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SUMMARY

In this paper, we establish the existence of shock solutions for a simplified version of the Othmer–Stevens
chemotaxis model (SIAM J. Appl. Math. 1997; 57:1044–1081). The existence of these shock solutions
was suggested by Levine and Sleeman (SIAM J. Appl. Math. 1997; 57:683–730). Here, we consider the
general Riemann problem and derive the shock curves in parameterized forms. By studying the travelling
wave solutions, we examine the shock structure for the chemotaxis model and prove that the travelling
wave speed is identical to the shock speed. Moreover, we explicitly derive an entropy–entropy flux pair to
prove the uniqueness of the weak shock solutions. Some discussion is given for further study. Copyright
q 2007 John Wiley & Sons, Ltd.

KEY WORDS: chemotaxis; shock solutions; travelling wave; entropy–entropy flux; shock structure;
entropy condition

1. INTRODUCTION

In many biological systems, an organism navigates in response to a diffusible or otherwise trans-
ported signal. In its simplest form, this can be modelled by diffusion equations with advection
terms of the form first derived by Patlak [1]. However, other systems are more accurately mod-
elled by random walkers that deposit a non-diffusible signal that modifies the local environment
for succeeding passages and there is little or no transport of the modifying substance. Examples
include myxobacteria which produce slime over which their cohorts can move more readily, and
ants, which follow trails left by predecessors. In either case, the question arises as to whether
aggregation is possible with such strictly local modification or whether some form of longer-range
communication is necessary. To answer this question, Othmer and Stevens [2] have developed a
number of mathematical chemotaxis models. They illustrate that within the framework of partial
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46 Z. WANG AND T. HILLEN

differential equation models, stable aggregations can occur with local modulation of the transition
rates, that is, without long-range signalling via a diffusible chemical. One of these chemotaxis
models in one-space dimension reads⎧⎪⎪⎪⎨⎪⎪⎪⎩
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�t
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with no-flux boundary condition
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= 0 at x = 0, l (2)

as well as initial conditions

p(x, 0)= p0(x)�0, w(x, 0) = w0(x)>0 for 0�x�l (3)

Here p(x, t) is the particle density of a particular species and w(x, t) is the concentration of that
active agent. The chemotactic potential � and signal reproduction and decay term R are given as

�(w)=
(

w + �

w + �

)�

, R(p, w) = �pw

k1 + w
+ �r p

k2 + p
− �w (4)

where �, �, k, k1, k2, �, �r , � and D are all non-negative constants with D and � being strictly
positive and � �= 0.

Othmer and Stevens [2] numerically show that a variety of dynamics of system (1)–(4) are
possible, which include aggregation, blow-up or collapse depending on whether the dynamics
admit stable bounded peaks, whether solutions blow up in finite time, or whether a suitable spatial
norm of the density function is asymptotically less than its initial value. Levine and Sleeman [3]
present the analytical results that support the numerical observations presented by Othmer and
Stevens [2]. Furthermore, some additional numerical computations are made in [3]. Local and
global existence of solutions of the Othmer–Stevens model (1)–(4) has been studied in [4] and in a
recent paper [5]. In [5], the authors apply the existence theory of Ladyžhenskaya et al. [6] to obtain
a very general result on local and global existence of solutions. In [7], asymptotic expansions are
used to prove the existence and stability of spike solutions for the case of saturation in the signal
production term.

It should be pointed out that since the first equation of (1) is parabolic in p, it is easy to observe
that p(x, t)�0 provided that the initial value is non-negative. To simplify model (1) and gain
some insight into the Othmer–Stevens model, it is worthwhile to consider special cases which
were considered in [3]. The results we obtain in this paper are for a simplified version of the
Othmer–Steven model. To simplify Equations (1), we first apply the representation of �(w) in (4)
to deduce that from the first equation of (1):
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)]
From this expression, we observe that if ��w��, the coefficient of wx is nearly �/w, whereas if
��w��, the coefficient is −�/w. These two extreme cases can be modelled by taking �(w)= w−�
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SHOCK FORMATION IN A CHEMOTAXIS MODEL 47

where � can be positive or negative. Throughout this paper, we consider �r = 0, �(w)= w−� and
R(p, w)= �pw−�w. Substituting these choices into system (1)–(4), we end up with the following
simplified system: ⎧⎪⎨⎪⎩ pt = D

(
pxx + �

(
p
wx

w

)
x

)
, 0<x<l, t>0

wt = �pw − �w

(5)

with boundary condition

�
wx

w
+ px

p
= 0 for x = 0, l, t>0 (6)

and initial data

p(x, 0)= p0(x)�0, w(x, 0) = w0(x)>0 for 0�x�l (7)

Here the first equation of (5) becomes a classical Patlak–Keller–Segel type. The substance w is
generally refereed to as attractant for �<0 and repellent for �>0.

Furthermore, with these simplifications, using scaling theory by writing t = l2�/(	2D), x = x ′l/	
and setting �′ = l2�/(	2D), �′ = l2�/(	2D), we find we may take D = 1 in (5). If we multiply the
first equation of (5) by � we observe that we may replace p by p′ = �p. Moreover, if we define
w′ =w exp(�t), we see that we may take � = 0 in (5) if replacing w by w′. After these rescalings,
we can recast system (5)–(7) to the following initial-boundary problem by dropping the prime for
convenience: ⎧⎨⎩ pt = pxx + �

(
p
wx

w

)
x
, (x, t) ∈ (0, l) × (0,∞)

wt = pw
(8)

with boundary condition

�
wx

w
+ px

p
= 0 for x = 0, l, t>0 (9)

and initial data

p(x, 0) = p0(x)�0, w(x, 0) = w0(x)>0 for 0�x�l (10)

For the hodograph analysis of system (8)–(10), we follow the argument applied in [3]. From
the second equation of (8), it follows that w(x, t)>0 since w0(x)>0 as long as the solution
(p, w) exists in time. So it makes sense to let �(x, t) = lnw(x, t) and consequently �x = wx/w.
Moreover, it follows from the second equation of (8) that �t = wt/w = p. We therefore obtain the
following form from (8)–(10):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

£�=�t t − ��x�xt − ��t�xx = �xxt , (x, t) ∈ (0, l) × (0, ∞)

��x�t + �xt = 0 for x = 0, l, t>0

�(x, 0) =�0(x)= lnw0(x) for 0�x�l

�t (x, 0) = p0(x) for 0�x�l

(11)
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48 Z. WANG AND T. HILLEN

The operator £ defined by the first equation of (11) is a quasilinear second-order differential
operator. The damping term �xxt here does not really affect the overall structure of the solution.
So we can specify the type of the operator £ by determining the sign of the discriminant

� = �2�2
x (x, t) + 4��t (x, t)

at a point (x, t). The operator £ will be hyperbolic at the point (x, t) on a function � if �>0, while
elliptic if �<0. When � = 0, we say £ is parabolic. Since we have that p(x, t) = �t (x, t)>0, it
follows that �>0 if � = 1 (or �>0) and we refer to this case as hyperbolic. When � =−1 (or �<0),
the sign of the discriminant can change and we refer to this case as mixed-type case. The hodograph
plane was sketched in [8, p. 687].

When � = 1, Levine and Sleeman [3] construct solution pairs (p, w) for which p>0 and p
collapses to a constant in finite time exponentially. When � =−1, they show that there are solution
pairs (p, w) for which p>0 but for which p blows up on the parabolic boundary in the ‘hodograph’
in finite time and the power spectrum converges to that of delta function in finite time. Furthermore,
they construct an explicit family of such solutions (see Section 3 of [3]). Moreover, they conjecture
that shock solutions can be obtained when � =−1 (or �<0). But they did not provide the rigorous
justification for this contention. One of the purposes of this paper is to present the analytical
justification for their assertion.

This paper is primarily concerned with system (5)–(7). The organization of the rest of this
paper is as follows. In Section 2, we show that for both attractive case (�<0) and repulsive case
(�>0), there exist shock solutions for the chemotaxis model (5)–(7). We start with the Rankine–
Hugonoit condition to explicitly find the shock curves in parameterized forms that connect left
and right states through a shock solution. Furthermore, we observe the difference between the
attractive case and the repulsive case and plot the Hugoniot locus for both cases. In addition,
we briefly discuss the general Riemann problem for system (5)–(7). The shock structures will be
examined in Section 3 by studying the travelling waves to system (5)–(7) for small D>0. We
show the existence of non-decreasing travelling waves for the attractive case and non-increasing
travelling waves for the repulsive case. Essentially, we prove the travelling speed is identical to the
shock speed. Numerically we confirm the existence of the travelling wave solutions. In Section 4,
the entropy condition for the repulsive case (�>0) is identified and the uniqueness of the shock
solutions follows. In Section 5, we provide some discussion for further research.

2. SHOCK SOLUTIONS

2.1. The Hugoniot locus and existence of shocks

As we seek shock solutions for the Othmer and Stevens model (5)–(7), we extend the spatial
domain to be I = R. We consider two cases where � takes different sign.

Case 1: Attractive case (�= −1/D<0). Following this condition, applying the same scaling
technique used in the introduction, we reformulate system (5) to the following equivalent equations:⎧⎨⎩ pt = Dpxx −

(
p
wx

w

)
x
, (x, t) ∈ I × (0,∞)

wt = pw
(12)
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SHOCK FORMATION IN A CHEMOTAXIS MODEL 49

We define q = (lnw)x and reformulate system (12) to obtain the following form:{
pt + pqx + qpx = Dpxx

qt = px
(13)

Let u = (p, q)T and

A(u) =
(

q p

−1 0

)
, D̄ =

(
D 0

0 0

)
Then system (13) becomes

ut + f (u)x = ut + A(u)ux = D̄uxx (14)

where f (u) = f (p, q)= (pq,−p)T. To study the shock formation of system (14), we let D = 0
such that system (14) becomes the following conservation law:

ut + A(u)ux = 0, (x, t) ∈ I × (0, ∞) (15)

The characteristic equation of A(u) is easily computed as �2−q�+ p= 0. Thus when q2−4p>0,
the matrix A(u) has two real distinct eigenvalues �1(u)<�2(u) given by

�1(u) = q

2
−
√
q2 − 4p

2
and �2(u) = q

2
+
√
q2 − 4p

2

with corresponding eigenvectors which are

r1(u) = (−�1(u), 1)T and r2(u) = (�2(u),−1)T

respectively. This means the conservational law (15) is strictly hyperbolic for q2 − 4p>0.
Furthermore, it is straightforward to obtain that ∇�1(u) · r1(u) =−q/

√
q2 − 4p + 1 �= 0 as

well as ∇�2(u) · r2(u) = q/
√
q2 − 4p + 1 �= 0 and �1(u)<�2(u) due to p>0. Hence, the charac-

teristic fields (�1(u), r1(u)) and (�2(u), r2(u)) are genuinely nonlinear which motivates us to look
for shock solutions for system (15). To investigate the shock solution, we augment system (15)
with Riemann initial value:

u(x, 0) = u0(x)= (p0(x), q0(x))=
{
u−, x<0

u+, x>0
(16)

where u− = (p−, q−), u+ = (p+, q+). We suppose here that u+ �= u−. Otherwise the characteristic
speeds are constant �i (u) = �i (u−) = �i (u+) and therefore ∇�i (u) = 0. This is the case of linear
degeneracy in which the shock wave and rarefaction wave coincide with each other and we refer
to this situation as a contact discontinuity (see [9]). In this work, we restrict our attention to the
case of u+ �= u−.

Recall that if a discontinuity propagating with speed s has constant u− and u+ on either side
of the discontinuity, then the Rankine–Hugoniot jump condition must hold

f (u+) − f (u−) = s(u+ − u−) (17)
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50 Z. WANG AND T. HILLEN

Now let us fix a state u− and attempt to determine the set of states u+ that can be connected to
u− by a discontinuity satisfying (17) for some s. To this end, we rewrite the Rankine–Hugoniot
condition (17) as {

s(p+ − p−) = p+q+ − p−q−

s(q+ − q−) = −p+ + p− (18)

Observe that system (18) gives a system of two equations in three unknowns: p+, q+ and s. This
enables us to expect a one parameter family of solutions. Here we take q+ as the free parameter.
Then, it follows from the second equation of (18) that

p+ = p− − s(q+ − q−) (19)

Substituting (19) into the first equation of (18) yields

−s2(q+ − q−) = p+q+ − p−q− (20)

Applying (19) into (20) gives that

(q− − q+)(s2 − q+s + p−) = 0 (21)

It is worthwhile to note here that q+ �= q−. Otherwise, it follows from the second equation of
(18) that p+ = p− which implies that u+ = u− and violates our assumption. Therefore, we end
up with

s2 − q+s + p− = 0

and get the shock speed

s = q+

2
±
√
q+2 − 4p−

2
(22)

here we have assumed that (q+)2 − 4p−>0. As a consequence we obtain p+ from (19)

p+ = p− − 1

2

(
q+ ±

√
q+2 − 4p−

)
(q+ − q−) (23)

where ± signs in these equations give two solutions, one for each family. Since p+ and s can be
expressed in terms of q+, we can parameterize these curves by taking

q+ = (1 + 
)q− (24)

where 
 is a parameter. Therefore given u− ∈ �, we obtain the shock curves for the first charac-
teristic fields which are parameterized by

S1(
, u−) = u− + 


⎛⎜⎝−q−

2

[
(1 + 
)q− −

√
(1 + 
)2q−2 − 4p−

]
q−

⎞⎟⎠
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with shock speed

s1(
, u−) = 1 + 


2
q− − 1

2

√
(1 + 
)2q−2 − 4p−

The shock curves for the second characteristic field is

S2(
, u−) = u− + 


⎛⎜⎝−q−

2

[
(1 + 
)q− +

√
(1 + 
)2q−2 − 4p−

]
q−

⎞⎟⎠
with shock speed

s2(
, u−) = 1 + 


2
q− + 1

2

√
(1 + 
)2q−2 − 4p−

Here we write Si (
, u−) = u+
i (
, u−), i = 1, 2 and u+

i (
, u−) denote the solutions corresponding
to the shock speed si . We thus obtain two shock curves through any point u−, one for each
characteristic family. By denoting the corresponding shock speed by si (
, u−), we parameterize
these curves by Si (
, u−) with Si (0, u−) = u−. To make notations simpler, we will frequently
substitute Si (
) for Si (
, u−) and si (
) for si (
, u−) when the point u− is clearly understood.
Replacing u+, s by Si (
), si (
), respectively, in the Rankine–Hugoniot condition (17), we find
that

f (Si (
)) − f (u−) = si (
)(Si (
) − u−) (25)

Differentiating the expression (25) with respect to 
 and evaluating at 
 = 0 yields

f ′(u−)S′
i (0)= si (0)S

′
i (0) (26)

so that S′
i (0) must be a scalar multiple of the eigenvector ri (u−) of f ′(u−) since here the speed

si (0) coincides with the corresponding characteristic speed, i.e. si (0) = �i (u−). However, with the
above notations, it is evident to check that

�
�


Si (0, u
−) = q−ri (u−) ∝ ri (u

−), si (0, u
−) = �i (u

−), i = 1, 2 (27)

as required.
Now let us examine the conditions which the parameter 
 needs to satisfy. For the shock curves

Si (
, u−)(i = 1, 2) to be well defined, it is required that (1 + 
)2q−2 − 4p−�0. But it has been
required that q−2 − 4p−>0 to get a strictly hyperbolic conservation law which was discussed at
the beginning of this section. Hence, we require that |1+
|>1 which implies two situations: either

>0 or 
<−2. For −2<
<0, system (5)–(7) is not strictly hyperbolic and the Hugoniot locus
has a gap (see Figure 1(a)). Therefore, when −2<
<0, the shock curves are not well defined and
hence we only consider the domain 
>0.

From the preceding construction, we obtain, by standard arguments (see [9, 10]), the existence
of shock solutions of the Riemann problem (15) and (16) with left and right states u− and u+ for
the attractive case. The existence theorem is summarized in the following and the Hugonoit locus
of the attractive case is plotted in Figure 1(a).
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Figure 1. (a) Hugoniot locus for the left state u− = (2, 3) for attractive case where r1(u−)=
(−1, 1), r2(u−)= (2,−1) and (b) Hugoniot locus for the left state u− = (2, 3) for repulsive case where

r1(u−)= r̃1(u−)= (3.56, 1), r2(u−)= r̃2(u−)= (0.56, 1), S1(u−)= S̃1(u−) and S2(u−)= S̃2(u−).

Theorem 2.1
Let � =−1/D and � be an open set of R2. For each u− ∈ � with q−2 − 4p−>0, there exists a
parameter 
 such that for each 
 with 
�0, the pair (u−, Si (
)) (i = 1, 2) satisfies the Rankine–
Hugoniot conditions (25) and the function

u(x, t) =
{
u− if x<si (
)t

Si (
) if x>si (
)t
(28)

is a weak solution of the system (15) which satisfies the Riemann condition (16) with u+ = Si (
).

Case 2: Repulsive case (�= 1/D>0). Substituting 1/D for � in system (5) and rescaling the
resulting system, we end up with⎧⎨⎩ pt = Dpxx +

(
p
wx

w

)
x

(x, t) ∈ I × (0, ∞)

wt = pw
(29)

Similarly by defining q = (lnw)x , system (29) can be reduced to{
pt − (pq)x = Dpxx

qt − px = 0
(30)

or written by

ut + Ã(u)ux = D̄uxx (31)

where u = (p, q)T and

Ã(u) =
(−q −p

−1 0

)
, D̄ =

(
D 0

0 0

)
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Then system (31) for D = 0 becomes a conservation law

ut + f̃ (u)x = ut + Ã(u)ux = 0, (x, t) ∈ I × (0,∞) (32)

where f̃ (u) = f̃ (p, q) = (−pq,−p)T and f̃ ′(u) = Ã(u). The characteristic equation of Ã(u) is
�2 + q� − p= 0. Noticing p>0, it is clear that the discriminant q2 + 4p of the characteristic
equation is always positive. Therefore the matrix A(u) has two real distinct eigenvalues �̃1(u) and
�̃2(u) which are given by

�̃1(u) =−q

2
−
√
q2 + 4p

2
and �̃2(u) = −q

2
+
√
q2 + 4p

2

The corresponding eigenvectors are determined by

r̃1(u) = (−�̃1(u), 1)T and r̃2(u) = (�̃2(u),−1)T

respectively. It is obvious that �̃1(u)<0<�̃2(u) which implies that the conservational law is strictly
hyperbolic. Furthermore, we easily verify that ∇�̃1(u) · r̃1(u) = −q/

√
q2 + 4p−1<0 and ∇�̃2(u) ·

r̃2(u) = q/
√
q2 + 4p − 1<0 because of p>0. Hence, the characteristic fields (�̃i (u), r̃1(u)) and

(�̃2(u), r̃2(u)) are genuinely nonlinear. Then the Rankine–Hugoniot jump condition

f̃ (u+) − f̃ (u−) = s̃(u+ − u−)

takes the form {
s̃(p+ − p−) = −p+q+ + p−q−

s̃(q+ − q−) = −p+ + p− (33)

System (33) consists of two equations in three unknowns: p+, q+ and s̃. We thus can regard one
unknown, say q+, as a parameter to get from the second equation of (33) that

p+ = p− − s̃(q+ − q−) (34)

We substitute (34) into the first equation of (33) and obtain the following equation:

−s̃2(q+ − q−) = −p+q+ + p−q− (35)

Applying (34) into (35), we have

(q+ − q−)(s̃2 + q+s̃ − p−) = 0 (36)

Note that q+ �= q−. We obtain an equivalent equation to (36)

s̃2 + q+s̃ − p− = 0

and therefore the shock speed can be found

s̃ =−q+

2
±
√
q+2 + 4p−

2
(37)
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Then we substitute (37) into (34) and get

p+ = p− − 1

2

(
−q+ ±

√
q+2 + 4p−

)
(q+ − q−) (38)

where the ± signs in these equations give two solutions, one for each family. Since p+ and s can
be expressed in terms of q+, we can assume 
 to be parameter and let

q+ = (1 + 
)q− (39)

Then we substitute (39) into (37) and (38) to get the shock curves. For the first characteristic field,
we find the shock curves

S̃1(
, u−) = u− + 


⎛⎝ q−

2

[
(1 + 
)q− +

√
(1 + 
)2q−2 + 4p−

]
q−

⎞⎠
with shock speed

s̃1(
, u−) =−1 + 


2
q− − 1

2

√
(1 + 
)2q−2 + 4p−

For the second characteristic field, we find the shock curve

S̃2(
, u−) = u− + 


⎛⎝ q−

2

[
(1 + 
)q− −

√
(1 + 
)2q−2 + 4p−

]
q−

⎞⎠
with shock speed

s̃2(
, u−) =−1 + 


2
q− + 1

2

√
(1 + 
)2q−2 + 4p−

where we denote S̃i (
, u−) = u+
i (
, u−), i = 1, 2.

Performing the same analysis as we did for Case 1, we obtain the following theorem similar to
Theorem 2.1.

Theorem 2.2
Assume � = 1/D. For each u− ∈ �, there exists a parameter 
 and 
0>0 such that for each

∈ [−
0, 
0], the pair (u−, S̃i (
)) (i = 1, 2) satisfies the Rankine–Hugoniot jump conditions and
the function

u(t, x)=
{
u− if x<s̃i (
)t

S̃i (
) if x>s̃i (
)t
(40)

is a weak solution of the system (32) satisfying the Riemann condition (16) with u+ = Si (
).

Remark 2.3
We observe from the above analysis that there are shock solutions in both attractive and repulsive
cases. In the first case, we need the additional assumptions q2 − 4p>0 and q+2 − 4p−>0 and
hence 
�0. However, in the second case, there was no such restriction on p, q and hence on 
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to ensure the formation of the shock. Indeed, from the definition of Si and S̃i given above, it is
evident that the real-valued solution Si (
) (i = 1, 2) exists only for |1+
|�2

√
p−/q− while S̃i (
)

takes real values for any 
.

Remark 2.4
From (27), it is clear that the Hugoniot locus Si (
) is tangent to the eigenvector ri (u−) at the
point u−. In a similar manner, the Hugoniot locus S̃i (
) is tangent to the eigenvector r̃i (u−) at the
point u−. Then the Hugoniot locus of the state u− for both attractive and repulsive cases can be
sketched in Figure 1.

2.2. General Riemann problem

Next, we attempt to solve the Riemann problem graphically by drawing the Hugoniot locus for
each states u− and u+ and looking for intersections. As illustrated in [11], we can accomplish
this by finding an intermediate state um such that u− and um are connected by a discontinuity
satisfying the Rankine–Hugoniot condition and so for um and u+.

Let us first examine the attractive case, i.e. the Riemann problem (15) and (16). Note that �1(u)<

�2(u) which requires the jump from u− to um to travel more slowly than the jump from um to
u+. Precisely speaking, the um must be connected to u− by a 1-shock S1 while u+ connected to
um by a 2-shock S2. We replace u+ by um in (17) and go through the same calculation as we did
in Case 1 to derive that the 1-shock connected to um has speed

s1(
, um) = 1 + 


2
qm − 1

2

√
(1 + 
)2q2m − 4pm<

1 + 


2
qm

while 2-shock has speed

s2(
, um) = 1 + 


2
qm + 1

2

√
(1 + 
)2q2m − 4pm>

1 + 


2
qm

p

q

u

u+
u
m
*

u
m

S
1
(u )

S
2
(u

m
)

u u+

u
m

u
m
*

p

q

S
1
(u )

S
2
(u

m
)

(a) (b)

Figure 2. Construction of a shock wave for the general Riemann problem with left state u− and right state
u+: (a) is for attractive case �=−1/D and (b) is for the repulsive case �= 1/D. Both (a) and (b) give
two points of intersection, labelled um and u∗

m , but only um gives a single-valued solution to the Riemann
problem since the requirement that the jump from u− to um moves more slowly than the jump from um

to u+ due to �1(u)<�2(u) and �̃1(u)<�̃2(u).
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and consequently s1(
, um)<s2(
, um) for all 
. In a similar fashion, it is straightforward to deduce
that s̃1(
, um)<s̃2(
, um) for the repulsive case. Figure 2 gives two points of intersection for each
case, labelled um and u∗

m , but only um gives a single-valued solution to the general Riemann
problem since we require the jump from u− to um to travel more slowly than the jump from um
to u+ due to the convention �1(u)<�2(u) and �̃1(u)<�̃2(u).

3. TRAVELLING WAVE WITH SHOCK PROFILE

In this section, we will investigate the structure of the shock solution by considering the travelling
wave for the problem

ut + B(u)ux = D̄uxx (41)

where B(u) = A(u) in the attractive case and B(u) = Ã(u) in the repulsive case discussed in
Section 2.

We define the travelling wave ansatz u(x − ct) := u(z) with travelling speed c. In this paper,
we restrict ourself to c�0 since the shock speed s is non-negative and we shall prove that c is
identical to s later to show the existence of a travelling wave with shock profile. But it turns out
from our analysis that c can be negative and hence a standing wave (c= 0) is admitted if we ignore
the biological relevance. Substituting the ansatz into Equation (41), one has that

(B(u) − cI2)u
′ = D̄u′′ (42)

where the prime means the differentiation with respect to variable z and the I2 is the 2× 2 identity
matrix. Assume now that the left state u− and the right state u+ are given and satisfy

lim
z→−∞u = u−, lim

z→+∞u = u+, lim
z→±∞u′ = 0

Later we shall prove the travelling speed c coincides with the shock speed s, i.e. the travelling
wave carries the shock profile u(z) = u(x − st). Hence, if we define

lim
D̄ → 0

uD̄(t, x) =
{
u− if x<st

u+ if x>st

the limit as D̄ → 0 of solution to (42) then gives us a shock wave connecting the left state u− and
the right state u+. The purpose of this section is to carefully study the form of s and travelling
wave u(z) to gain more detailed insight into the structure of the shock for positive but small D.
Again, we consider two cases corresponding to the sign of �.

3.1. Travelling wave for �<0

In this subsection, we will study the travelling solution of system (41) for �<0. As we point out
before, when �<0, B(u) = A(u), where A(u) is as defined in Case 1 in Section 2. We take up
A(u) and expand (42) to get {

qp′ + pq ′ − cp′ = Dp′′

−p′ − cq ′ = 0
(43)
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Introducing v = p′ and deducing from the second equation of (43) that q ′ =−v/c, we obtain
equation v′ = (v/D)(q − p/c − c) from the first equation of (43). Coupling these equations gives
rise to the following system: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p′ = v

q ′ = −v

c

v′ = v

D

(
q − p

c
− c

) (44)

Observe that p and q have an invariant of motion: p′ + cq ′ = 0. Then p + cq = �1, where �1 is a
constant determined by the left state u− = (p−, q−) and the right state u+ = (p+, q+), i.e.

�1 = p− + cq− = p+ + cq+ (45)

which is an agreement with the identity (19) if c= s. Using the invariant of motion, system (44)
is reduced to {

p′ = v

v′ = −
v(p − �)
(46)

where 
 = 2/Dc, �= �1/2 − c2/2.
It is clear that system (46) has a continuum of steady states (�, 0), where �>0 due to the particle

density p>0. The corresponding community matrix about the steady state (�, 0) is

J =
[
0 1

0 
(� − �)

]
and hence the eigenvalues of J are

�1 = 0, �2 = 
(� − �)

with corresponding eigenfunctions, respectively,

r1 =
[
1

0

]
, r2 =

[
1

�2

]
=
[

1

−
(� − �)

]
In the following, we shall study the existence of a travelling solution to nonlinear system (46) for
fixed travelling speed. We give a class of equilibria in which two equilibria can be appropriately
chosen to generate a non-negative heteroclinic orbit connecting the two equilibria. To this end, we
first investigate the stability of the linearized system of (46).

Note that the eigenvector r1 corresponding to zero eigenvalue �1 is in the direction of p axis
v = 0 and every point (�, 0) on the p axis is a steady state. To determine the stability of the
linearized system, we only need to determine the sign of the second eigenvalue. Since 
>0, we
have the following relation:

�<� ⇒ �2>0

� = � ⇒ �2 = 0

�>� ⇒ �2<0

(47)
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Therefore, � = � is a critical point which separates the steady states into stable parts and unstable
parts. So a heteroclinic connection is possible for the linearized system. Note that it has been
mentioned in the Introduction that p, as the particle density, preserves the positivity. So p>0 and
hence p−, p+>0. To have the biological relevance, we require that �>0 to obtain a real unstable
manifold corresponding to �2. This requires that

c2<�1 = p− + cq− (48)

In (48), we tacitly admit that p− + cq−>0. Indeed from the definition of q , we know q can be
negative and hence q− and q+ can be negative as the limits of q . Therefore, it gives an additional
requirement

p− + cq−>0 (49)

Observe that inequality (49) holds true for all q−�0. We only worry about the case of q−<0
which yields that from (49)

c< − p−

q− (50)

Then using (50) and solving (48) give a maximum shock speed c∗ such that

0�c<c∗ (51)

where

c∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q− +√

(q−)2 + 4p−
2

for q−>0

max

{
− p−

q− ,
q− +√

(q−)2 + 4p−
2

}
for q−<0

(52)

Then we can obtain a local stability theorem of linearization of system (46).

Lemma 3.1
Let the travelling wave speed c satisfies (51) and (52). Then �>0 and the steady state (�, 0) of
the linearized system of (46) is stable for �>� whereas unstable for �<�.

So far, we have obtained the stability of the lineariazation of the nonlinear system (46). But it is
still not clear about the stability even local stability of the original nonlinear system (46) since there
is a zero eigenvalue. To find an orbit connecting a stable manifold and an unstable manifold, we
need to proceed to study the stability of system (46). We shall apply LaSalle’s invariance principle
[12, 13] through a Lyapunov function to prove the existence of a heteroclinic connection.

Since the p axis v = 0 (p>0) is a continuum of steady states, it splits the p − v plane into
two parts: v>0 and v<0. When v>0, p′>0 and hence p grows which requires that p−<p+.
Analogously, p−>p+ when v<0. We shall show that the monotonically decreasing travelling
front wave does not exist. Whereas an increasing travelling front wave exists for v>0 and p−<p+
using a constructive approach. We first give the following result.
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Lemma 3.2
Let (51) and (52) be satisfied. Assume that v�0 and p−>p+. Then system (46) is globally
asymptotically stable and all flows of system (46), as z → +∞, converge to the following set:

L= {(p, v)| v = 0, p>�}
and converge to the following set as z →−∞:

M= {(p, v)| v = 0, 0<p<�}
Proof
Define a function V (p, v) by V (p, v)= p. Since p(z)>0 for all z, then V (p(z), v(z))>0 and
dV /dz = p′ = v�0 thanks to the first equation of (46). Therefore, the function V (p, v) is a Lya-
punov function of system (46) and hence system (46) is globally asymptotically stable. Furthermore,
by LaSalle’s invariance principle [12, 13], all solutions of system (45) will converge to the largest
invariant set M which is contained in the set

L1 =
{
(p, v)

∣∣∣∣dVdz = 0, p>0, v�0

}
(53)

From the first equation of (46), we have that

dV

dt
= 0 ⇐⇒ v = 0 (54)

In addition, we know that �2>0 for all 0<p<�. Hence the manifold of system (46) corresponding
to eigenvalue �2>0 is unstable and all orbits will leave the neighbourhood of the regionL2 defined
by

L2 ={(p, v)| v�0, 0<p<�}
On the other hand, from the above analysis, all trajectories will eventually enter into the set L1
defined in (53). Therefore, by (54), all orbits of system (46) converge to the set

L=L1 − L2 = {(p, v)| v = 0, p>�}
Similarly, if we study the problem backward on variable z, we easily get the convergence to set
M which completes the proof. �

Now we are in a position to state the non-existence theorem of decreasing travelling solutions
for system (46).

Theorem 3.3
Let (51) and (52) be satisfied. Assume that v�0. Then there is no travelling wave solution for
system (46).

Proof (By contraction).
Assume that there exists a travelling wave solution (p, v) for system (46). Since p′ = v�0, the
travelling wave p is non-increasing. So p(−∞) = p−�p+ = p(+∞). By Lemma 3.2, it follows
that (p+, 0) ∈L and (p−, 0) ∈M. Thus p+>� and 0<p−<� and hence p−<p+. This is contra-
dictive. So system (46) has no travelling solutions. �
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Below we shall investigate the existence of travelling wave solutions of system (46) for v>0.
We provide a constructive proof to show the existence of a travelling solution and sketch the
phase portrait and numerically plot the travelling solution of system (46). To this end, we first
write (46) as

dv

dp
= −
(p − �)

Integrating the equation gives rise to

v(p) =−


2
p2 + 
�p + �2 = − 1

Dc
p2 + 1

Dc
(�1 − c2)p + �2 (55)

where �2 is constant of integration to be determined.
Noting that p′ = v. Then

p′ =−


2
p2 + 
�p + �2 (56)

Solving Equation (56), one obtains the solution

p= a2 + a2 − a1

C0 exp
(


2
(a2 − a1)z

)
− 1

(57)

where a1 = � −
√

�2 + 2�2/
, a2 = � +
√

�2 + 2�2/
.
Note that a2 − a1>0. Then, the limits of (57) are

p(−∞) = a1, p(+∞) = a2 (58)

By the boundary condition p(−∞) = p−, p(+∞) = p+, it follows that

a1 = p−, a2 = p+ (59)

Then, p−<p+ which is consistent with the fact p′ = v>0. Moreover, from the first equation of
system (46), it follows that

v(±∞) = lim
z→±∞ p′ = 0

which implies that system (46) has a pulse wave in v. Therefore, applying (55), we have that

v(p−) = v(p+) = 0 (60)

Recovering 
 and � and applying (60) into (55) gives that

�2 = 1

Dc
(p−)2 − 1

Dc
(�1 − c2)p− (61)

as well as

− 1

Dc
(p−)2 + 1

Dc
(�1 − c2)p− = − 1

Dc
(p+)2 + 1

Dc
(�1 − c2)p+ (62)

Since we have p−<p<p+, then v as a quadratic of p (see (55)), is uniformly bounded. From (58),
(59) and (60), we know there exists a non-negative heteroclinic orbit to system (46) connecting
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Figure 3. (a) A plot of phase portrait for system (46), where c= 1, D = 1 and hence 
 = 2. The value of
� = �1/2 − c2/2 depends on the choice of �1, here we choose 1 = 3.5 and then � = 1.25. (b) A plot of
phase portrait for system (68) with c̃= 4, D = 1 and 
̃ = 0.5. The value of �̃= �̃1/2 + c̃2/2 depends on

the choice of �̃1, here we choose �̃1 =−10.5 and hence �̃= 2.75.
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Figure 4. The travelling wave (p, q) determined by (63) for the case � =−1/D<0, where we choose
s = 1, D = 2, p− = 0.5, q− = 3 and time t = 0, 5, 10, 15, 20, 25. The wave moves from left to right.

the left state (p−, 0) and right state (p+, 0). Given any one of end states, the other one can be
determined by identity (62). The phase portrait of system (46) can be sketched by using (55) which
gives rise to a parabola (see Figure 3(a)). The travelling solution of system (46) is numerically
given in Figure 4, where we employed the ODE solver of Matlab to solve the equations.

By the above analysis, we obtain a travelling wave (p, v) for system (46). Utilizing the relation
between v and q , we can connect the results to system (41) and obtain the following existence
theorem for shock wave solutions to system (41).

Theorem 3.4
Let � =−1/D<0, then there exists a non-decreasing travelling wave solution u(z) = u(x − ct) for
system (41), where s is the shock speed and c = s. The travelling wave u(x−st) connects left state
u− and right state u+ if and only if u+ ∈ Si (u−), where Si (u−) denotes the Hugoniot locus for left

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:45–70
DOI: 10.1002/mma



62 Z. WANG AND T. HILLEN

state u−. Furthermore, the shock structure near z = 0, i.e. x = st , is given by⎧⎨⎩
sq = �1 − p

p′ = − 1

Ds
p2 + 1

Ds
(�1 − s2)p + 1

Ds
(p−)2 − 1

Ds
(�1 − s2)p− (63)

where �1 = p− + sq− = p+ + cq+.

Proof
From the above analysis, it only remains to prove that the travelling wave speed c is identical to
shock speed s. Note that �1 = p− + cq−. Feeding this expression into (62) yields that

c2q− − c2q+ − q+q− − q+2 + q− p− − q+ p− = 0 (64)

which is an agreement with the reformulated Rankine–Hugonoit jump condition (21). This implies
that the travelling speed c and the left state u− = (p−, q−) as well as the right state u+ = (p+, q+)

agree with the Rankine–Hugoniot jump condition (17). Hence c= s and (63) is obtained directly
from (46), (55) and (61). �

3.2. Travelling wave for �>0

In this section, we shall consider the travelling wave solutions of system (41) for the repulsive
case, which is an opposite case compared to the preceding subsection. Here we have B(u) = Ã(u),
where Ã(u) is as defined in Section 2 for the repulsive case. In this subsection, many details will
be omitted since they are analogous to the analysis of the preceding subsection. We denote the
travelling speed by c̃ to distinguish it with the travelling speed c used for the case �<0. Then, we
use relation (42) to derive that {−qp′ − pq ′ − c̃ p′ = Dp′′

−p′ − c̃q ′ = 0
(65)

By the second equation of (65), we get that p+ c̃q = �̃1 with a constant �̃1 determined by the two
end states (p−, q−) and (p+, q+)

�̃1 = p− + c̃q− = p+ + c̃q+ (66)

Then using the invariant of motion, we obtain from (65) that

Dp′′ = 2

c̃

[
p −

(
�̃1
2

+ c̃

2

)]
p′ (67)

Denoting v = p′, 
̃ = 2/Dc̃ and �̃= �̃1/2 + c̃2/2, we convert (67) into a system{
p′ = v

v′ = 
̃v(p − �̃)
(68)

Clearly system (68) has a continuum of steady states (�̃, 0) with �̃>0 and the eigenvalues of
linearized system about equilibria (�̃, 0) are

�̃1 = 0, �̃2 = 
(�̃ − �̃)
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We have the following observation due to 
̃>0:

�̃<�̃ ⇒ �̃2<0

�̃ = �̃ ⇒ �̃2 = 0

�̃>�̃ ⇒ �̃2>0

(69)

Due to the biological relevance, it is required that �̃>0 to obtain a heteroclinic connection. Then
we have

c̃2 + �̃1 = c̃2 + c̃q+ + p+>0 (70)

Note that p+>0. Hence (70) holds for all c̃�0 if q+>0. For q+<0, by solving (70), we find a
sufficient condition (q+)2 − 4p+<0 to obtain a non-negative travelling speed c̃ satisfying (70).
So we assume that

q+<0, (q+)2 − 4p+<0 (71)

and solve (70), to obtain that

c�c̃�c (72)

where

c= −q+ −√
(q+)2 − 4p+
2

, c= −q+ +√
(q+)2 − 4p+
2

(73)

Then by the very routine argument as we used in Section 3.1, we easily obtain the following results
for the corresponding linearized system of (68).

Lemma 3.5
Let either q+>0, c̃�0 or (71)–(73) hold. Then the linearized system of (68) is locally stable for
�̃<�̃ and unstable �̃>�̃.

Next, we study the stability of the nonlinear system (68). As before, we separate p − v space
into two regions: v>0 and v�0. We first look at the case v�0 and give the following theorem.

Lemma 3.6
Let either q+>0, c̃�0 or (71)–(73) hold. Assume that v�0 and p−>p+. Then system (68) is
asymptotically stable and all flows of system (68), as z → + ∞, converge to the following set:

V= {(p, v)| v = 0, 0<p<�̃}

and converge, as z → −∞, to the set

W={(p, v)| v = 0, p>�̃}

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:45–70
DOI: 10.1002/mma



64 Z. WANG AND T. HILLEN

Proof
By introducing a function �(p, v) by �(p, v) = p, we can easily prove that �(p, v) is a Lyapunov
function of system (68) and confirms the global stability. Applying LaSalle’s invariant principle,
we can obtain the asymptotic behaviour of the trajectories of system (68). The details are quite
similar to the proof of Theorem 3.2 and hence omitted. �

With Lemma 3.6 in hand, we shall show the existence of a non-increasing travelling solution
for system (68).

Lemma 3.7
Let the assumptions in Lemma 3.6 hold. Then there exists a uniformly bounded, negative het-
eroclinic orbit (for v) connecting equilibria (e1, 0) and equilibria (e2, 0) for system (68), where
e1<�̃, e2>�̃. As a consequence, there exists a travelling pulse in v and a non-increasing travelling
front in p.

Proof
According to Lemma 3.7, we only need to prove that the solution v as a function of p is bounded.
To this end, we first write (68) as

dv

dp
= 
̃(p − �̃)

Integrating the equation gives rise to

v(p) = 1

Dc̃
p2 − 1

Dc̃
(�̃1 + c̃2)p + �̃2 (74)

where 
̃ and �̃ has been recovered and �̃2 is a constant of integration which can be determined by
the boundary conditions of p and q ,

�̃2 =− 1

Dc̃
(p+)2 + 1

Dc̃
(�̃1 + c̃2)p+ (75)

Since p′ = v�0, p is decreasing. By the boundary condition p(−∞) = p−, p(+∞) = p+, it
follows that p+�p�p− and hence p is uniformly bounded. Therefore v, as a quadratic form of
p, is uniformly bounded as well. This finishes the proof. �

Connecting the travelling wave solutions obtained above with the shock solution obtained in
Section 2, we have the following existence theorem for a travelling wave with shock profile
u(x − c̃t), i.e. c̃= s̃, where s̃ is the shock speed discussed in Section 2 for case �>0..

Theorem 3.8
Let � = 1/D>0 and the assumptions in Lemma 3.7 hold, then there exists a non-increasing travelling
wave solution u(z) = u(x−c̃t) for system (41), where s̃ is the shock speed and c̃ = s̃. The conditions
that p− and p+ lie on the same parabola v(p) given by (74) is identical to the Rankine–Hugoniot
condition. The travelling wave connects left state u− and right state u+ if and only if u+ ∈ S̃i (u−),
where u+ ∈ S̃i (u−) denotes the Hugoniot locus for left state u− obtained in Section 2. Furthermore,
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Figure 5. The travelling wave (p, q) determined by (76) for the case �= 1/D>0, where we choose
s = 1, D = 4, p+ = 2, q+ =−2 and time t = 0, 5, 10, 15, 20, 25. The wave moves from left to right.

the shock structure near z = 0, i.e. x = s̃t , is given by⎧⎨⎩
s̃q = �̃1 − p

p′ = 1

Ds̃
p2 − 1

Ds̃
(�̃1 + s̃2)p − 1

Ds̃
(p+)2 + 1

Ds̃
(�̃1 + s̃2)p+ (76)

where �̃1 = p− + s̃q− = p+ + s̃q+.

Proof
System (76) is obtained from (68), (74) and (75) directly if we replace c̃ by s̃. So by Lemma
3.7, it only remains to prove that the travelling speed c̃ is identical to the shock speed s̃. Since
v(p−) = v(p+) = 0, we have from (74) that

− 1

Dc̃
(p−)2 + 1

Dc̃
(�̃1 + c̃2)p− = − 1

Dc̃
(p+)2 + 1

Dc̃
(�̃1 + c̃2)p+ (77)

Hence substituting �̃1 = p− + c̃q− into (77) and cancelling D out yields that

c̃(q+)2 − p−q+ − c̃q−q+ + c̃2q+ + p−q− − c̃2q− = 0 (78)

which is the same as the reformulated Ranking–Hugoniot jump condition (36). Hence c̃= s̃, as
required. �

A phase portrait of system (68) is given in Figure 3(b) and a numerical travelling solution is
plotted in Figure 5. In the remainder of this section, we will investigate the travelling solutions
for the other case v>0. It turns out that travelling wave solutions do not exist for v>0. To prove
this, we first derive from (68) that

p′ = 1
2 
̃p

2 − 
̃�̃p + �̃2 (79)

Note that

�̃
2 − 2�̃2


̃
= 1

4
(�̃1 + c̃2 − 2p−)2�0
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Then we solve Equation (79) to get that

p= ã2 + ã2 − ã1

C̃0 exp

(

̃

2
(ã1 − ã2)z

)
− 1

(80)

where ã1 = �̃ −
√

�̃
2 − 2�̃2/
̃, ã2 = �̃ +

√
�̃
2 − 2�̃2/
̃.

It is clear that ã1 − ã2�0. Taking the limits for (80), we have that

p(z) → ã2 as z → −∞
p(z) → ã1 as z → + ∞ (81)

Using (81), we can show the non-existence of travelling solutions of system (68) for v>0.

Theorem 3.9
Assume that either p+>0, c̃�0 or (71)–(73) hold. Then there is no travelling wave solution to
system (68) for v>0.

4. ENTROPY SOLUTION

As is well known, weak solutions of the Cauchy problem of a system of conservation laws are
generally non-unique and a so-called ‘entropy condition’ is required to pick out the physical
relevant viscosity solution [9]. One condition which picks a physical solution is that it should
be the limiting solution of the viscous equation as the viscosity coefficient tends to zero [14].
Another approach to the ‘entropy condition’ is to define an entropy pair for which an additional
conservation law holds for smooth solutions that becomes an inequality for discontinuous solutions.
In this section, we are devoted to developing a convex entropy and an entropy flux pair (�, ) for
the case of � = 1/D>0. Toward this end, we first rewrite the conservation law (32) in the form{

pt − (pq)x = 0

qt − px = 0
(82)

or

ut + f̃ (u)x = 0 (83)

where u = (p, q) and f̃ (u) = (−pq,−p).
From Definition 1.4 given in the Introduction, we know that the entropy pair (�, ) satisfies an

additional conservation law for any smooth solution u = (p, q) to system (82)

�(u)t + (u)x = 0 (84)

Substituting (83) into (84), we end up with

�′(u) · f ′(u) = ′(u) (85)
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where ′ denotes the derivative with respect to vector u = (p, q). Expanding (85) gives the following
relation: {

p = −�q − q�p

q = −p�p

(86)

Eliminating � from (86) gives that

�qq + q�pq − p�pp = 0 (87)

We assume that the entropy �(u) of the conservation law (83) has the following form:

�(p, q)= 1
2q

2 + g(p) (88)

where g(p) is expected to be a convex function.
Substituting (88) into (87) yields that

1 − pg′′(p) = 0 (89)

Solving (89) gives

g(p) = p ln p − p + k1 p + k2 (90)

where k1, k2 are arbitrary constants.
Then substituting (88) and (90) into the first equation of (86) enables us to find (p, q) as

(p, q)=−pq ln p − k1 pq + k3 (91)

where k3 is an arbitrary constant.
If we particularly choose k1 = k2 = k3 = 0, we obtain an entropy–entropy flux pair (�, ) which

reads {
�(p, q) = 1

2q
2 + p ln p − p

(p, q) = −pq ln p
(92)

Accordingly, g(p) = p ln p − p and it is easy to verify that g′′(p) = 1/p>0 due to p>0. As a
consequence, the second derivative of �(u) is a positive-definite quadratic form. That is �(u) is a
convex function.

The entropy �(u) is conserved for smooth solutions of (83) by its definition. For discontinuous
solutions (shock solutions), however, the manipulations performed above in general are not valid,
i.e. �(u) is not conserved. Since we are particularly interested in how the entropy behaves for the
vanishing viscosity weak solution, we look at the related viscous problem

ut + f̃ (u)x = D̄uxx (93)

and let the viscosity coefficient D̄ tends to zero.
Since the solutions of Equation (93) are always smooth, we can derive the corresponding

evolution equation for the entropy following the same procedure applied for smooth solutions for
the inviscid equation (83). Therefore, we multiply (93) by �′(u) to obtain from (85) that

�(u)t + (u)x = D̄�′(u)uxx (94)
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That is

�(u)t + (u)x = D̄�(u)xx − D̄�′′(u)u2x (95)

Applying a standard argument (e.g. in [14, pp. 604–606]), we end up with the following inequality:∫ T

0

∫ l

0
�(u)t + (u)x dx dt�0 (96)

The fact that inequality (96) holds for any l and T is summarized by saying that �(u)t + (u)x�0
almost everywhere. We are led to the following theorem.

Theorem 4.1 (Entropy solution)
Any solution (p, q) of (83) which is the limit of the viscosity equation (93) satisfies

�(p, q)t + (p, q)x�0 (97)

in the weak sense, where �(p, q) and (p, q) are given by (92).

5. DISCUSSION

In this work, we establish the existence of shock solutions for a simplified version of a chemotaxis
model (1)–(4) for both attractive (�>0) and repulsive (�<0) cases. The shock curves are given in
parameterized forms. The requirements on the choice of the parameter 
 are different for the cases
of �>0 and �<0. Moreover, we discuss the general Riemann problem. By studying the travelling
wave of the system, we examine the shock structures of the corresponding shock waves for both
cases. We prove that the travelling wave speed is identical to the shock speed. We show that, for the
attractive case, there exists only non-decreasing shock travelling waves and for the repulsive case,
there exists only non-increasing shock travelling waves. For the uniqueness of the weak solutions
(shock solutions), we also find an entropy–entropy pair for the repulsive case. For the attractive
case, we are unable to find the corresponding entropy–entropy pair.

When � =−1 (or <0), it has been proven by Levine and Sleeman [3] that there are solutions
(p, w) for which p>0 blows up in finite time and an explicit family of such blow-up solutions
has been constructed in Section 3 of [3]. But there are no results available about the global
existence or non-existence of solutions for �>0. To show the global existence for model (5)–(7)
is not an easy problem. Below we give a reformulation of the problem that leads to Dirichlet
boundary conditions. We hope it can provide some useful clues for the global existence for
the solution.

The boundary condition (2) or (6) seems like a Neumann boundary condition. But it is not the
standard form of a Neumann boundary condition. We will first reformulate the form of boundary
conditions. A direct calculation shows that the boundary condition (2) is weaker than the non-flux
boundary condition px (0, t) = px (l, t) = 0. However, for those solutions of the simplified problem
(5)–(7) for which this stronger condition holds, one might be able to apply the argument in [15]
to obtain the local-in-time existence and the uniqueness of solution as well. Furthermore, from
the second equation of (5), it follows that (lnw)t = �p − �. Hence at the domain boundaries
x = 0, l, we have that (lnw)t x = �px =−��p(wx/w)=−��(lnw)x , i.e. (lnw)t x + ��(lnw)x = 0.
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Solving this equation gives the solution

(lnw)x = wx

w
= wx (x, 0)

w(x, 0)
exp

(
−��

∫ t

0
p(x, �) d�

)
at x = 0, l

From this point, we know that if wx = 0 initially at the domain boundaries, both p and w have
zero flux on the boundary in the entire existence time interval. We therefore always have the local
existence and uniqueness for problem (5)–(7) such that either p or w initially satisfies the zero
flux boundary condition. And consequently we get the zero flux boundary condition for either p
or w. Therefore, it is plausible to suppose that wx (0, t) = wx (l, t) = 0 for all t>0.

In addition, we can simplify system (8)–(10) as well. As usual we let q = (lnw)x . Then from the
second equation of (8) it follows that qt = (lnw)xt = (wt/w)x = px . Together with the boundary
condition discussed above, we translate system (8)–(10) into the following nicer form:{

pt = pxx + �(pq)x , (x, t) ∈ (0, l) × (0,∞)

qt = px
(98)

with boundary condition

p(0, t) = M, q(0, t) = q(l, t) = 0 (99)

and initial data

p(x, 0) = p0(x)>0, q(x, 0) = q0(x) for 0�x�l (100)

where M is a positive constant.
If �>0, we introduce the new variables by t̄ = t/(1/�M), x̄ = x/l

√
1/�M, p̄= p/M, q̄ =

q/
√

�/M and redefine initial data by p̄0(x)= p0(x)/M, q̄0(x)= q0(x)/
√

�/M . Substituting these
transformations into (98)–(100) and dropping the bar for clarity, we obtain the following non-
dimensional form: {

pt − (pq)x = pxx , (x, t) ∈ (0, 1) × (0,∞)

qt − px = 0
(101)

with boundary condition

p(0, t) = 1, q(0, t) = q(1, t) = 0 for t�0 (102)

and initial data

p(x, 0) = p0(x)>0, q(x, 0) = q0(x) for 0�x�1 (103)

It is worth pointing out that the spatial domain has been rescaled to [0, 1]. By ignoring the diffusion
term in (101), we obtain{

pt − (pq)x = 0, (x, t) ∈ (0, 1) × (0, ∞)

qt − px = 0
(104)

It is easy to get the characteristic equation of system (104) which reads �2 − �q − p= 0 where �
denotes the eigenvalues. So the discriminant � = q2 + 4p is positive due to p>0. Hence, system
(104) is a hyperbolic system which is consistent with the discussion in Section 1.1.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:45–70
DOI: 10.1002/mma



70 Z. WANG AND T. HILLEN

Problem (8)–(10) now is reduced to non-dimensional system (101)–(103). One of the difficulties
to consider the global existence of the solution to (101)–(103) is that the second equation of (101)
missed the diffusion component. Novel ideas need to be developed to deal with such an issue.
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