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a b s t r a c t

In this paper we explore the dynamics of a one-dimensional Keller–Segel type model for chemotaxis
incorporating a logistic cell growth term. We demonstrate the capacity of the model to self-organise into
multiple cellular aggregations which, according to position in parameter space, either form a stationary
pattern or undergo a sustained spatio-temporal sequence of merging (two aggregations coalesce) and
emerging (a new aggregation appears). This spatio-temporal patterning can be further subdivided into
either a time-periodic or time-irregular fashion. Numerical explorations into the latter indicate a positive
Lyapunov exponent (sensitive dependence to initial conditions) togetherwith a rich bifurcation structure.
In particular, we find stationary patterns that bifurcate onto a path of periodic patterns which, prior to the
onset of spatio-temporal irregularity, undergo a ‘‘periodic-doubling’’ sequence. Based on these results and
comparisons with other systems, we argue that the spatio-temporal irregularity observed here describes
a form of spatio-temporal chaos. We discuss briefly our results in the context of previous applications of
chemotaxis models, including tumour invasion, embryonic development and ecology.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Movement plays a pivotal role in the arrangements of cells and
organisms: within a developing embryo, coordinatedmigration al-
lows nascent cells and tissues to rearrange and differentiate into
adult structures; in populations of organisms, ordered flocks and
shoals emerge via an individual altering movement with respect
to a neighbour. Chemotaxis, the process in which cells (or organ-
isms) migrate in response to external chemical gradients, has at-
tracted significant interest. For certain bacterial populations, such
as Escherichia coli and Salmonella typhimurium, it results in their
arrangement into a variety of spatial patterns [1–3]. Via relay of
the chemotactic agent cAMP, Dictyostelium discoideum aggregates
from a population of individual cells into amulticellular and differ-
entiated fruiting body (e.g. [4,5]). Within the embryo, chemotaxis
plays a guiding role during avian gastrulation [6,7], pigmentation
patterning [8] and neuronal development [9]. These same mech-
anisms are exploited during tumour growth, facilitating the inva-
sion of cancerous cells into healthy tissue and driving angiogenesis.

While many models of chemotaxis have been formulated, the
system of coupled partial differential equations introduced by
Keller and Segel in [10] remains amongst the most widely utilised,
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its continuous nature enabling analytical tractability and straight-
forward integrationwith othermodels.We refer to [11] for a recent
exploration of related classes of these equations. In this paper we
explore the dynamical properties of the following specific form:

ut = ∇(Du∇u − χu∇v) + f (u), (1)

vt = Dv∇
2v + αu − βv, (2)

where u(x, t) and v(x, t) denote the cell density and chemoat-
tractant concentration at time t and location x. The above equa-
tions implicitly assume linear signalling kinetics, constant cell and
chemical diffusion coefficients (Du and Dv respectively) and a con-
stant chemotactic sensitivity coefficient χ . For the cellular growth
term f (u) we concentrate on the logistic form f (u) = ru(1− u/K),
where r defines the growth rate and K is the ‘‘carrying capacity’’.

Rescaling the equations such that

u∗
= u/K , v∗

=
β

αK
v, t∗ = βt, x∗

=


β

Dv

x,

D =
Du

Dv

, χ∗
=

χαK
βDv

, r∗
=

r
β

,

yields (on dropping the *’s)

ut = ∇(D∇u − χu∇v) + ru(1 − u), (3)
vt = ∆v + u − v, (4)

with the unique nontrivial uniform steady state at (1, 1). Here-
after we refer to D as the cell diffusion coefficient, χ as the chemo-
tactic coefficient and r as the growth rate, although it is noted
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that these are, in fact, nondimensional parameters that incorpo-
rate additional detail. In this paper we consider (3)–(4) on the
one-dimensional interval [0, L] and generally assume zero-flux
(Neumann) boundary conditions. Boundary conditions can vary
considerably according to the biological system, however zero-flux
conditions are a pragmatic and natural choice in many applica-
tions, for example a population of bacteria cultivated in a petri-
dish. Initial conditions, except where specifically stated, will take
the form
(u(x, 0), v(x, 0)) = (1, 1 + ϵ(x)), (5)
where ϵ(x) is a small (|ϵ(x)| ≤ 0.01) spatially-varying randomper-
turbation.

1.1. Paper outline

In this paper, we explore Eqs. (3)–(4) under cell growth (r > 0).
We will use the remainder of this Introduction to review the rele-
vant literature, describe the numerical scheme and briefly study
the linear stability of the homogeneous steady state (1, 1). In
Section 2 we review numerical and analytical results pertinent
to the zero growth scenario, highlighting that while spatial pat-
tern formation can occur, multiple-peak patterns are unstable and
a coarsening process forms that leads (over long time scales) to a
unique global aggregation. In Section 3 we show that inclusion of
growth can lead to stable multiple aggregations, yet only for cer-
tain parameter regions. Other dynamics include a range of spatio-
temporal patterning in which the pattern of aggregates evolves
through alternating merging and emerging events in either time-
periodic or arrhythmic fashion. Detailed numerical explorations of
the latter reveal a positive Lyapunov exponent and sensitive de-
pendence to initial conditions (Section 4). A numerical bifurca-
tion analysis is developed (Section 5) to track how the solution
class varies in parameter space. A bifurcation sequence was found
in which increasing the chemotactic sensitivity first destabilises
the uniform steady state and a stationary spatial pattern emerges.
This, in turn, loses stability to spatio-temporal periodicity. As the
chemotactic sensitivity increases further, a sequence of ‘‘period-
doublings’’ occurs before the pattern degenerates into spatio-
temporal irregularity. We conclude with a discussion of the results
in the context of spatio-temporal chaos and specific applications.

1.2. Linear stability

Models of the form (3)–(4) are well known for their self-
organising properties. Linearisation around the uniform steady
state gives
Ut = DUxx − χVxx − rU,

Vt = Vxx + U − V ,

for small perturbations U(x, t), V (x, t). The stability of the homo-
geneous steady state is determined by the (temporal) eigenvalues
of the stability matrix (e.g. see [12])

Ak =


−Dk2 − r χk2

1 −k2 − 1


, (6)

where k ≥ 0 denotes the wavenumber: on the interval [0, L] with
zero-flux boundary conditionswehave k = nπ/L, n = 0, 1, 2, . . . ,
where n denotes the mode. If the stability matrix has at least one
eigenvalue with a positive real part, the homogeneous steady state
is unstable. A simple analysis reveals the following necessary con-
dition for this to occur:

χ > D + r + 2
√
rD. (7)

The above relationship hints at the underlying mechanism that
supports self-organisation: the positive feedback loop of chemo-
taxis-to and secretion-of the chemoattractant can overcome the
stabilising properties of the growth and diffusive terms to roundup
an initially dispersed population into self-supported aggregations.
1.3. Previous literature and spatio-temporal properties

A substantial body of research exists on systems related to
(1)–(2): we refer to [11] for a recent review. Here we comment on
some specific results pertinent to the scenario in which both cell
growth and chemotaxis are considered.

A series of articles by Murray and coauthors [13–16] have
considered applications of Eqs. (1)–(2) (with the linear production
of chemoattractant in Eq. (2) replaced with a saturating term,
αu

µ+u ) to processes of embryonic pattern formation, including
pigmentation markings on snakes and alligator stripe patterns.
A combination of stability, bifurcation and numerical analyses
were employed to determinewhether a chemotacticmechanism is
capable of producing steady state patterns akin to those observed
during development.

A number of studies have been undertaken on modelling
spatial pattern formation in bacterial colonies (e.g. [3,17,18]).
Typically, these models extend the simple cell—chemoattractant
framework (1)–(2) to include an additional variable for a nutrient.
Significantly, these models successfully generate much of the
diversity of patterning observed in cultured bacterial colonies [1,2].

Applications of chemotaxis-based models have also been con-
sidered to model certain processes during tumour growth. Orme
and Chaplain [19] employed a similar model to that of Murray and
others above to understand the basis for capillary sprouting dur-
ing tumour-induced angiogenesis. Chaplain and coauthors [20–22]
developed a series of models to investigate tumour invasion pro-
cesses. A detailed reaction–diffusion-taxis system was developed
to describe the interactions between a proliferative and migra-
tory tumour population, the surrounding extracellular matrix and
various biochemical components involved in tumour-controlled
matrix degradation. As the tumour cells invaded the surrounding
tissue, a complicated and heterogeneous pattern of tumour cells
was found to emerge in the wake of the invasive front.

Eqs. (1)–(2) and generalisations have also been studied mathe-
matically [23–26]. Mimura [23] consider (1)–(2) on an unbounded
domain Rn, focusing on an Alee-like nonlinearity f (u) = u(1 −

u)(u−a). Here the kinetic term is bi-stable, leading to the splitting
of the domain into distinct regions in which the solution is close
to 0 and 1. A detailed asymptotic theory was developed for the
evolution of the resulting boundary layers. The case studied in this
paper is different, since the logistic form of f (u) does not support
such a phase separation. Osaki et al. [24] studied (3)–(4) on a
two-dimensional bounded domain under homogeneous Neumann
boundary conditions and the logistic form for f (u). The existence
of a compact global exponential attractor was proven, the subject
for a more detailed study in [25]. There, lower estimates for the
dimension of the corresponding finite dimensional exponential
attractor were determined, showing that the dimension is at least
the number of unstable eigenmodes of the linearisation at (1, 1).
Later, we employ this estimate to compare the attractor dimension
with the complexity of the patterns observed. Eqs. (3)–(4) have
also been studied by Tello and Winkler [26], and Winkler [27],
where the existence of unique global weak solutions is shown for
sufficiently large r . In [27] it is suggested that Eqs. (3)–(4), in three
dimensions and for sufficiently small r , may actually generate
unbounded solutions, an interesting question for future study.
Non-trivial steady stateswere also determined and it is shown that
forχ < r

2 all nontrivial solutions converge to the steady state (1, 1).
Note that this condition is not satisfied under the assumption (7)
for linear instability of the homogeneous solution. The conditions
under which travelling wave solutions exist for Eqs. (1)–(2) has
been the focus of a study in [28].

A range of studies have reported on the capacity of equations
similar to (3)–(4) to exhibit a variety of spatio-temporal patterning
processes, see Fig. 1 for a typical example. Painter and Hillen [29]
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Fig. 1. An example of spatio-temporal patterning observed in Eqs. (3)–(4). Left: cell-density (u) plotted as a function of space (horizontal axis) and time (vertical axis).
The colorscale bar indicates increasing cell density from u = 0 (black) to u ≥ 2 (white). The uniform solution destabilises into a number of cellular aggregations
which subsequently evolve through an apparently arrhythmic sequence of emerging and merging events. Right: four frames showing snapsots of the cell (solid line) and
chemical (dashed line) distributions at the times indicated. Examples of merging and emerging events are indicated. For this set of simulations, Eqs. (3)–(4) are solved with
D = 0.1, r = 1.0, χ = 5.0 and L = 25 with initial conditions (5) and zero-flux boundary conditions. The numerical method is as described in Section 1.4, here we set
∆x = L/500. A movie of this is available at http://www.ma.hw.ac.uk/~painter/research/chaos.html.
(see also [11]) explored a related version of (3)–(4), in which the
chemotactic sensitivity is replaced with a ‘‘volume-filling’’ form.
Inclusion of logistic cell growth was found to lead to a complex
and (apparently) arrhythmic sequence of ‘‘merging and emerging’’
processes, inwhich themerging of two existing aggregates is inter-
spersed with the emergence of a new peak. Aida et al. [25] study
a typical bifurcation route for increasing chemotactic sensitivity
in 2D. While small chemotactic sensitivities lead to asymptoti-
cally stable homogeneous steady states, moderate values generate
stable non-homogeneous steady states. These become unstable to
oscillations which, in turn, dissolve into an irregular pattern of
merging and emerging local maxima at larger sensitivities. Wang
and Hillen [30] have observed similar irregular merging–emerging
dynamics in a model incorporating a nonlinear cell-diffusion term
derived by allowing cells to squeeze into local openings.

This irregular spatio-temporal behaviour has also been ob-
served for specific applications of chemotacticmodels. In the above
described models for tumour invasion, Chaplain and Lolas [20,21]
observed ‘‘anarchic’’ tumour cell populations that undergo irreg-
ular spatio-temporal behaviour in the wake of the invading front.
Chemotaxis induced spatio-temporal patterning has also been ob-
served in a model for host parasitoid interactions, see [31].

1.4. Numerical method

The numerical scheme adopts a Method of Lines approach in
which the equations are first discretised in space on a uniform
mesh (of spacing ∆x), and the subsequent system of ODEs is
then integrated in time. Discretisation of the diffusion terms is
performedwith a central differencing scheme, while the advective
term is discretised using a high-order upwinding scheme with
flux-limiting imposed to maintain positivity (e.g. see [32]). We use
the rowmap stiff-systems integrator [33] to integrate the ODEs.
Exceptwhere specified, we set error tolerances of 10−8 in rowmap.
Verification of the scheme has been performed through varying
∆x, error tolerances and using an independent (fully explicit)
time-stepping scheme for a representative set of numerics. The
qualitative behaviour of Eqs. (3)–(4) has also been independently
confirmed using the matlab internal PDE solver (pdepe).

2. Merging dynamics for chemotaxis models without cell-
growth

We begin by briefly revisiting the zero growth scenario (r = 0),
noting that this has been covered inmuch greater depth elsewhere
(e.g. [11]). Typical numerical simulations for parameters that
satisfy condition (7) are plotted in Fig. 2. Initially, Fig. 2(a), chemo-
taxis coupled with secretion of the attractant resolves the dis-
persed cell population into multiple aggregations. However, this
same process generates additional dynamics on a logarithmic
time scale, Fig. 2(b). Attraction between aggregates results in the
gradual loss ofmass froma smaller aggregate into amoredominant
neighbour(s), and its eventual merging and/or collapse. As such,
this coarsening results in the aggregates becoming more widely
dispersed.

The merging process for r = 0 has been studied in detail
by Schaaf [34], and for a related model in which χ is replaced
by the density dependent form χ(1 − u/Umax) (see [29,35]).
Potapov andHillen [36] employed a numerical bifurcation analysis,
indicating that merging corresponds to transient dynamics along
metastable (multiple peak) steady states. Dolak and Schmeiser [37]
utilised singular perturbation methods under a small diffusion
approximation. In essence, two local maxima must be sufficiently
close in order to ‘‘feel’’ each other and, hence, merge. This is
reflected in a super-exponential time increase between merging
events as the average distance between them increases (see
Fig. 2(b)).

Biologically, this coalescence of chemotactic aggregations is
observed in a number of real-life examples of chemotactic self-
organisation, such as bacteria populations cultured in a liquid
medium [1,2]. From a pattern formation standpoint, however,
we are often interested in the robust generation of repeated
structures: this is particularly pertinent to the emergence of certain
embryonic forms, such as hair follicles, pigment patterns and
somites, in which the pattern consists ofmultiple structures with a
fixed (approximately) spatial wavelength. While the zero-growth
model clearly generates these patterns transiently, it is unclear
whether this would be sufficiently robust for such a context.
Intuitively, cell growth could compensate any loss of cells fromone
aggregate to a neighbour.

3. Aggregation dynamics under cell growth

We consider r > 0 in Eq. (3). Following the nondimension-
alisation, Eqs. (3)–(4) contain three unspecified parameters, χ, r
and D, and the domain length L. Inevitably, determining estimates
for such parameters would vary according to the biological sys-
tem. For example, determining D requires cell and chemical diffu-
sion coefficients, yet estimates for the former can range between
2–4 × 10−6 cm2 s−1 for E. coli cells in a liquid medium [38] and
O(10−10) cm2 s−1 for fibroblasts in an extracellular matrix [39].

http://www.ma.hw.ac.uk/~painter/research/chaos.html
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(a) (b)

b

Fig. 2. Simulations of (3)–(4) with r = 0. Each plot tracks the space (horizontal axis)–time (vertical axis) cell density (u), with the grayscale reflecting an increasing cell
density between u = 0 (black) and u ≥ 2 (white). (a) Initial self-organisation of a homogeneously distributed cell population into distinct and (approximately) uniformly
spaced aggregates. (b) Merging dynamics over a longer timescale. Competition between the aggregates leads to their gradual collapse, eventually resulting in a few widely
dispersed aggregates. Eqs. (3)–(4) were solved with D = 1, χ = 2, r = 0 and L = 50. Numerical method as in text with ∆x = L/500.
Cell division rates are similarly variable, from as rapidly as once
every 15min or so (under appropriate nutrient conditions) for cer-
tain bacterial populations, to the orders of days and weeks in adult
mammalian tissues. In the absence of a specific application and
with the aim of a broader insight into the dynamical properties of
the model we forego parameter determination. In the discussion
we briefly consider the results in the context of specific applica-
tions.

Instead,webegin by performing repeated simulations of (3)–(4)
under the initial conditions (5) on a fixed domain L = 10.0
with parameters χ, r and D selected at random from uniform
distributions in the following ranges:
0.01 ≤ D ≤ 2.0, 0.0 ≤ χ ≤ 20.0, 0.0 ≤ r ≤ 2.0.
Eqs. (3)–(4) are computed until t = Tend (=104) and the solution is
classified at this time. Note that it is impossible to preclude slowly
evolving transients, yet a representative subset of solutions com-
puted to an extended time (Tend = 105) exhibited no significant
change in the results. This initial analysis revealed that the long-
time dynamics of solutions fall into multiple classes according to
their spatio-temporal properties.
H-solutions: Homogeneous steady state solutions. For parameter
sets (D, χ, r) that fail to satisfy (7), solutions quickly decay to the
uniform state.
S-solutions: Stationary spatial patterns. Multiple-peak patterns
develop (see Fig. 3(a) I–V for typical examples) that do not undergo
the merging dynamics associated with the zero-growth scenario.
P-solutions: Spatio-temporal periodic solutions. Spatial aggrega-
tions develop that undergo sustained temporal interactions with a
clear periodicity (see Fig. 3(b) I–V for various examples).
I-solutions: Spatio-temporal irregular solutions. Spatial aggrega-
tions develop that undergo sustained temporal interactions with
no discernible temporal periodicity (see Fig. 3(c) I–V for various
examples).

The spatio-temporal behaviour can, on an intuitive level, be ex-
plained through the addition of growth to the merging behaviour
discussed earlier: solutions evolve through a sequence of ‘‘merg-
ing’’ (as before) and ‘‘emerging’’ (in which new aggregations form).
Briefly, the merging of existing aggregations via chemotactic at-
traction creates a ‘‘hole’’ in the patterning field. This space is then
reoccupied via the emergence of a new aggregation peak driven
by cell growth. Clarification into which pattern class a particu-
lar solution belongs can be obtained by tracking the u–v phase-
plane trajectories at discrete spatial locations. Typical trajectories
for each of the above classes are plotted in the right hand col-
umn of Fig. 3: while H- and S-solutions simply correspond to fixed
points, P-solutions correspond to closed orbits and I-solutions gen-
erate ‘‘strange attractor’’ type trajectories, as often associated with
chaotic systems.
3.1. Variation within (χ, r)-space

Our initial analysis revealed that the simple addition of cel-
lular growth provides a mechanism for generating stationary
multiple-peak patterns, yet the additional appearance of complex
spatio-temporal behaviour raises further questions regarding their
robustness. To explore this in greater detail, D and L are fixed and
we explore dynamics at regularly spaced locations inside a por-
tion of (χ, r)-space. This creates smallwindows throughwhich the
variation in solution class across parameter space can be viewed.
Fig. 4 summarises the results at two fixed pairs: (a) D = 0.1, L =

10, and (d) D = 1.0, L = 20. In these plots, H-solutions are de-
noted by a dot while P-solutions and I-solutions are represented
by P and I respectively. For stationary patterns (S-solutions), we
use a number to denote the total number of aggregates formed,
where each internal aggregate is classified as 1 and each boundary
aggregate is classified as 0.5. Note, therefore, that both the pattern
of n-internal/2-boundary aggregates and that of (n + 1)-internal
aggregates will be denoted by an ‘‘n + 1’’ in these plots.

Closer to the instability border (as determined by condition (7)),
we predominantly observe stationary patterns, with the number
of peaks varying with r . Deeper within the unstable region, how-
ever, spatio-temporal patterning becomes increasingly prevalent.
This correlates with the 2D behaviour reported in [25], where in-
creasing the chemotactic sensitivity resulted in a loss of station-
ary solutions and onset of spatio-temporal behaviour.We note that
stationary solutions can be found throughout the parameter space,
yet these become restricted to relatively narrow strips deeper in-
side the unstable region: in Fig. 4(d), regions of 3 and 4 stationary
aggregates are separated by regions of P- and I-solutions. Analysis
into spatio-temporal pattern evolution reveals the importance of
parameters. Thus, the P-solution plotted in Fig. 4(b) (correspond-
ing to the boxed location in Fig. 4(a)) switches between 1 and 2 ag-
gregates, Fig. 4(c), while the I-solution in Fig. 4(e) (corresponding
to the boxed point in Fig. 4(d)) varies between 3 and 4 aggregates.
In both instances, this correlates with the position of the spatio-
temporal pattern with respect to the surrounding S-solutions.

3.2. Variation with domain length

Above we showed that stationary patterns of distinct wave-
length are typically separated by broad regions of spatio-temporal
patterning.Within these regions, while the space between two ex-
isting aggregates permits new aggregate growth, proximity to a
neighbour results in merging. This implies a role for domain size
which we investigate by varying L for two fixed parameter sets:
(PS1) (r,D, χ) = (1, 1, 5) and (PS2) (r,D, χ) = (1, 1, 10). The
former describes a point just inside the unstable region (as deter-
mined by condition (7)), and a plot of the dispersion relation for
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Fig. 3. Solution classes observed in Eqs. (3)–(4). In each row, columns I–V provide examples of each solution class: cell density (u) is plotted as a function of space (horizontal
axis) and time (vertical) with the black to white grayscale reflecting an increasing cell density. Column VI plots a typical time trajectory in the u–v phase plane at a specific
spatial location (here, x = L/4). (a) Stationary patterns (S-solutions). Solutions evolve to a fixed spatial pattern with a characteristic spatial wavelength. The corresponding
phase plane trajectory at x = L/4 yields a fixed point. (b) Spatio-temporal periodicity (P-solutions). Solutions evolve to a spatial pattern evolving with clear temporal
periodicity. The corresponding phase plane trajectory gives a closed orbit. (c) Spatio-temporal irregularity (I-solutions). Solutions evolve to a spatial pattern evolving
arrythmically. The corresponding phase plane trajectory at x = L/4 has a strange attractor appearance. For the simulations, the domain length was fixed at L = 10 while
parameters χ, r and D were randomly selected as described in the text. A total of 500 simulations were performed using the numerical scheme outlined in the text with
∆x = L/400.
this set (Fig. 5(a), dashed line) reveals a correspondingly narrow
range of unstable wavenumbers (i.e. for which at least one eigen-
value of the stability matrix (6) has positive real part). (PS2) de-
fines a point within the unstable region, and the range of unstable
wavenumbers is broader (solid line in Fig. 5 (a)). Under the imposed
(zero-flux) boundary conditions, unstable wavenumbers are lim-
ited to the discrete values k =

nπ
L for n = 0, 1, 2 . . . , where the

mode n indicates the number of aggregates (n = 1 corresponds
to a single boundary aggregate, n = 2 corresponds to a full aggre-
gate and so on). Thus, as L is increased from zero, we expect the
first pattern to become unstable to be a single boundary aggregate
at some critical value Lcrit. In Fig. 5 (b) we plot the unstable modes
as a function of domain length under the two parameter sets; note
the much wider range of unstable modes for (PS2).

We plot a representative subset for (PS1) in Fig. 6. Here, Lcrit =

1.94 and there is a corresponding transition from H-solution to
a 1-boundary aggregate S-solution as L increases from 1 to 2.
Further increases are accompanied by transitions in the number
of aggregates in the spatial pattern that forms. For all explored
domain lengths the patterns are of stationary type (S-solution).

With (PS2), Lcrit = 1.12 and a similar bifurcation between
H- and S-solutions occurs, see Fig. 7. At lower domain lengths,
solutions are consistent with (PS1), with S-solutions evolving.
However, as the domain length is steadily increased we observe
a greater prevalence for spatio-temporal patterning, with a further
tendency for I-solutions over P-solutions at larger domain lengths.
A limited set of numerics performed atmuch larger domain lengths
exclusively generated I-solutions (example shown for L = 200).
As the domain length is increased, more and more modes become
unstable, Fig. 5(b). This corresponds, according to Aida et al. [25], to
an increase in the dimension of the attractor, and supports higher
levels of complexity.
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Fig. 4. (a) Variation in pattern class across (r, χ) parameter space when D = 0.1 and L = 10. Plot shows the pattern classified following a simulation of Eqs. (3)–(4) at
various (r, χ) pairs: (·) H-solution; (Number) S-solution, with number indicating number of aggregates; (P) P-solution; (I) I-solution. (b) Space-time plot showing the cell
density evolution for the P-solution found at the squared location in (a). (c) A plot of the number of aggregates as a function of time for the spatio-temporal pattern solution
plotted in (b). (d)-(f) Equivalent set of results for D = 1 and L = 20. Numerics as described in the text, with ∆x = L/400.
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Fig. 5. (Left) Plot of the dispersion relation showing the range of unstable wavenumbers (k) for the two parameter sets (PS1) (r,D, χ) = (1, 1, 5) (dashed line) and (PS2)
(r,D, χ) = (1, 1, 10) (solid line) for the numerical investigations. (Right) Plot showing the unstable modes as a function of domain length for each parameter set, using the
same key as shown in the left hand plot.
Fig. 6. Stationary patterns evolve close to the stability/instability interface over a range of domain lengths. Space (horizontal)–time (vertical) cell density maps for solutions
to (3)–(4) with initial conditions (5) under varying L and fixed (r,D, χ) = (1, 1, 5). Solutions are plotted for t ∈ [1500, 2000] (note that a limited set of runs to larger times
indicated no change in solution behaviour). The numerical method is as described in the text and we set ∆x = L/400 (we note that the same qualitative behaviour was
observed using the same fixed ∆x for each domain length).
3.2.1. Emerging length
The observation that new aggregates emerge as the domain

length increases led us to investigate a possible ‘‘emerging length’’
Le, i.e. a measure for the pattern transition between L = 6
and L = 7 in Fig. 7. For our argument we consider the space
between two aggregates: here, the cell density is relatively low,
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Fig. 7. A variety of H-, S-, P- and I-solutions are observed for (PS2) as the domain length is increased. Each frame shows the cell density (u) plotted in space (horizontal
axis) and time (vertical axis) with the colorscale reflecting an increasing cell density between u = 0 (black) and u ≥ 2.0 (white). Eqs. (3)–(4) were solved with
(r,D, χ) = (1, 1, 10). Simulation details as in Fig. 6 for the top two rows. The same qualitative behaviour was also observed when using the same fixed ∆x at each domain
length. For the bottom row (on a larger domain) we use ∆x = L/2000.
increases in the population are predominantly driven by the
proliferation term ru(1−u) and newly created cells will be subject
to both diffusion and chemotaxis. If a neighbouring aggregate is
too close, the attraction may be sufficiently strong that new cells
become absorbed into it before establishing their own. To form
a separate and new aggregate, the local growth must overcome
this attraction. At the onset of a new aggregate, at two locations
between it and its neighbours the local flux will be zero and we
therefore approximate an emerging length via a classical critical
domain size problem in which the open space between aggregates
must be large enough to support a non-constant population with
zero flux boundary conditions, i.e.

ut = (Dux − χuvx)x + ru(1 − u),
vt = vxx + u − v,

(8)

on [0, Le] with boundary condition

ux(0, t) = ux(Le, t) = 0, vx(0, t) = vx(Le, t) = 0. (9)

For the insertion of an additional aggregate in the interval [0, Le]
the zero solution (u∗, v∗) = (0, 0) must be unstable. We use
linearisation and find a corresponding eigenvalue λ > 0. To
initiate an internal aggregate, the corresponding eigenfunction
should have one isolated maximum in the middle of the domain.
The linearisation of the above model (8) at (0, 0) reads
Ut = DUxx + rU
Vt = Vxx + U − V .

The first equation decouples and can be studied separately: it is the
same equation as for the standard critical domain size problem for
the Fisher equation ut = Duxx + ru(1−u) and the spectrum is well
known (e.g. [40]). The eigenvalues are given by

λn = −D

nπ
Le

2

+ r, n = 0, 1, 2, . . . .

The first nontrivial eigenfunction with a maximum in the middle
arises for n = 2. Hence the critical length for initiation of an
internal maximum is given by

−D

2π
Le

2

+ r = 0,

which can be solved by

Le = 2π


D
r
. (10)
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Fig. 8. Investigation into sensitive dependence to initial conditions for each pattern class. For each row, columns I–IV plot in the top subframe the solutions u (solid line)
and upert (dashed line), and in the bottom subframe the difference u − upert at distinct times: (I) immediately following the perturbation (+0), (II) 100 time units following
the perturbation (+100), (III) +200 and (IV) +300. Column V plots the space–time density map for log10 |upert(x, t) − u(x, t)|. The colorscale indicates levels between ≤ −6
(black) and ≥ 0 (white), and the arrowhead along the vertical axis indicates the time at which the perturbation is applied. Column VI gives the log10 plot of the absolute
difference integrated over the domain length. In this plot we also draw the best-fit straight line (determined via least-squaresmethod) following the initial perturbation. The
slope of this line gives the numerical Lyaponov exponent (LE) as indicated. (a) S-solutions. Following the initial perturbation, the difference in solutions quickly decays to
imperceptible levels. The numerical Lyaponov exponent is clearly negative. (b) P-solutions. Following the perturbation a slight phase shift occurs, indicated by the persistent
(and periodic) difference in the solutions. The numerical Lyaponov exponent is effectively zero. (c) I-solutions. Following the perturbation, the difference between solutions
grows over time. The numerical Lyaponov exponent is clearly positive. Numerical details and model parameter values as given in Fig. 7, with Tpert = 2000, δ = ε = 0.01.
Remarks:

1. For Fig. 6, we note that D = r = 1 and χ = 10, thus the
emerging length is Le = 2π ≈ 6.28. Clearly, this corresponds
with the switch between the S-solution at L = 6 and the
emerging events at L = 7.

2. Note further that there is no dependence on χ in (10).
Simulations similar to those in Fig. 6 with D = r = 1 (as above)
and χ = 25 demonstrate a similar transition from L = 6 to
L = 7.

3. The emerging length also corresponds to the emerging dis-
tances observed for larger domain simulations.

4. Our emerging length estimate assumes that the flux vanishes at
locations close to the existing peaks, reflected in boundary con-
ditions (9). Under certain conditions this may not be satisfied,
for example if the aggregates are diffuse, and the estimate may
differ markedly from the actual emerging length.

4. Stability/robustness of solution classes

In this section we explore numerical stability for the various
solution classes. To address this, we consider the impact of a
small perturbation applied at t = Tpert and track the subsequent
difference between perturbed and unperturbed solutions. For the
figures presented we consider a small step change to cell density
applied to a central portion of the domain:

upert(x, Tpert) = u(x, Tpert) +


ε if |x − L/2| ≤ δL,
0 otherwise,

where upert(x, t) and u(x, t) are the perturbed and unperturbed
solutions respectively, ε is the size of the step and δ ∈ [0, 0.5]
determines its width. Obviously, upert(x, t) = u(x, t) for t < Tpert.

Fig. 8 plots typical results for (a) S-solutions, (b) P-solutions and
(c) I-solutions. Columns I–IV plot in the top subframes the solutions
u(x) and upert(x) at specific times following the perturbation,
and in the bottom subframes the difference u(x) − upert(x). In
Column Vwe plot the base-10 logarithm of the absolute difference
(log10 |upert(x, t)−u(x, t)|) while in ColumnVIwe plot the base-10
logarithm of the space-averaged absolute difference:

L(t) = log10


1
L

∫ L

0
|upert(x, t) − u(x, t)|dx


.

The slope of the best-fitting straight line (calculated via a least
squares approximation) through L(t) following the perturbation
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generates a numerical estimate for the Lyapunov exponent. Neg-
ative slopes indicate stability, zero-slopes imply neutral stability
(for example, periodic orbits) and positive slopes indicate instabil-
ity and a sensitive dependence to initial conditions (see [41]).

The results indicate that S-solutions are robust to perturba-
tions: the perturbed solution quickly converges to the unperturbed
solution, confirmed through a negative Lyapunov exponent. Peri-
odic patterns remain periodic, yet a slight phase shift can be ob-
served in the perturbed solution. Hence the error never decays to
zero and the Lyapunov exponent is zero. I-solutions remain irreg-
ular and unperturbed/perturbed solutions diverge with time and
L(t) increases towards a maximum, corresponding to the typical
distance between arbitrary solutions. The straight line fitting to
L(t) in the region where it is increasing yields a positive Lyapunov
exponent, indicating sensitive dependence to the initial conditions.
We note that the same tests have been applied for various exam-
ples in each class, for distinct forms and sizes of perturbations, and
applied at different times (Tpert). In each case, equivalent behaviour
was observed: I-solutions always generated a positive Lyaponov
exponent, while P- and S-solutions generated zero and negative
exponents, respectively.

5. Bifurcation path to spatio-temporal irregularity

In Section 3 we demonstrated that the parameter set signif-
icantly impacts on the class of patterning. Specifically, close to
the stability/instability interface stationary solutions are predomi-
nantly observed, while further away spatio-temporal patterns can
be found. In this section amore systematic analysis is conducted on
the pattern class transition as we move through parameter space.
Here we set r = D = 1 and L = 20 and vary the size of the chemo-
tactic sensitivity χ in the following manner:

(i) set χ = 0 and apply the initial conditions in (5);
(ii) Eqs. (3)–(4) are solved numerically until T = Tend and the form

of solutions is classified;
(iii) a small (≤1%) spatially randomised perturbation is applied

to the solution at T = Tend. This allows distinct branches
originating at a particular bifurcation point to be tracked
following multiple runs. The value for χ is incremented and
we return to step (ii).

Thus, at each increment ofχ , a new simulation is initiated from the
(perturbed) solution at the final time of the previous simulation
(rather than random initial conditions). This approximates a con-
tinuous bifurcation analysis by tracking the changing (numerical)
stability of specific solution branches as χ is increased. Switches
between solution classes are interpreted as the loss of (local) sta-
bility for one branch and bifurcation onto a new one. We should
stress that long-time transients cannot be excluded, yet identical
results have been obtained in a more limited run with larger Tend.
The above sequence was applied multiple times for the same pa-
rameter set with distinct randomised perturbations at Tend.

Under the fixed parameters r = D = 1, L = 20 and zero-
flux boundary conditions, linear stability analysis predicts that the
H-solution becomes unstable for χ > χ∗

≃ 4.014. Furthermore,
for χ just above this value, we can expect growth of a 3 aggregate
pattern, corresponding either to 2 internal/2 boundary peaks or 3
internal peaks. Under multiple runs of the simulation procedure,
we observed two distinct sequences, summarised in Figs. 9 and 10,
and corresponding to an initial bifurcation fromH-solution to the 2
internal/2 boundarypeak S-solution and3 internal peak S-solution,
respectively.

Fig. 9 describes the sequence in which the H-solution initially
loses stability to a branch of 2-internal/2-boundary S-solutions
as χ increases above χ∗, see frames (a)–(b). This branch remains
locally stable as χ is further increased, however peaks become
notably sharper as the chemotactic attraction becomes stronger,
Fig. 9(c). For χ & 5.195, however, the S-solution branch becomes
unstable and a bifurcation is observed onto a path of P-solutions.
Fig. 9(d) reveals this P-solution branch at χ = 5.21: note that the
oscillations begin small (reflected in a small closed orbit for the
phase plane trajectories at L/2) but grow with further increases in
χ (e.g. Fig. 9(e)).

Between χ = 5.275 and χ = 5.28 we observe a ‘‘period-
doubling bifurcation’’ in the P-solution patterning class (compare
Fig. 9(e) and (f)), classified by an increased spatio-temporal
complexity and a doubling in the loop structure for the trajectories
calculated at x = L/2. This period-doubling is also found to occur
at other spatial locations at the same increment in χ , although it is
impossible to determine whether this is truly simultaneous across
space: inevitably we are limited by the resolution in the numerical
scheme. This new class of P-solution remains stable up to χ ∼

5.425 before a second period doubling takes place (from 2-loop
to 4-loop), c.f. Fig. 9(g) and (h). Small further increases in χ result
in a loss of stability for P-solutions and a transition to I-solutions,
determined by the appearance of trajectories at x = L/2, see
Fig. 9(j)–(l). As χ is increased further, I-solutions remain, although
it is noted that brief returns to P-solutions occur, for example, as
shown in Fig. 9(m). The above ‘‘period-doubling’’ to irregularity
sequence is commonly associated with chaotic systems.

An alternative sequence is found to take place when the ini-
tial bifurcation at χ∗ results in the emergence of a 3-internal
aggregates pattern, Fig. 10(a). This distinct S-solution branch sub-
sequently loses stability to P-solutions at a lower value of χ
than in the sequence represented in Fig. 9, as demonstrated in
Fig. 10(a)–(b). We note that the closed orbits at x = L/2 first
observed following the bifurcation from S-solutions to P-solution
have a double-loop structure (i.e. there was no initial bifurcation
into a single-loop orbit). As χ is increased further, P-solutions lose
stability to I-solutions, Fig. 10(d)–(e). In this sequence, we also
failed to observe the ‘‘period doubling’’ of the loop structure as
above, although a possible explanation is an insufficient resolution
for the step increase in χ . With increasingly pronounced spatio-
temporal irregularity, the density at one of the boundaries in-
creases sufficiently to form a stable boundary aggregate and there
is a switch from I-solutions to a 3.5 aggregate S-solutions for χ &
5.13. These two distinct bifurcation sequences clearly imply that
multiple classes of solutions are locally stable at the same position
in parameter space.

6. Discussion

The rich variety of patterning observed within even relatively
simple models for chemotaxis is remarkable. To date, the majority
of rigorous analysis has focused on finite time blow-up and/or
global existence of solutions (e.g. [11,42] for reviews). While
the existence of spatio-temporal patterning has been noted by
a number of authors (e.g. [29,25,20,21,31,30,11]), a systematic
analysis is currently lacking. In this paper we begin this study
via a detailed numerical analysis of a basic chemotaxis model
incorporating a logistic cell growth term, as given by (3)–(4).
While we have not yet rigorously demonstrated chaotic behaviour,
we have found both a positive Lyapunov exponent (sensitive
dependence to initial conditions) and a potential period doubling
route to spatio-temporal irregularity. Such features are often
associated with chaotic systems, suggesting that Eqs. (3)–(4) are
indeed capable of spatio-temporal chaos. We have also estimated
the dimension of the compact global attractor using the results
of [25], observing that increasing complexity correlates with
growth in the attractor dimension. A full identification of the
attractor would appear to be a highly challenging problem which
we leave for future research.
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Fig. 9. Key transitions in solution class as the parameter χ is continuously increased, see text for details. For each subfigure (a)–(o) we plot (left) the u–v phase plane
trajectories for a specific spatial location (x = L/2) and (right) a portion of the space (horizontal axis)–time (vertical axis) cell density plot at the end of each simulation run.
Numerical scheme as outlined in the text with other model parameters taken to be r = D = 1 and L = 20. We use ∆x = L/200 for the spatial discretisation. A movie of this
sequence is available at http://www.ma.hw.ac.uk/~painter/research/chaos.html.
Spatio-temporal patterning appears to occur via a repeating
process of ‘‘emerging and merging’’ processes, in which a new
aggregate emerges (driven predominantly by cellular growth) in
a low density region of space before ‘‘merging’’ with existing
aggregates (driven predominantly by chemotactic attraction).
Interesting questions remain regarding suitable estimates for
typical emerging lengths (the size of open space necessary for
a new aggregate to develop) and merging lengths (i.e. a typical
distance which leads to merging of peaks): relationships between
these may determine whether stationary or spatio-temporal
patterning occurs. In this paper we employed a simple stability
analysis to estimate a value for the former, although it is noted
that this estimate is imprecise under certain scenarios. For the
latter, a number of perturbation arguments have been suggested
in the literature (e.g. [36,37]), but thus far we have been unable to
generate a critical merging size from these methods. The merging
process observed here is reminiscent of coarsening dynamics in the
Cahn–Hilliard equation [43].1 In that case the coarsening process

1 The literature on coarsening for Cahn–Hilliard equations and Ostwald ripening
is immense. It is impossible to give due regard to all important contributions and
we therefore confine ourselves to citing the original paper by Cahn and Hilliard to
represent this large discipline.

http://www.ma.hw.ac.uk/~painter/research/chaos.html
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Fig. 10. Alternate bifurcation sequence to that presented in Fig. 9. Here, the initial transition fromH- to S-solution results in a 3 internal aggregate pattern and the subsequent
bifurcations are distinctly different. Model and numerical details as described in Fig. 9.
(a) (b) (c)

Fig. 11. Spatio-temporal patterning observed in specific applications of chemotaxismodels similar to (1)–(2). (a), (b) Tumour invasionmodel of [20–22], see Eq. (11), showing
space–time density maps for cells and the matrix. The initial invasion of the cells from left to right reduces the matrix to zero. The subsequent chemotactic interactions
between cells and a proteolytic enzyme (not shown) generate both stationary and ‘‘anarchic’’ cell populations according to the size of the chemotactic sensitivity, consistent
with the results in this paper. Equations as described in the text with Dc = 0.001,Dp = 0.01, φ = 0.05, α = 0.1, β = 0.3, δ = 5, µ1 = 0.15, µ2 = 0.75 and (a)
χ = 0.035, (b) χ = 0.05. Initially, we set a population of tumour cells at the x = 0 boundary and impose zero-flux boundary conditions on a domain of length L = 4.
(c) Model for morphogenesis during embryonic development, in which the linear production of chemoattractant by cells in Eq. (2) is replaced by a saturating term αu

µ+u ,
see [14–16]. For sufficiently strong chemotaxis, the initially quasi-stationary pattern of cells degenerates into irregular spatio-temporal patterning. Parameter values are
D = 0.25, χ = 10, r = α = µ = 1 and L = 25. Initially we consider small randomised perturbations of the steady state and zero flux boundary conditions. Numerical
method for all simulations as described in Section 1.4.
is driven by a double-well potential, which does not exist for the
model studied here.

Closer inspection of the patterns reveals the complicated inter-
actions betweenwhat appear to be travelling pulses and stationary
local spikes. An exhaustive analysis into spike and travelling wave
solutions of Eqs. (3)–(4), together with their stability properties, is
an intriguing avenue for future research. Of ultimate interest is the
geometric structure of the global attractor, the steady states and
their unstable manifolds, which remains a distant goal.

The results presented here have been restricted to the case
of zero-flux conditions applied at the boundary. While these are
standard in many typical biological applications, it is important
to remark that they can impose on the pattern form, particularly
for smaller domains. To explore the potential impact of boundary
conditions, a more restricted investigation was undertaken for
periodic boundary conditions, and the same qualitative behaviour
was observed. However, a more detailed exploration into the role
of boundary conditions on the spatio-temporal properties of the
model remains a subject for future research.

We also note the relevance of the results here in the con-
text of certain applications. As mentioned earlier, Chaplain and
coauthors [20–22] observed complicated spatio-temporal dynam-
ics driven by chemotaxis in a detailed model for tumour invasion.
A reduced version of their model, formulated in [21], considers the
three equations:

ct = ∇(Dc∇c − χc∇p − φ∇m) + µ1c(1 − c − m),

mt = −δmp + µ2m(1 − c − m), (11)
pt = Dp∇

2p + αc − βp.
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The above describes an invasive tumour cell population (c) which
moves both haptotactically up gradients of the immobile extracel-
lular matrix density (m) and chemotactically up gradients of a dif-
fusible proteolytic enzyme (p). The latter is produced by the cells
and degrades the extracellular matrix on contact. Cell prolifera-
tion and matrix regeneration are both modelled via logistic-type
growth terms. The simulations plotted in Fig. 11(a)–(b) (using pa-
rameters and initial conditions from [21]) reveal how the initial
wave of tumour cells invades through the tissue, leaving either sta-
tionary cell aggregates (Fig. 11(a)) or complicated spatio-temporal
patterning (termed ‘‘anarchic’’ in [20–22], Fig. 11(b)) in its wake
according to the size of the chemotactic sensitivity, χ . Under the
parameters indicated in the caption to Fig. 11, we note a scaling in
which δ is large compared to other model parameters. Thus, 1/δ
is small and by dividing the second equation of (11) by δ we ob-
tain m ≈ 0 to leading order. In this case, Eq. (11) reduces to our
model (1)–(2) andwe can expect similar behaviour. Effectively, our
chemotaxis model describes the outer solution on the slow mani-
fold in a scaling limit of the Chaplain–Lolas model.

Models similar to Eqs. (1)–(2) have also been developed in the
context of embryonic patterning [14–16] and angiogenesis [19].
Here, the linear production of chemoattractant by cells in Eq. (2)
was replaced by a saturating term αu

µ+u , reflecting an additional
feedback that curbs excessive attractant production at high cell
densities. We note that irregular spatio-temporal patterning
persists under this variation, see Fig. 11(c), as well as in other
variations of the model (e.g. [29,30,11]).

In the context of embryonic development, this raises significant
questions as to how robust basic cell-chemotaxis models would be
for certain forms of morphogenesis: while it undoubtedly can gen-
erate stationary multi-peak patterns, the appearance of irregular
spatio-temporal behaviour suggests an underlying sensitivity. Of
course, we should note that developmental processes will be sub-
jected to greater levels of signalling, additional patterning mecha-
nisms, specific geometries, boundary constraints etc., all of which
may conspire to increase robustness.

A large amount of work has been conducted on irregular spatio-
temporal patterning in ecological systems, see [44] for details. For
example, Sherratt et al. [45] demonstrated the onset of chaotic
oscillations in the wake of a predator population invading into
a field of prey. Particularly pertinent to the present study on
chemotaxis, Pearce et al. [31] have demonstrated chemotaxis-
induced spatio-temporal irregularities in a host–parasitoid system.
While the connection to the model developed here is less direct
than the applications above, it is clearly tempting to speculate that
a similar phenomenon of growth and chemotaxis may drive the
dynamics reported in [31].

Although spatio-temporal chaos within a biological system has
yet to be categorically demonstrated, the results here suggest that
chemotactic processes offer a novel area for exploring the presence
of such behaviour. The combined action of chemotaxis and growth
has already been shown to drive complex spatial patterning in
populations of cultivated bacteria (e.g. [1–3]), and the malleability
of such systems offers a tantalising experimental case system for
such investigations.
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