et al.
2009). We see that in a spatially constrained domain the stem cell compartment and
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Fig. 4 Long time simulation of the agent-based model in a small circular domain. For all three choices of
death rate α, we observe convergence to the pure stem-cell state. Note that here are no nutrient restrictions

fraction increases with time and eventually becomes a pure population. Intermediate
tumor consistency and steady state time are dependent on cell death rate α. The con-
vergence to (1,0) does not interfere with our analysis, since we are not interested in
the long time dynamics (t → ∞), but rather in the intermediate time dynamics of the
tumor. We use numerical simulations and geometric singular perturbation theory to
explore this further.

3.2 Numerical Examples

For numerical simulations of model (11, 12), we choose parameter values of

k
(
p̄(t)

) = 1 − p̄4(t), δ = 0.01 (15)

and α is varied as bifurcation parameter. We chose an exponent of p4 to obtain
a function k which lies well above the linear curve 1 − p (see Fig. 3). We have
tested many more exponents and functional forms for k and it turns out that the tu-
mor growth paradox is more pronounced for functions that are well above 1 − p.
The above choice forms a good representation of our results, however, the para-
dox is true for each decreasing function k which satisfies the basic assumptions
in (A1).

We use Maple to visualize the phase portraits. Figure 5A shows five typi-
cal trajectories for a cell death rate of α = 1. Solutions start close to the ū-
axis and grow quickly in v̄, but then settle on a common orbit slowly increas-
ing in ū and decreasing in v̄. We will show later that this dynamic can be an-
alyzed by geometric singular perturbation theory (Sect. 3.3) (Jones 1994). Hek
recently reviewed the geometric singular perturbation theory and the application
of the Fenichel theorems to biological modeling (Hek 2010). We observe a fast
convergence towards a slow manifold describing the “common orbit” (Fig. 5A).
To compare solutions for different values of α we visualize their trajectories to-
gether in phase portrait (Fig. 5B) . The behavior for all choices of α are com-
parable for a total time of t = 300. However, the v̄-component is significantly
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Fig. 5 (A) Five typical trajectories for α = 1 and other parameters from (15). The diagonal line indicates
the invariant domain Δ. (B) Typical trajectories for α = 0.05 (blue, dashdot), 1 (black, solid), 5 (red dash)
and other parameters from (15). All orbits are run for T = 300 time units (Color figure online)

larger for smaller α values (α = 0.05), and the trajectories for the largest inves-
tigated cell death rate (α = 5) rapidly approach a pure CSC state at the attractor
(1,0).

The time evolution of the total population density p̄(t) from a common ini-
tial condition of (u(0) = 0.05, v(0) = 0.01) for α = 0.05,1,5 is shown in Fig. 6.
With increasing cell death rate the overall tumor population density initially
grows slower, but eventually exceeds those with lower death rates. The pos-
itive correlation of cell death and tumor growth becomes apparent after 650
time units with p̄(t)α=5 > p̄(t)α=1 > p̄α=0.05. These results confirm the obser-
vations of the tumor growth paradox in the above discussed agent-based model
(Enderling et al. 2009). Other values for cell death rate parameter α and dif-
ferent interaction kernel k further confirm this, and the paradox is enhanced
for more restrictive kernels, for example, for σ = 1 or k(p̄(t)) = k2(p̄(t)) =
{e−5p̄(t) − e−5} (simulations not shown). Interestingly, the evolution of the CSC
and TC ratio over time differs for different values of α (Fig. 7). For a small
death rate (α = 0.05), the population is rapidly dominated by TC. However,
within the same time, interval CSC becomes dominant and even exclusive for
larger α values, which explains the increasing tumor size for increasing cell death
rates α.

3.3 Geometric Singular Perturbation Analysis

We use a geometric singular perturbation approach (Jones 1994; Hek 2010) to prove
that the solutions rapidly approach the slow manifold, which is the outer solution
of system (11, 12). On the slow manifold, we identify the tumor growth paradox as
a typical and robust property of this model (Theorem 3.3). The small parameter in
the analysis is the rate of symmetric CSC division δ (this is a CSC gives rise to two
CSC).
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Fig. 6 Time evolution of the total tumor population for α = 0.05 (dotted), α = 1 (solid), α = 5 (dashed).
The initial condition for all orbits is (0.05,0.3) and other parameters are as per (15). (A) Time range of
[0,750], (B) time range of [250,750] to highlight that orbits change order

Fig. 7 Time evolution of the cancer stem cell population u (dashed), the nonstem cancer cell population
v (dotted) and the total population u + v (solid) for different α values

3.3.1 Inner Solution

System (11, 12) with δ 	 1 denotes the fast system. Solutions of the fast system are
the inner solutions and to leading order, the inner solution (ūin(t), v̄in(t)) satisfies

ūt (t) = 0,

v̄t (t) = k
(
p̄(t)

)
ū(t) + k

(
p̄(t)

)
v̄(t) − αv̄(t).

(16)

Hence, ūin(t) is constant and v̄in(t) solves the differential equation (16).
The steady state of this equation is given by(

α − k
(
p̄(t)

))
v̄(t) = k

(
p̄(t)

)
ū(t), (17)

which describes the slow manifold of the system:

M := {
(ūM, v̄M) : k(p̄M)p̄M = αv̄M, p̄M = ūM + v̄M

}
.
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We show that this manifold is normally hyperbolic, meaning in this case that it
is attractive for the fast dynamics or inner solution. Demonstrating this, we linearize
(16) with respect to a v̄-perturbation from a point (ūM, v̄M) ∈ M using (ū(t), v̄(t)) =
(ūM, v̄M + ṽ(t)). The small perturbation ṽ(t) satisfies.

d

dt
ṽ(t) = (

k(p̄M) − α + k′(p̄M)(ūM + v̄M)
)
ṽ(t).

Noting from the definition of M that (α − k(p̄M)) = k(p̄M)ūM/v̄M , the above
equation can be rewritten as

d

dt
ṽ(t) = (−k(p̄M)ūM/v̄M + k′(p̄M)(ūM + v̄M)

)
ṽ(t).

Since k is decreasing in the domain Δ, we find that the leading coefficient on
the right is always negative. Hence, the slow manifold is normally hyperbolic (see
Jones 1994; Hek 2010). Furthermore, Fenichel’s theorems guarantee that for δ small
enough there exists an invariant manifold Mδ of the whole system (11, 12), which is
close to M , and Mδ can be written as graph on M .

3.3.2 Outer Solution

The long time dynamics is given by the outer solution on M . To obtain the outer
solution, we rescale the original system (11, 12) by a slow time scale τ = δt . We
obtain

ūτ (τ ) = k
(
p̄(τ )

)
ū(τ ),

δv̄τ (τ ) = (1 − δ)k
(
p̄(τ )

)
ū(τ ) + k

(
p̄(τ )

)
v̄(τ ) − αv̄(τ ).

(18)

The leading order terms provide the outer solution (ūout(τ ), v̄out(τ )), defined by

d

dτ
ūout(τ ) = k

(
p̄out(τ )

)
ūout(τ ),

0 = k
(
p̄out(τ )

)
ūout(τ ) + k

(
p̄out(τ )

)
v̄out(τ ) − αv̄out(τ ).

(19)

The second equation is solved on the slow manifold M as given above, and the dy-
namics on M is given by the first equation of (19). We study M in more detail.

Lemma 3.2 The slow manifold can be written as a graph (ū, v̄) = (ū, vM(ū)). Fur-
thermore,

d

dū
vM(ū) = k′(p̄)p̄ + k(p̄)

α − k′(p̄)p̄ − k(p̄)
, with p̄ = ū + vM(ū). (20)

Given two death rates α1 > α2 then the slow manifold for α1 is below the slow mani-
fold of α2, i.e.

v
(1)
M (ū) < v

(2)
M (ū).

Proof The slow manifold can be written as(
α − k(ū + v̄)

)
v̄ = k(ū + v̄)ū. (21)
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If we fix 0 < ū < 1, then the left hand side is increasing in v̄ and the right-hand side
is decreasing. Further, for v̄ → 0, the left-hand side approaches 0 and the right-hand
side approaches k(ū)ū > 0. For v̄ → 1, the left-hand side approaches α > 0 and the
right-hand side approaches 0. Hence, for each 0 < ū < 1, there is exactly one solution
v̄ = vM(ū) of (21). Hence, for 0 < ū < 1, the slow manifold can be written as a graph
vM(ū):

k
(
ū + vM(ū)

)(
ū + vM(ū)

) = αvM(ū).

We differentiate this equation with respect to ū, where we omit the arguments in the
functions for transparency (i.e., k′ stands for k′(ū + vM(ū)), etc.):

k′(1 + v′
M

)
(ū + vM) + k

(
1 + v′

M

) = αv′
M,

k′(ū + vm) + k = v′
M

(
α − k′(ū + vM) − k

)
,

v′
M = k′(ū + vM) + k

α − k′(ū + vM) − k
,

which proves the formula (20) for 0 < ū < 1.
Next, we need to study the limits of ū → 0,1. The v̄-axis intercept of the slow

manifold is given for ū = 0 and
(
α − k(v̄)

)
v̄ = 0,

hence either v̄ = 0 or k(v̄) = α. If the kernel k is chosen such that k(0) < α, then
the second condition cannot be satisfied and the slow manifold connects to (0,0). If
0 < α < k(0), then there is a unique v̄∗ > 0 such that k(v̄∗) = α, and indeed (0, v̄∗)
is a steady state.

We evaluate the above derivative at the point (0, v̄∗) and using the fact that k(v̄∗) =
α, we find

d

dū
vM(0) = −α + k′(v̄∗)v̄∗

k′(v̄∗)v̄∗ .

This, in fact, is identical to the slope of the unstable eigenvector of (0, v̄∗) as found
earlier in (14) for δ → 0. Using the implicit function theorem, the slow manifold,
starting at (0, v̄∗) can be locally continued in direction of the unstable eigenvector
for ū > 0. Hence, the slow manifold indeed connects to this point (0, v̄∗). For conve-
nience, we denote v̄∗ = 0 for the case of k(0) < α.

For ū → 1, we find limū→1 vM(ū) = 0. Moreover, the above formula (20) is con-
tinuous for ū → 1. Hence, the slow manifold can be written as a differentiable graph
for all 0 ≤ ū ≤ 1.

Finally, for fixed ū, the left-hand side of (21) is increasing in α, hence the point
vM(ū) is decreasing in α. �

Figure 8 shows three slow manifolds for the choices of α = 0.05,1.0,5.0. We see
that for increasing α value, the slow manifold is lower.
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Fig. 8 The slow manifolds for
α = 0.05 (blue, dashdot), α = 1
(black, solid), α = 5 (red, dash)
(Color figure online)

3.3.3 Tumor Growth Paradox

Now we are ready to formulate the tumor growth paradox. There are several ways
how the paradox can arise. We might want to focus on tumors that are initially of the
same size, or tumors that have comparable stem cell numbers. We will first formulate
the general result and then discuss the various implications.

Theorem 3.3 (Tumor growth paradox) Assume α1 > α2 > 0 and let p̄1(t) = ū1(t) +
v̄1(t) and p̄2(t) = ū2(t) + v̄2(t) denote the corresponding solutions of the stem cell
model (11, 12). We assume that the tumor dynamics has settled onto the slow manifold
M and that at time t0 ≥ 0 two tumors of equal size are presented p̄1(t0) = p̄2(t0) = p̃,
with 0 < p̃ < 1. Then

d

dt
p̄1(t0) >

d

dt
p̄2(t0)

and

p̄1(t) > p̄2(t), for all t > t0.

Proof We have seen earlier that the slow manifold can be written as a graph
(ū, vM(ū)). Hence, the growth rate of a tumor on M can be written as

d

dt
p̄(t) = d

dt
ū(t) + v′

M

(
ū(t)

) d

dt
ū(t) = d

dt
ū(t)

(
1 + v′

M

(
ū(t)

))
. (22)

From Lemma 3.2, we find

v′
M = k′(ū + vM) + k

α − k′(ū + vM) − k
.

Then from (22), we obtain
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d

dt
p̄(t) = kū

(
1 + k′(ū + vM) + k

α − k′(ū + vM) − k

)

= kū

(
α − k′(ū + vM) − k + k′(ū + vM) + k

α − k′(ū + vM) − k

)

= αkū

α − k′(ū + vM) − k
.

Written out with complete dependencies, the last formula reads

d

dt
p̄(t) = αk(p̄(t))ū(t)

α − k′(p̄(t))p̄(t) − k(p̄(t))
. (23)

Now we come back to the two tumors p̄1(t), p̄2(t) with equal size at time t0, p̃ =
p̄1(t0) = p̄2(t0). The growth rates for i = 1,2 at time t0 are

d

dt
p̄i(t0) = αik(p̃)ūi(t0)

αi − k′(p̃)p̃ − k(p̃)
. (24)

Next, we replace the term ūi (t0) in this formula. On M , we have a time t0 that

k(p̃)p̃ = αiv̄i(t0).

Hence,

α1v̄1(t0) = α2v̄2(t0)

and since α1 > α2 it follows that v̄1(t0) < v̄2(t0) and ū1(t0) > ū2(t0). Moreover, for
i = 1,2,

v̄i (t0) = k(p̃)p̃

αi

and

ūi (t0) = p̃ − k(p̃)p̃

αi

= (αi − k(p̃))p̃

αi

.

Using this formula for ūi (t0), we find from (24) that

d

dt
p̄1(t0) >

d

dt
p̄2(t0) (25)

is equivalent with

k(p̃)(α1 − k(p̃))p̃

α1 − k′(p̃)p̃ − k(p̃)
>

k(p̃)(α2 − k(p̃))p̃

α2 − k′(p̃)p̃ − k(p̃)
.

Since k(p̃)p̃ > 0, the above inequality is equivalent with

α1 − k(p̃)

α1 − k′(p̃)p̃ − k(p̃)
>

α2 − k(p̃)

α2 − k′(p̃)p̃ − k(p̃)
.

This last inequality is true, since the function

f (α) := α − k(p̃)

α − k′(p̃)p̃ − k(p̃)
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is monotonically increasing in α; indeed

f ′(α) = −k′(p̃)p̃

(α1 − k′(p̃)p̃ − k(p̃))2
> 0,

since k′ < 0. Hence, (25) is true.
Consequently, p̄1(t) > p̄2(t) for a small time interval t ∈ (t0, t0 + ε). If for some

later time t00, we have p̄1(t00) = p̄2(t00) then a similar argument as used above leads
to a contradiction. Hence, we must have p̄1(t) > p̄2(t) for all t > t0. �

We now compare two small tumors of equal size that start with one or a few
CSCs, (ū0, v̄0) = (ū0,0) and have the same growth parameters, differing only in their
values for α, the rates of cell death. To do this, we run the solutions through the fast
system and into the slow manifold, where they assume the points (ū0, v̄10), (ū0, v̄20),
respectively, where v̄10 < v̄20. We next advance only the smaller tumor forward along
the slow manifold until it is the same size as the larger. Then we are in the situation
of the above Theorem 3.3 and we can compare their instantaneous growth rates to see
the tumor growth paradox.

Corollary 3.4 Assume (A1) and consider two death rates satisfying α1 > α2 > 0.
Let p̄1(t), p̄2(t) denote the corresponding solutions of (11, 12) with common initial
condition (ū(0), v̄(0)). Then there exist times t1, t2 such that

p̄1(t1) = p̄2(t2) and p̄1(t1 + θ) > p̄2(t2 + θ) for all θ > 0.

Thus, a tumor growth paradox always exists under these conditions.

Our results confirm the numerical findings above and generalize these findings
for a wide class of models solely dependent on assumption (A1). We conclude that
the defined tumor growth paradox—proportional acceleration of tumor growth with
increasing cell death—is a typical phenomenon. Cell death is an intrinsic property
of nonstem cancer cells within the cancer stem cell hypothesis. Cell death occurs
due to several reasons, including exhaustion of proliferation potential, reduction of
telomere ends, genomic instability, or external agents such as external stress or the
immune system. In the next section, we will show that the immune system accelerates
tumor evolution towards a pure cancer stem cell state by selective killing of nonstem
cancer cells.

4 Immune-Mediated Selection for Cancer Stem Cells

The interaction of the immune system with cancer cells and the growing tumor has
long been appreciated and it is subject of numerous mathematical models (DeLisi
and Rescigno 1977; Kuznetsov 1987; Sherratt and Nowak 1992; Kirschner and
Panetta 1998; de Pillis and Radunskaya 2001; Matzavinos and Chaplain 2004;
D’Onofrio 2005; Bellomo and Delitala 2008). In most models (e.g., Mallet and De
Pillis 2006; Liu et al. 2007), the immune response is modeled to be harmful to the
cancer cells using law of mass action terms, which yields gross reduction in the
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tumor population. However, the immune system can be tumor-inhibiting as well
as tumor-promoting (Prehn 1972; Dunn et al. 2004; Hanahan and Weinberg 2011;
DeLisi and Rescigno 1977). In fact, here we show a case where the harmful influence
of the immune system leads to CSC selection and as a result to a larger tumor. Hence,
the immune system appears to be tumor promoting. The details of immune-mediated
tumor progression are complicated and subject of ongoing research. Herein, we use
a very simple model for tumor-induced immune response and subsequent cancer cell
(TC) cytotoxicity. Immune cells are often stimulated through endothelial growth fac-
tors. We assume that the size of the tumor population is proportional to the production
of these growth factors, hence we understand the tumor growth rate p̄t = ūt + v̄t as
a driver of increased immune response. In turn, immune cells increase the TC death
rate α before facing degradation with rate τ . CSC are intrinsically more resistant and
evade immune responses (Schatton and Frank 2009). For demonstration purposes, we
assume CSC to be completely insensitive to immune-induced killing, which leads to
the following system of equations as revisions of (8, 9):

ūt = δγ k(p̄)ū,

v̄t = (1 − δ)γ k(p̄)v̄ + ρk(p̄)v̄ − α(w̄)v̄, (26)

w̄t = g(ūt , v̄t ) − τw̄,

where the functional dependence α(w̄) describes the effect of the immune system on
the cancer cells (TC) and the function g(ūt , v̄t ) describes the activation of the immune
system by the growing tumor. Here, we choose g(ūt , v̄t ) := κ(ūt + v̄t ), where κ ≥ 0
is a constant.

Figure 9 shows a representative numerical solution of the model. In those simu-
lations, we choose k(p̄) = max(1 − p̄4,0), δ = 0.01, γ = 1, τ = 0.001, κ = 10 and
α(w̄) = 0.5 + 0.5w̄. On the top left of Fig. 9, we show the tumor growth without
an immune response (κ = 0). The TC quickly become the dominant population, but
later decrease as the CSC population expands. The immune response (not shown)
is not stimulated in this case. If the stimulation of an immune response is turned on
(κ = 10), then the tumor dynamics is quite different. On the top right of Fig. 9, we see
that the immune response successfully decreases the total tumor population, which
in turn allows CSC to expand more quickly. The CSC population is able to reach a
dominating fraction of the tumor population. As seen on the bottom right of Fig. 9,
the immune response is stimulated very quickly as it responds to the growing tumor
and selects for CSC. This effect of the immune system is typical for all models of the
type (26) which we studied. Combined with the intrinsic tumor progression kinetics,
we can derive several conclusions and hypothesis:

1. The ratio of CSC in a solid tumor may not be constant but continuously evolve
with time. With the presented model, it monotonically increases with time toward
a pure CSC state. Hence, the ratio of stem cells in a tumor depends on its age.

2. The eventual dominance of CSC is accelerated by external agents that act to se-
lectively kill non-stem cancer cells.

3. With CSC intrinsically evading immune responses (Schatton and Frank 2009),
tumors grown in vivo are immuno-modulated, and thus the emerging population
is selected for and enriched in CSC. If such a tumor is harvested and cultured in
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Fig. 9 A: Tumor growth without immune response, stem cells (dashed), tumor cells (dotted), total tumor
(solid). B: Same initial condition as A, but now with immune response. D: immune response corresponding
to B. C: Numerical reseeding experiment as discussed in remark 3. Parameters as described in the text

vitro or xenografted into immuno-deprived mice, for example, the selection force
is removed and the intrinsic initial population ratios are revisited. Figure 9 on the
bottom left shows a sample simulation of resecting an immuno-modulated tumor
and in vitro expansion of the harvested populations. At the end of the simulation
in the top right of Fig. 9, we harvest the tumor at t = 400 days. On the bottom left
of Fig. 9, we show how the tumor develops if left alone in a Petri dish (w = 0,
k = 1). While CSC numbers remain almost unchanged, TC expand very quickly
and dominate the population already after two days. This confirms experimental
observations that cultured cancer stem cell probes contaminate very quickly. In
light of these results, it seems impossible to estimate the CSC contents of a tumor
if it is taken out of its environment and placed under different conditions.

4. Our model suggests that there is a significant difference between in vivo and in
vitro tumor growth. For example, radiosensitivity measurements done in vitro
might not reflect the response of the real tumor to radiation.
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5. Another interpretation which our model offers, is a hypothesis to explanation why
it is so difficult to identify CSC and their frequency in a given tumor. Our work
suggests that in some tumors almost all cells are CSC, whereas in other tumors
they are indeed a very small subpopulation. In both cases, they are difficult to be
distinguished from the tumor mass.

6. The model also suggests that, in some instances, it might be beneficial to reduce
the immune response, thereby reducing the selection for cancer stem cells. As a
result, the tumor will grow slower (for example, Fig. 9). If we inspect the tumor
load at time t = 400, then without immune response (left), we have a total tumor
mass of 87 % of the carrying capacity, while the tumor with immune response
(right) shows an abundance of 97 % of the carrying capacity.

7. It is discussed in the literature that the immune system can be both tumor-
inhibiting and tumor-promoting (Hanahan and Weinberg 2011). The mechanism
discussed here can give a possible explanation of how the immune response pro-
motes tumor growth. More detailed studies in this direction are certainly needed.

5 Discussion

Tumors are heterogeneous populations consisting of cells with different phenotype.
A recently emerged phenotypic distinction is the so-called cancer stem cell hypoth-
esis (Lapidot et al. 1994; Bonnet and Dick 1997; Al-Hajj et al. 2003; Dick 2003;
Singh et al. 2003; Fioriti et al. 2008; Cammareri et al. 2008; Morrison and Kim-
ble 2006; Reya et al. 2001). Cancer stem cells are immortal and can proliferate in-
finitely, whereas their nonstem progeny cancer cells have only a limited proliferation
capacity before inevitable cell death. As tumors grow, evolving populations of cancer
stem cells and non-stem cancer cells interact with each other in nonintuitive ways.
We presented a mathematical model of the cancer stem cell hypothesis that is mo-
tivated by the paradoxical findings of an agent-based model (Enderling et al. 2009)
that increased cell death may under certain conditions accelerate tumor growth—a
phenomenon we call the tumor growth paradox. We developed a complex spatial
integro-differential equation system based on reaction-birth process that mimics the
rules of the agent-based model. For analytical convenience, we reduced this system
to two ODEs, and were able to proof the existence of such tumor growth paradox
in a spatially homogeneous system. Increased cell death initially reduced the over-
all tumor population, but in the long-term outgrows tumors with smaller cell death
ratios. Analysis of the model further revealed that the ratio of cancer stem cells in a
solid tumor can continuously change, and the only biologically realistic steady state
of the system is a pure stem cell population. These findings augment to the ongoing
discussions about frequency of cancer stem cells (Quintana et al. 2008). Tumors of
the same patient and organ can present in the clinic with CSC fractions that differ by
multiple orders of magnitude dependent on tumor history. Clinically apparent tumors
are likely to have a long history before detection, and selection forces such as im-
mune surveillance may additionally shape in vivo tumors to present highly enriched
in CSC. The presented model provides first-order biologic mechanisms to explain
the large variation in stem cell frequency reported in the literature (Visvader and
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Lindeman 2008) and complements arguments that any ratio of cancer stem cells to
noncancer stem cells is possible (Johnston et al. 2010).
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Appendix: Equivalence of Basic Stem Cell Models

Here, we show that the three models for cancer stem cells that are illustrated in Fig. 2
are equivalent in the situation where the stem cell population is not declining. Let
U(t) and V (t) denote the CSC and TC density at time t , and k the rate of CSC
division. For the purpose of demonstrating this equivalence, we ignore TC divisions.
We first describe a hypothetical “complete model” (i) that has all three features, then
demonstrate that dropping feature (ii) maintains model generality, while dropping
feature (iii) also maintains generality provided parameters are chosen in the complete
model such that the CSC compartment never decreases in time.

Complete Model We introduce the complete model that includes all three division
fates described above. Let α1 denote the fraction of symmetric division, α2 the frac-
tion of asymmetric division, and α3 the fraction of symmetric commitment events,
with α1 + α2 + α3 = 1. A schematic is shown on the left in Fig. 2.

The change in cell populations due to CSC division events can then be described
by:

U̇ = α1kU − α3kU,

V̇ = α2kU + 2α3kU.

Invoking the identity α1 = 1 − α2 − α3, we obtain the system

U̇ = (1 − α2 − 2α3)kU,

V̇ = (α2 + 2α3)kU,
(27)

where α2 + 2α3 �= (0,1) and α2 + 2α3 < 1 (or equivalently, α1 > α3). The last con-
dition arises from the assumption that the number of CSCs does not decrease in time.

No Symmetric Commitment Model This model assumes that CSC is a robust state
that cannot be lost during mitosis (Enderling et al. 2009). Therefore, the dividing CSC
always remains CSC, and the second daughter cell is either a CSC or a TC (Fig. 2).
This model is the Complete Model with the additional condition of no chance of
commitment, i.e., α3 = 0. From a simple inspection of Equation System (27) with
α3 = 0, though, we see this model remains just as general as the Complete Model,
since the leading coefficients on the right sides of the equations for U and V can
range from 0 to 1 as before.
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No Asymmetric Division Model The model most often used in the literature ignores
asymmetric CSC division (Ganguli and Puri 2006; Marciniak-Czochra et al. 2009;
Wise et al. 2008). A mitotic CSC event either yields two CSC or two TC (Fig. 2).
This model is the Complete Model with the additional condition of no chance of
asymmetric division, i.e., α2 = 0. From a simple inspection of Equation System (27)
with α2 = 0, though, we see this model remains just as general as the Complete
Model, since the leading coefficients on the right sides of the equations for U and V

can range from 0 to 1 as before.
In summary, we have shown that the “No Symmetric Commitment” and “No

Asymmetric Division” models are individually equivalent to the “Complete Model,”
and so to each other. We therefore discuss a mathematical model that essentially ex-
ploits the “No Symmetric Commitment” model above, with the appreciation that it
will not only provide analytic confirmation of the tumor growth paradox revealed
by our agent-based studies (Enderling et al. 2009), but will simultaneously confirm
the applicability of various sets of cell division rules we could alternatively have em-
ployed to build the model.
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