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Abstract

Metastatic seeding of distant organs can occur in the very early stages of primary tumor
development. Once seeded, these micrometastases may enter a dormant phase that
can last decades. Curiously, the surgical removal of the primary tumor can stimulate
the accelerated growth of distant metastases, a phenomenon known as metastatic
blow-up. Recent clinical evidence has shown that the immune response can have
strong tumor promoting effects. In this work, we investigate if the pro-tumor effects
of the immune response can have a significant contribution to metastatic dormancy
and metastatic blow-up. We develop an ordinary differential equation model of the
immune-mediated theory of metastasis. We include both anti- and pro-tumor immune
effects, in addition to the experimentally observed phenomenon of tumor-induced
immune cell phenotypic plasticity. Using geometric singular perturbation analysis,
we derive a rather simple model that captures the main processes and, at the same
time, can be fully analyzed. Literature-derived parameter estimates are obtained, and
model robustness is demonstrated through a time dependent sensitivity analysis. We
determine conditions under which the parameterized model can successfully explain
both metastatic dormancy and blow-up. The results confirm the significant active role
of the immune system in the metastatic process. Numerical simulations suggest a
novel measure to predict the occurrence of future metastatic blow-up in addition to
new potential avenues for treatment of clinically undetectable micrometastases.
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1 Introduction

Metastasis has long been viewed as the inevitable final step in cancer progression—the
growth of a primary tumor leads to local invasion into the surrounding tissue where
the tumor eventually encounters (or recruits) blood vessels, which provide it with a
method for distant dissemination, which occurs stochastically downstream from the
primary tumor (Valastyan and Weinberg 2011). From this point of view it is reasonable
to assume that treatment of a primary tumor at a sufficiently early time may have a
good chance of preventing metastatic spread. However, recent evidence across multiple
cancers has suggested that metastases can be seeded during early stages of primary
tumor development, well before the primary tumor is clinically detectable (Friberg
and Nystrom 2015; Hanin and Rose 2018). Early micrometastases may then enter an
extended period of metastatic dormancy, which can be as long as decades (Hanin et al.
2016). As a consequence of this early seeding and subsequent metastatic dormancy,
the act of simply removing the primary tumor may be insufficient to effectively address
metastatic disease.

In fact, a quite concerning observation has been made by researchers for more
than a hundred years (Hanin and Rose 2018): the removal of a primary tumor can
trigger growth of previously unknown metastases throughout the body. We will use
the term metastatic blow-up to describe this phenomenon of accelerated metastatic
growth upon intervention at the primary site, but the process has also been referred
to as the “stimulating effects of primary tumor resection on metastases” (Hanin and
Rose 2018) and “postsurgery metastatic acceleration” (Benzekry et al. 2017). Many
theories have been proposed to explain metastatic blow-up, and they have stimulated
detailed mathematical modelling (Benzekry et al. 2014, 2017, 2020; Hanin et al. 2016;
Hanin and Rose 2018; Michelson and Leith 1994, 1995; Wilkie and Hahnfeldt 2017;
Rhodes and Hillen 2019; Wilkie and Aktar 2020). We will discuss these theories and
their modelling in more detail in Sect. 1.1.

One of these theories is the immune-mediated theory of metastasis (Rhodes and
Hillen 2019; Shahriyari 2016), which is the focus of this paper as it may provide
a convincing explanation of metastatic blow-up. The key of the immune-mediated
theory is the inclusion of pro-tumor immune effects and immune cell phenotypic plas-
ticity. In fact, there is ample literature (see a detailed discussion by Rhodes and Hillen
(2019)) showing that immune cells can be “re-programmed” or “educated” (Liao et al.
2013; Liu and Cao 2016) by the tumor to play a pro-tumor role. Rhodes and Hillen
(2019) developed a mathematical model for tumor-immune dynamics at a primary
and a metastatic site, and used it to analyze dynamics of metastasis such as metastatic
growth at sites of injuries and the role of immune therapies. Here we simplify the
Rhodes and Hillen (2019) model and focus on the tumor-immune dynamics at the
metastatic site. Through the use of techniques from geometric singular perturbation
analysis (Hek 2010; Jones 1995) we simplify the model to allow for the discovery
of meaningful analytic results. We then parameterize our model using estimates from
the literature, perform a parameter sensitivity analysis, and use the calibrated model
to simulate clinically relevant scenarios. We find that the immune-mediated theory of
metastasis can successfully explain metastatic blow-up in the case of highly inflam-
matory tumors and our model predicts that pro-tumor immune effects play a key role
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in the phenomenon. Based on our results, clinical tests to distinguish the makeup of
local immune cell populations done only three to four weeks post primary resection
may be capable of predicting whether or not metastatic blow-up will occur—even if
blow-up is only predicted to occur after an extended period of dormancy.

1.1 Metastatic dormancy and blow-up

Within the literature the term dormancy is used in a variety of contexts. Generally it is
used to refer to a period of time over which a tumor is neither growing nor shrinking
(Wilkie 2013). The literature distinguishes between cellular and tumor dormancy
(Aguirre-Chiso 2007; Goddard et al. 2018; Neophytou et al. 2019). While the former
is often used as a synonym for cellular quiescence (Aguirre-Chiso 2007) and is most
widely used when the total number of cells within a tumor is very small—in the case of
early metastatic seeding, for example—the latter is more general and can include any
situation in which the tumor cells are undergoing proliferation and apoptosis at similar
rates (Aguirre-Chiso 2007; Goddard et al. 2018; Neophytou et al. 2019; Wilkie 2013).
Several mechanisms have been proposed to explain dormancy and include appeals
to cancer stem cells (Giancotti 2013), cytotoxic immune control of tumor growth
(Wilkie 2013), limited tumor growth due to poor vascularization (Neophytou et al.
2019), disruption of adhesion signaling (Aguirre-Chiso 2007), and genetic regulation
(Goddard et al. 2018) among others. For an extensive list of potential mechanisms
and appropriate references, please consult the reviews of Aguirre-Chiso (2007) and
Neophytou et al. (2019). For a review of mathematical models of immune-mediated
primary tumor dormancy—which Giancotti (2013) suggest may be a phenomenon
distinct from metastatic tumor dormancy—please consult the review of Wilkie (2013).

Much of the theory discussed here has been developed from concomitant resistance
(CR) experiments. In CR experiments two tumors are seeded in a test species (typically
mice) and the growth of one tumor is compared against that of the other. It is regularly
observed that one tumor can inhibit the growth of the sister tumor, thereby creating
growth resistance in the smaller tumor due to the presence of the larger tumor (Michel-
son and Leith 1995; Goddard et al. 2018; Prehn 1993; Ruggiero et al. 2012). CR has
drawn the attention of a number of mathematical modelers (Benzekry et al. 2014,
2017; Michelson and Leith 1994, 1995; Wilkie and Aktar 2020) developing descrip-
tive mechanistic models of the phenomenon to discern between potential regulating
mechanisms and/or offer potential comments on therapies.

Just as the number of potential mechanisms responsible for metastatic dormancy
are many and varied, so are those potentially responsible for metastatic blow-up (Neo-
phytou et al. 2019). We present a summary of a number of the more popular integrated
theories of metastatic dormancy and blow-up below (Benzekry et al. 2014, 2017,
Chiarella et al. 2012; Hanin and Rose 2018). We do not claim that this list is exhaus-
tive (for example, the effect of size is neglected here, but considered elsewhere (Gorelik
1983; Ruggiero et al. 2012)), and for additional details we suggest the reader consult
any of the references mentioned.

Theory 1: Resource monopolization by the primary tumor Tumor growth is
resource and nutrient intensive. Multiple tumor sites throughout the body compete with
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each other for these resources. The primary tumor—by virtue of being the primary—
has priority access to these resources resulting in limited resources for the metastases
and, consequently, limited metastatic growth. Upon primary tumor removal, the largest
consumer of resources is eliminated, resulting in an increased access to nutrients for
the metastases, resulting in metastatic blow-up.

An early, conceptually simple theory (also referred to as atrepsis theory (Tyzzer 1913)),
resource monopolization has been rejected as a potential mechanism for dormancy and
blow-up by Benzekry et al. (2017) wherein the corresponding mathematical model
could not accurately fit experimental results performed in tandem. The model of Ben-
zekry et al. (2017) is designed to analyze CR, i.e. results relied on simultaneous
injection of two identically-sized tumors within the experimental animals. This setup
does not necessarily carry over to a naturally occuring metastasis (Gorelik 1983). Fur-
thermore, atrepsis theory has gained new life with the general “nutrients” defined as
supportive amino acid milieus (Ruggiero et al. 2012).

Theory 2: Immune surveillance of metastases Primary tumor growth elicits a cyto-
toxic immune response. If the primary tumor is sufficiently large, it may successfully
evade this immune response, whereas the growth of smaller metastases may be effec-
tively inhibited. By removing the primary tumor, the corresponding immune response
is also abrogated. Without systemic immune surveillance, the previously controlled
metastases are now capable of rapid growth, resulting in metastatic blow-up.

A number of mathematical models have appealed to this theory to explain their model
results. Eikenberry et al. (2009) used this reasoning to explain the blow-up they
observed using a partial differential equation (PDE) model of (locally) metastatic
melanoma. Similarly, the Enderling group (Poleszczuk et al. 2016; Walker et al. 2018)
appealed to this framework to explain the results of their ordinary differential equa-
tion (ODE) model of immune trafficking between distant organs investigating potential
mechanisms for abscopal effects (Dewan et al. 2009) (the observation of systemic anti-
tumor effects arising from a localized treatment). However, concomitant resistance
(CR) has also been observed in immuno-deficient mice, hence immune surveillance
cannot be the entire story (Benzekry et al. 2014, 2017; Gorelik 1983).

Theory 3: Local promotion and global inhibition of tumor growth Tumors are
cytokine and chemokine factories (Coughlin and Murray 2010) producing both pro-
moters and inhibitors of tumor growth, and angiogenesis (among other effects). Prehn
(1993) proposed that primary-tumor-produced promoters of angiogenesis act locally—
supporting primary tumor growth—whereas angiogenic inhibitors act globally and
thus inhibit metastatic growth. More specifically, the amino acid isomers meta- and
ortho-tyrosine (m- and o-tyr, respectively) have been shown to play important roles
in CR (Chiarella et al. 2012; Ruggiero et al. 2012) as they are capable of inhibiting
tumor growth. It is thought that the primary tumor is able to cultivate a pro-growth
amino acid milieu that can successfully counteract the growth inhibitory effects of
the m- and o-tyr, whereas distant metastases cannot, thus accounting for differences
in primary and secondary tumor growth rates. Consequently, metastases are expected
to remain in a dormant state in the presence of a primary tumor, and grow upon the
removal of the primary tumor and its associated systemic angiogenesis inhibitors, thus
accounting for metastatic blow-up.
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Benzekry et al. (2017) explicitly include a generalized systemic inhibitor of tumor
growth in their ODE model of distant tumor-tumor interactions and find that this model
can most successfully fit experimental data compared to models of either resource
monopolization or of angiogenesis inhibition. Similar results were reported by Hanin
and Rose (2018) where the authors demonstrated that the likelihood maximizing sce-
nario that accounts for metastatic blow-up was suppression of metastatic growth when
the primary tumor is present, and a significant increase to the metastatic growth rate
upon primary tumor removal. These works provide theoretical support for this theory
of metastatic dormancy and blow-up.

Theory 4: Primary resection induced inflammation Relevant most specifically to
blow-up, this theory invokes the well-known pro-tumor effects of the immune system
and inflammation (Balkwill and Mantovani 2001; de Mingo Pulido and Ruffell 2016;
Rhodes and Hillen 2019; Shahriyari 2016) to explain the phenomenon. Primary tumor
resection induces a significant systemic, but transient, inflammatory response (Maida
et al. 2009; Pascual et al. 2010), which produces pro-growth, pro-angiogenesis, and
immune-suppressive factors associated with wound-healing. These pro-tumor factors
enter the circulation and promote metastatic growth upon arrival to the sites of previ-
ously dormant micrometastases, yielding metastatic blow-up.

Based on these observations we have recently developed a mathematical model
for the immune-mediated theory of metastasis (Rhodes and Hillen 2019), while in
parallel, Wilkie and Aktar (2020) considered a model for post-resection inflammation
in a two-site model of CR. Here we continue to develop the model for the immune-
mediated theory of metastasis (Cohen et al. 2015; Rhodes and Hillen 2019; Shahriyari
2016) and investigate the potential role of post-resection inflammation.

1.2 Immune-mediated theory of metastasis

The immune-mediated theory of metastasis posits that the immune system plays a
key pro-tumor role in the metastatic process. A wealth of experimental and clinical
evidence for this theory includes studies on

— Metastasis to sites of injury (Kumar and Manjunatha 2013; Walter et al. 2011)

— Increased metastasis following primary resection (Retsky et al. 2013) that can be
inhibited, in some cases, with the use of non-steroidal anti-inflammatory drugs
(NSAIDs) (Forget et al. 2010; Joyce and Pollard 2009; Marx 2004; Retsky et al.
2013),

— Increased metastasis upon biopsy (Hobson et al. 2013),

— Increased number and size of lung metastases in mice with a latent cytomegalovirus
infection (Yang et al. 2019),

— Immune preparation of the pre-metastatic niche (PMN) (Del Monte 2009; Goddard
et al. 2018; Kaplan et al. 2005),

— Elimination of metastases with novel anti-inflammatory interventions (Park et al.
2018),

and many more. Not only have pro-tumor immune effects been observed at each step
of the metastatic cascade (de Mingo Pulido and Ruffell 2016; Rhodes and Hillen 2019;
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Shahriyari 2016), but tumor-mediated immune cell phenotypic plasticity has also been
documented (Colegio et al. 2014; El-Kenawi et al. 2019; Liu et al. 2007; Oleinika et al.
2013; Shahriyari 2016), significantly complicating potential immune-based therapeu-
tic interventions (Rhodes and Hillen 2019) and suggesting that metastasis may be
more organized than previously thought.

den Breems and Eftimie (2016), Eftimie et al. (2011) consider a model with both
anti- and pro-tumor macrophages and allow for phenotypic transitions between the
two subtypes. Similarly, the concept of tumor “education” of macrophages is incor-
porated in the detailed partial differential equation (PDE) model of Liao et al. (2013).
Others have included regulator T cells in their models (Lai and Friedman 2019; Liao
et al. 2014; Robertson-Tessi et al. 2012) that support tumor growth by inhibiting an
effective cytotoxic immune response. Wilkie and Hahnfeldt (2017); Wilkie and Aktar
(2020) also consider the growth-promoting effects of the immune response in tumor-
immune models with dynamic tumor carrying capacities in the context of one- and
two-tumor settings. Some work examining the effects of post-resection inflammation
on secondary tumor growth was also investigated by Wilkie and Aktar (2020).

For further details concerning the immune mediated theory of metastasis, or immune
involvement in metastasis more generally, please consult one of Blomberg et al. (2018),
Cohen et al. (2015), de Mingo Pulido and Ruffell (2016), Rhodes and Hillen (2019)
or Shahriyari (2016).

1.3 Outline

The remainder of this work is organized as follows. Our model for tumor-immune
dynamics at a metastatic site is developed in Sect. 2. Analysis of the model, including
model reduction using geometric singular perturbation analysis, is done in Sect. 3.
In Sect. 4 we parameterize the model, perform a sensitivity analysis, and investigate
the model predictions with the help of numerical experiments. Simulation results are
presented in Sect. 5, where we discuss a series of hypotheses about the relevance of
the immune response and immune cell phenotypic plasticity on metastatic blow-up.
Increased inflammation induced by surgical intervention as well as increased educa-
tion dynamics have a strong effect on metastatic blow up. As a result we find that the
prevention of significant resection-induced systemic inflammation and the reduction
of immune cell phenotypic plasticity have beneficial effects on cancer control. In this
context we briefly discuss the possibility of inducing metastatic blow-up through pri-
mary tumor biopsies. Biopsies create small wounds, which can stimulate the immune
response. While in most of our simulations a biopsy has a negligible effect, we found
a small region in parameter space, where a biopsy can, in theory, lead to increased
metastatic growth. Finally, a brief discussion of our results is presented in Sect. 6.

2 The model

The model that is the focus of this work is derived from a previously developed model
for the immune-mediated theory of metastasis from Rhodes and Hillen (2019).
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2.1 The original immune-mediated model of metastasis

Rhodes and Hillen (2019) derived an eight-component ODE model for cancer growth
dynamics at two sites—a primary tumor site and a metastatic site. At each site the
densities of tumorigenic tumor cells u, necrotic tumor cells v, cytotoxic immune cells
x (CT-immune), and tumor educated immune cells y (TE-immune) were considered.
The two sites communicate with each other through a free exchange of immune cells of
both types, plus a seeding of tumorigenic cells from the primary tumor to the metastatic
site. The eight-component model is quite complex, and a full mathematical analysis is
not feasible. Rhodes and Hillen (2019) used the model to show that tumor education
of immune cells can explain tumor dormancy and blow-up, increased occurrence of
metastasis at sites of injuries, and the unexpectedly poor performance of immune
therapies (Emens et al. 2017).

Here we continue this line of research by focusing on the metastatic site. We simplify
the model such that a full theoretical analysis is possible. This allows deeper insight into
the dynamics of the immune-mediated theory. Using geometric singular perturbation
theory we are able to find the root cause for metastatic dormancy and blow-up after
primary removal. The key lies in the understanding of a one-dimensional dynamical
system that lives on a slow-manifold of the system. In effect we reduce the original
eight-component model of Rhodes and Hillen (2019) to a one-dimensional problem.
Despite the significant reduction of complexity, the basic model features remain the
same and the model can explain metastatic dormancy and blow-up.

In addition, we perform a sensitivity analysis for the three-component model of this
paper to understand the relative importance of the various model parameters.

2.2 The reduced immune-mediated metastasis model

Compared to the original model of Rhodes and Hillen (2019) we make the following
simplifying assumptions.

1. Rather than modeling the primary tumor site, we assume that a primary tumor
exists and acts as a source of circulating tumor cells and TE immune cells.

2. We will assume that the only explicit pro-tumor immune effects are to increase the
tumor cell growth rate. In their original model, Rhodes and Hillen included a second
explicit role for TE immune cells—the inhibition of CT immune cell death. While
no longer explicitly included in our model, CT immune cell impairment remains a
part of the model via the tumor-mediated immune cell phenotypic plasticity.

3. Instead of modeling the necrotic cell compartment explicitly, we include this effect
implicitly in the recruitment rate of the CT immune cells.

The end result of these simplifications is a basic model for the immune-mediated
theory of metastasis,

d
—du =y +y(y)gwu —o(x)u
t ——— ———— N —

arrival growth death
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dx

— = a +Ar(u)x— wx — ux —  ed(u)x 1

g L tir-ex - pux ed(w)x (1)
influx  growth death  tumor interaction  tumor education

dy

— =9®+ eduwx + fwy— ty

dt N N—— ~—— N~

arrival ~ tumor education  growth death

where u(t), x(t), and y(¢) denote the tumor, CT immune, and TE immune populations
at the metastatic site at time 7, respectively. A schematic of this dynamical system is
given in Fig. 1. The underlying model assumptions are as follows:

— Tumor cells arrive at the metastatic site from the distant primary site at time-
dependent rate ¢ (), grow at rate g(u), and perish as a result of interactions with
CT immune cells at rate o (x). The term y (y) represents the enhancement of both
establishment and growth facilitated by the TE immune cells. Without sufficient
evidence to the contrary, we have assumed that this TE immune cell enhancement
is the same for both establishment and growth.

— CT immune cells arrive at the metastatic site with a constant influx rate «, and
can be recruited by the tumor according to the function A(u). Loss of CT immune
cells can occur by one of (i) natural death, at rate w, (ii) as a result of interaction
with the tumor, at rate p, or (iii) as a result of tumor-education, at rate ed(u). The
functional forms of A (u), ed (1) will be discussed later.

— TE immune cells accumulate at the metastatic site in one of three ways: (i) arrival
from the primary site via the circulation at rate ¥ (¢), (ii) tumor education of a CT
immune cell at rate ed (1), or (iii) local tumor-mediated recruitment according to
the rate f(u). We also assume that TE immune cells perish at rate 7.

All parameters are assumed to be positive, and the functional coefficients are
assumed to have the following behavior:

Assumption A1 — The TE-immune enhancement factor of tumor growth and estab-

lishment, y (), is increasing from y (0) = 1 to a finite, maximum valueas y — oo.

— the per-capita growth rate of the tumor cells g(u) is a decreasing, non-negative
function with a carrying capacity K > 0, such that Vu > K we have g(u) = 0.

— The tumor cell death rate o (x) is an increasing, strictly positive function.

— The immune recruitment rate A(u) is an increasing and bounded function with
A0) =0

— The per capita growth rate of the TE immune cells f () is an increasing, bounded
function such that f(0) = 0.

— The education rate ed (1) is an increasing function with ed (0) = 0.

— The immune influx rates ¢ (#) and ¥ (¢) are non-negative and bounded functions.

— Finally, all functions y (y), g(u), o (x), f(u), ed(u) are globally Lipschitz contin-
uous in their argument.

For a full biological motivation of the above choices, we refer to the detailed discussion

in our previous work (Rhodes and Hillen 2019). Specific examples of these functional
forms are as follows:
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2.3 Examples of functional forms

Here we list some specific examples of the functional forms mentioned above, which
will be used later in our numerical simulations.

— We assume that the metastatic tumor grows logistically (den Breems and Eftimie
2016; Kuznetsov et al. 1994; Walker et al. 2018; Wilkie and Aktar 2020) with
intrinsic growth rate r and carrying capacity K,

g(u) = max [r (1 — l) ,O}.

— TE immune cell enhancement of tumor growth y (y) is modeled using an increasing
hyperbolic tangent function (Olobatuyi et al. 2017; Rhodes and Hillen 2019),

maxi

y(y) = [tanh (£1 (y — v1)) — tanh (—=&1v1)]| 4 min
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where v| = M and & = W. This function is a sigmoid curve that
increases from y (0) = min; to maxy + miny = limy_, ¥ (y). The parameters
low1 and up; are activation and saturation thresholds, respectively.

— Similarly, we use the same saturating functional form for the tumor cell death rate,

X2 .
[tanh (&2 (x — 12)) — tanh (—=&12)] + ming,

o(x) =

_ upr+loun 6
where v, = ==5—* and §; = ip—Tows

— Tumor medlated expansion of the CT and TE immune cell populations are assumed
to follow Michaelis-Menten kinetics (den Breems and Eftimie 2016; Kuznetsov
et al. 1994; Walker et al. 2018),

AT ad fa =2

A =
@) by +u br+u

respectively, where a; is the maximal recruitment rate and b; is a half saturation
constant, i = 1, 2.

— Tumor education of CT immune cells is assumed to be governed by the law of
mass action (den Breems and Eftimie 2016),

ed(u) = xu.

3 Analysis

This section is concerned with the analysis of the model of tumor-immune interactions
at a metastatic site (2). The stability analysis of the three-component ODE model (2)
is standard and we list the relevant results while skipping the detailed calculations. We
then provide more details for the geometric singular perturbation analysis approach
(Hek 2010; Jones 1995) in Sect. 3.3. Timescale arguments are used to reduce the model
to a slow manifold. On the slow manifold we can then perform a more complete stability
and bifurcation analysis (Sect. 3.4).

3.1 Basic properties of the immune-mediated model (2)
We summarize some elementary facts in the first Lemma.

Lemma 1 Assume (Al). The model (2) has unique and bounded solutions that stay
non-negative for any finite time T < oo and for non-negative initial data.

Sketch of Proof Unique solutions exist globally because of the global Lipschitz conti-
nuity of the non-linearities. For non-negativity we show that along each of the three
coordinate axes, the vector field, prescribed by our model Eq. (2) is pointing into the
positive octant. O
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To obtain uniform boundedness of solutions, we need stronger assumptions. We
set

Omax = mf())(o— (x)
X

Ymax = Maxy (y)

Omin = Mino (x) yz0
x=0 Amax = maxA(u)
u>0

Ymin = mlg)’ »
= ¢max = maxq) (t)
t>0

Ipma)c = maXW (t) .
>0

And we assume
Assumption A2 ),,,x < wand fiax < T.
Lemma 2 Assume (Al) and (A2) then the solutions of (2) are uniformly bounded.

Proof We first consider the u equation. Suppose that u > K. Then, from (A1), g(u) =
0, and so the equation governing the evolution of u reads

d
= 90y0) o,
It follows that u will be decreasing whenever

u > (}S(I)M

o(x)’

which is the case for

u > max{d)maxymi, K} .

Omin

Hence u is bounded as

u(t) < gy = max {u(o)a Pmax Vmax s K} .

Omin
Next, we consider the x equation. Using the bound on u we find
0 < A(umax) < Amax, 0= pu < pimax, and 0 =<ed(u) < ed(umax)-
This leads to a relation between two new parameters A and B:
A= —pupmay —ed(Upmay) —®© < Au) — pu —w —ed(u) < Apax — 0 =: B <0,
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where the final inequality is by the assumption of the lemma. Therefore, we have an
upper and lower bound on the ODE governing the x dynamics,

dx
o+ Ax < — <a+ Bx
dt

where B < 0. Hence x(¢) is uniformly bounded.
Using the boundedness of both u and x allows us to reduce the y equation to a
similar ODE as in the x case, yielding

d
d_)t) < (Ymax + edUmax)Xmax) + (f Umax) — 1)y =: C + Dy,

where C > 0 and D < 0 by the assumption of the lemma. Hence also y is uniformly
bounded. O

Assumption (A2) assures that the dynamics are bounded. It is a quite natural
assumption, since it says that the maximal recruitment rates for the CT immune cells
and for the TE immune cells are less than the natural death rates for these populations.
Without any presence of cancer cells (as a source or at the metastatic site), CT immune
cells reach a non-zero “healthy surveillance” steady state and the TE immune cell pop-
ulation drops to zero, corresponding to fully healthy tissue. Hence both immune cell
compartments need stimulation from the cancer cells to expand their populations. We
also note that these assumptions guarantee that both A(#) — pu — @ — ed(u) < 0 and
f(u) —t < 0 for all values of u. We now proceed to determine the steady states of
the model (2).

3.2 Steady states

For simplicity, assume that the source terms, ¢ (¢) and v (¢), are constants, ¢ and ¥,
respectively. While it may seem a strong assumption to have a constant source of both
circulating tumor cells and TE immune cells, it is supported by the literature. First, in
models of metastasis, shedding from the primary tumor is often modeled as a Poisson
process (Avanzini and Antal 2019; Frei et al. 2020; Hanin and Rose 2018) with strength
proportional to primary tumor size. By assuming a threshold for the number of cells
shed, a sufficiently large primary tumor will shed a relatively constant source of cells
into the vasculature. Second, experimental models of metastasis have shown that (i)
as many as 10* cells per day can be shed from a primary tumor consisting of 103
cells (Del Monte 2009; Weiss 1990) and (ii) the vast majority of cells shed from the
primary tumor successfully extravasate at a secondary site (Cameron et al. 2000; Luzzi
et al. 1998). Therefore, it follows that a constant shedding would result in a constant
(but scaled) establishment of metastases. As such, we believe that our assumption
of a constant source of tumor and TE immune cells arriving at the metastatic site is
reasonably well justified by the current literature. In anticipation of studying the effects
of primary tumor interventions on the metastatic tumor, we will investigate two cases
relevant for treatment, namely when the source terms are positive (corresponding to

@ Springer



Implications of immune-mediated metastatic growth on... 811

the presence of a primary tumor) and when they are zero (corresponding to successful
removal of the primary tumor).

Case: ¢ #0and ¥ # 0

Let (i, X, y) be a steady state equilibrium for the model (2). Based on the above
assumptions (A1), (A2), we can formulate the steady state equations of (2) in the form
of null-clines:

P oy (y)
o(x) —y(»gu)

X = — _a — >0
— (@) — pu — w — ed(u))

_ Y +ed(x

T

Steady states will be points, (i, X, y), which lie on all three of the above nullclines.
The number of such solutions is not immediately obvious, and depends on the choice
of functional parameters. Further discussion of the number of steady states is done in
a later section after specific choices have been made for the functional coefficients.
Note that tumor extinction is impossible in this case—assuming that a source of tumor
cells exists, the model predicts the persistence of metastatic disease.

Case:¢p =0andyy =0
In this case we call the steady state (i1, X, ¥). If # = 0 then we find an extinction
steady state,

o
Eo = (Uext, Xexts Yext) = (0’ -, O) .
1)
If u # 0 then our steady state (i, X, y) satisfies

y(Mg) =o(X)

~ o

YT TG — pii — @ — ed(@))

. ed@)x )
y—m~ 2)

In general we have three defining equations for steady states, depending on the value
of the source terms ¢ and : a full-disease state, (i, X, y), which exists when we
have non-zero source terms, and without source terms there exists a disease-free state,
(Uext, Xext» Yext), and a persistent disease state, (i, X, y). Discussion of the stability of
the non-trivial steady states is delayed until the following section, where a timescale
argument allows us to study stability much more easily. Before that, though, a simple
computation yields the following stability result, which closely mirrors a similar result
in our original two-site model (Rhodes and Hillen 2019).

Proposition 1 Assume that ¢ = 0 =  and that g(0) = go < 0(%). Then the
disease-free state, E, is stable.

@ Springer



812 A. Rhodes, T. Hillen

Proof Evaluating the Jacobian of our system, J, at (u, x,y) = (0, %, 0) with ¢ =
0 = gives us

g0 — 0 (%) 0 0
s (M) —p—ed©) —-o 0|,
Sed'(0) 0 -z
whose diagonal entries are its eigenvalues. O

3.3 Timescale reductions

In this section, we assume that the dynamics of the tumor are slow relative to those of the
immune system. This assumption is biologically reasonable, as immune dynamics—
such as immune response to an injury—occur on the timescale of minutes or hours
(Pascual et al. 2010), whereas tumor dynamics, especially dormant metastases, can be
on the timescale of years or even decades (Hanin et al. 2016). Under the assumption
of two timescales, we will perform quasi-steady state analysis of the model (2) using
methods from geometric singular perturbation theory (Hek 2010; Jones 1995). As we
will demonstrate, this approach dramatically simplifies model analysis and allows us
to gain significant insight into the underlying biology. We assume that the immune
dynamics equilibrate quickly. In other words, we assume that all the parameters of the
immune system equations in (2) are an order of magnitude larger than those of the
tumor cell compartment. We introduce a small parameter € > 0 and write

d
=060 +y (g — o
B 4 2w — ox — pux — ed()
€ d[ = u)x wX ,OM)C e u)x (3)
d
ed—f =Y (1) + edw)x + fu)y — Ty

Using the notation U = u, V = (x, y) we write this system (3) in the more abstract
form

dU—F(U V)
dr T

av 4
e— =G(U,V),
dt

with

FU,V)=y((gwu+¢)—ox)u

_ (a+Am)x — pux — wx — ed(u)x
G(U’V)_< Y +edu)x + fu)y —ty )’
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where this system (4) is called the slow system. We obtain the fast system by a trans-
formation of the time variable as

t
T=-
€
and obtain in the new variable
dU
e =c¢FU,V)
: )
dv
— =G(U,V),
dt

Letting € — 0 the fast system (5) reduces to

du
dar 0

T
dv ©)
LG, V).
dt

In other words, while the tumor density remains constant, the immune-components
converge to their attractor. They cannot diverge to infinity, since the solutions are
bounded (Lemma 2). The attractor of the immune dynamics is characterized by the
set

M= {(U,V) e]R3|G(U,V)=O}, (7

which is also known as the slow manifold of the system. The slow dynamics (4) for
€ — 0 becomes

av _ FU,V)
dr ’ 8)

0=GU,V).

From the second equation in (8) we see that the dynamics “live” on the slow manifold
M, while the tumor dynamics on M are given by the first equation of (8). Long term
behavior of the system will be governed by the slow system (8). These observations
are based on Fenichel’s geometric singular perturbation theory:

Theorem 1 (Fenichel (Hek 2010)) Suppose Mo S M is compact, possibly with
boundary, and normally hyperbolic, that is, the eigenvalues ) of the Jacobian %
all satisfy R(L) # 0. Suppose F and G are smooth. Then for € > 0 and sufficiently
small, there exists a manifold M., O(€) close and diffeomorphic to M that is locally

invariant under the flow of the full problem (2).

Figure 2 on the left shows a plot of the null surfaces defined by setting ‘fi—’t‘ =0

(purple), ‘fl—f = 0 (blue), and % = 0 (red). The intersection of the immune-related
null surfaces defines the slow manifold M (green curve), while the intersections of all
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—Slow Manifold
—Solution

y 0 o2 0.4

Fig. 2 Left: Null surfaces of the model (2). Blue is ‘t% = 0, red is % = 0 and purple is ‘Z'T'; = 0. The

slow manifold, M, is the intersection between the x and y null surfaces, denoted by the green curve.
Intersections of all three surfaces (denoted by circles) are steady states. Right: The slow manifold, M (red)
and the solution to the system (2) (black). Initial conditions (uq, xg, yg) = (0, 1, 0). Parameters as in Table
1, with the exception of ¢ = 0, and ¥y = 0 (Color figure available online)

three surfaces (open circles) define the steady states of the system. We now provide a
few results concerning the manifold M.

Lemma 3 The manifold M is normally hyperbolic.

Proof We compute the Jacobian

G Au) — pu — w — ed(u) 0

—U,V) = 9

av Y-V ( ed(u) fay -t ©
and note that the diagonal entries are both negative as a consequence of assumption
(A2). O

Proposition 2 We can write M as a graph, (u, x, y) = (u, x(u), y(u)).
Proof Fix u > 0. M is defined via G(U, V) = 0. More explicity, this means that both
of the following equations hold:

0=oa+ Ar(u)x — pux — wx — ed(u)x

(10)
O=v +edw)x+ f(u)y—rty.

The assumption (A2) allow us to solve the first expression explicitly for x, yielding

o
) — put —w —ed(u))

0, an

x=x(u) =
which is an explicit expression for x = x(u). Similarly for y, we can solve the second

equation in (11) in terms of u and x as

_ v+ ed(u)x _ v+ ed(u)x(u) -
TTFw-1n —(fw-1

12)
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thereby giving us an explicit expression y = y(u). O

Note that by Lemma 2, our dynamics will take place over a bounded domain in R,
and so the functions x = x(«) and y = y(u) from Proposition 2 will be bounded and
need only be considered over a bounded domain of R. Additionally, the continuity
of x(u) and y(u) ensures that their images over a compact domain are themselves
compact. Hence, M C R? is compact. We are thus in the situation to apply Fenichel’s
theorem to arrive at the following result.

Theorem 2 For sufficiently small € > 0, the dynamics of the reduced system (8) on
the slow manifold M provide a reasonable approximation (in the sense of Theorem
1) of the full system (4).

To understand the dynamics of the full system, we need only investigate the dynam-
ics of the reduced system (8) on M, therefore, reducing the system of 3 ODEs in (2)
to a single ODE in the tumor cell density, u,

d
== y (W) (gw)u + @) —o(xw))u = H(u; ¢), (13)

dt

where x (1) and y(u) are defined as in Eqgs. (11) and (12), respectively. Consequently,
the questions of number and stability of steady states reduce to the number of solutions
to H(u; ¢) = 0 and the sign of H on either side of these solutions, respectively. The
stability of the steady states are simply determined by the sign of H (u; ¢) on either
side of the root, u,: if H(u; ¢) > 0asu — u,,and H(u; ) < Oasu — uj, then
u, 1s stable, and it is unstable if the signs are reversed. Further study of the number
and stability of steady states for our model is performed in the Sect. 3.4.

3.3.1 Specific example

As an example we use the functional coefficients introduced in Sect. 2.3 and arrive
at the following description of the daynamics along the slow manifold M in terms of
the derivatives x, = g—i and y, = %, where x (1) and y(u) are as in (11) and (12),
respectively.

Proposition 3 Consider the functional forms from Sect. 2.3. Then on M we have that
Xy > 0foru <uy and x,, < 0 for u > uy, where

ayby
Uy =—by + .
" p+x

Additionally, y,, > 0 forall0 <u < K.

Proof The proof follows from direct computation of the derivatives of x (1) and y(u)
on M. It is given in the “Appendix” for completeness. O
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Remark that the results of Proposition 3—non-monotonicity of M in the x coor-
dinate and the monotonicity of M in the y coordinate—are highlighted in Fig. 2 on
the right. Initially, the x coordinate of M is increasing in u, but at the critical value
of uy =~ 0.1, x(u) begins to decrease. On the other hand, it is clear in the right plot of
Fig. 2 that y(u) is increasing throughout the domain of interest.

3.4 Bifurcation analysis

In this section, we exploit the approximation result of Theorem 2 to investigate bifur-
cations in two parameters: ¢, the rate of circulating tumor cells (CTCs) arriving at the
metastatic site, and min,, the minimum CT immune cell-mediated tumor cell death
rate. These two parameters were chosen for use in our bifurcation analysis because
of their relative sensitivities (see Figs. 4 and 5) in addition to their clinical relevance.
In particular, under the assumption that the primary tumor sheds tumor cells into the
circulation at a rate proportional to its size (Hanin and Rose 2018), the parameter ¢
can be viewed as a measure for the size of the primary tumor. Furthermore, treatment
of the primary tumor may decrease the value of ¢. Combining these two observa-
tions allows us to interpret the effects of primary tumor growth and treatment on the
metastatic tumor using bifurcation diagrams in the parameter ¢ (Fig. 3, panel B).

While a full characterization of all possible steady states is not available at present,
we provide a brief discussion of the problem itself, and the observed behavior of the
model. Of interest is the number of solutions to equation (13)

Hu: ¢) =y (y(w)(gwu + ¢) — o (x(u))u = 0.

Observe that H(0; ¢) = y(y(0))¢ > 0 and that the boundedness and positivity
of o and y guarantee the existence of a sufficiently large value of u (call it u*) such
that H(u™; ¢) = y (y(u™))¢ — o (x(u*))u* < 0. Therefore, by continuity, we always
have at least one positive steady state in [0, u*]. Furthermore, the behaviors of x (u)
and y(u) on the slow manifold M have been characterized (Proposition 3). Indeed,
since y(u) is increasing in u, and y is an increasing function, we know that the term
y (y(u))¢ is increasing in u. In contrast, because g (u) is decreasing in u, the expression
y (y(u))g(u) may not be monotonic. We have determined that it begins at a positive
value no smaller than gp and evaluates to zero foru > K. The final expression included
in H is the death term, o (x(u))u. While it is assumed that o is decreasing, we know
that x,, changes from positive to negative at the value u . The exact dynamics of the
term o (x(«))u therefore depend on the value of u and the choice of o. The precise
behavior is rather complicated and a full characterization is not feasible in general.

Despite this complexity, we can determine the number of solutions to H (u; ¢) =0
numerically for various choices of our bifurcation parameters. As can be seen in panel
A of Fig. 3, depending on our choices of values for the two bifurcation parameters, our
model (with our specific choices of functional coefficients) has anywhere between one
and six steady states (with the maximum six steady states observed in the bottom left
corner of the presented plot). The boundaries between dark blue and light blue regions,
as well as between light blue and orange regions represent saddle node bifurcations in
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Fig. 3 a Two-dimensional bifurcation diagram in the parameters miny (vertical axis) and ¢ (horizontal
axis). Colors indicate the number of roots of H (u; ¢) for different parameter pairs. Note that the maximum
number of steady states is observed in the region along the leftmost vertical (corresponding to ¢ = 0)
below approximately miny ~ 0.2. Horizontal dashed line denotes value of miny = 4.255 x 1073, b
One-dimensional bifurcation diagram in ¢ for fixed value of miny = 4.255 x 107>. For each value of ¢
the corresponding steady state values are plotted. Stable steady states are colored green and unstable states
are red. The vertical dashed line denotes value of ¢ = 3.5244 x 1070, ¢ Phase-line diagram using our
slow-manifold approximation as described in Proposition 2 using fixed values of min, = 4.255 x 1075
and ¢ = 3.5244 x 1079, Stable states are solid circles and unstable states are open circles. d Solutions
of the full model for 51 different initial tumor densities (initial conditions) lying in [0, 1]. Horizontal lines
denote stable (dash-dot) and unstable (dot) steady state values. Trajectory color based on the long-term
behavior. Parameters as in Table 1 with the exceptions of max; = 0.2, up; = 0.095, and r = 2.0 x 1074
(Color figure available online)

which two steady states are created or destroyed. These bifurcations are illustrated in
panel B, which is a bifurcation diagram in a single parameter (¢) for a fixed value of
miny (the dashed horizontal line in panel A). Returning to panel A, the bifurcations
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along the left vertical axis (near the horizontal axis) are associated with the stability
of the disease-free state when the source terms ¢ = 0 =  (see Proposition 1). In
contrast to our maximum value of six different steady states, the simple model of
Kuznetsov et al. (1994), upon which our model is based, was shown to have at most
four different steady states. Therefore, our model modifications are responsible for the
creation of two new equilibria.

In addition to the number of equilibria, the results from the previous section also
allow us to determine the stability of these equilibria, as well. Panel C in Fig. 3
is a phase-line diagram for our reduced system (13) on M, with fixed values of
both bifurcation parameters (dashed horizontal and vertical lines in panels A and B,
respectively), where solid dots denote stable steady states, and open dots represent
unstable states. Confirmation of these approximation results are presented in panel
D, where we present solutions to the full system (2) for different initial conditions,
u(0) € [0, 1]. It is clear in this plot that the stability determined using the reduced
phase-line diagram in panel C is accurate, with trajectories moving toward stable
states (dash-dotted) and away from unstable states (dotted). The accuracy of these
approximated results—also illustrated in Fig. 2 on the right by the proximity of our
solution to the computed slow manifold—justifies our analytical approach and will be
of great benefit in Sect. 5.

4 Time-dependent sensitivity analysis

Since several parameters are not available from the literature, we perform a sensitivity
analysis, to be able to identify the most sensitive parameters. We find that some model
parameters affect the early development of the solutions more than later effects, while
other parameters become relevant only later. These results are demonstrated through a
time-dependent sensitivity analysis, as shown in Fig. 5. This form of time-dependent
sensitivity analysis gives valuable information about the relative timing of the param-
eter sensitivities.

We begin by obtaining a baseline set of parameters informed by the currently
available literature where possible (see Table 1).

4.1 Parameter estimation

Our choices of functional coefficients closely mirror those of our previous two-site
model of the immune-mediated theory of metastasis (Rhodes and Hillen 2019). Param-
eter estimates were obtained from the literature when available, and informed choices
were made when no such estimation was possible. For the baseline parameters pre-
sented in Table 1, the following assumptions have been made. We have chosen the
carrying capacity as K = 1 for simplicity. The growth rate r was estimated by fitting
a logistic growth curve to normalized tumor growth data from Park et al. (2018). The
parameters a1, by, and w—shared by both our model and the model of Kuznetsov et al.
(1994)—were estimated by using the dimensional parameters presented by Kuznetsov
et al. (1994) and non-dimensionalizing as Kuznetsov et al. (1994) by assuming that
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820 A. Rhodes, T. Hillen

the baseline CT immune and tumor cell densities are 108 and 5 x 107, respectively.
These choices of baseline population values reflect a highly inflammatory metastatic
setting with relatively few tumor cells compared to the primary site. The CT immune
cell influx rate, o, was taken to satisfy @« = w in order to normalize the disease-free
density of CT immune cells (this differs from Kuznetsov’s choice for «).

Threshold parameters min;, low;, up;, max; i = 1,2 have been estimated as fol-
lows. Assuming that a tumor population initiates a CT immune response, and that
the immune system can effectively activate and destroy sufficiently small tumors, we
have chosen lowy = & = 1, and min; to be such that upon primary tumor removal,
the disease-free steady state is stable (i.e. r < o (%) see also Fig. 3). Although
this assumption is made for our baseline parameter values, we eventually relax this
assumption in the following sections when we are searching for conditions that will
result in metastatic blow-up. The values of up; 2, max; », and low; were chosen in
order to have the associated rates change in time (i.e. the thresholds were passed at
least once). We also remark that the choices made herein are in line with those used
by Norton et al. (2018).

Finally, the TE immune related parameters. The rate of tumor education of immune
cells was informed by den Breems and Eftimie (2016) and Kim et al. (2017), but also
chosen so that the tumor density u, which corresponds to the value where x () is
maximal on the slow manifold M (see Proposition 3), was approximately 0.1. The
growth and death parameters a, by, and v were tuned from the Kuznetsov values to
achieve a total immune population near the end of the simulation of approximately 1.
The arrival rate, ¥, was estimated using the data of Chambers et al. (2002) and Weiss
(1990) concerning shedding rates from the primary tumor, together with a likelihood of
successfully arriving at the metastatic site. Care was also taken in the parameterization
procedure to assure that our solutions remained bounded (see Assumptions Al and
A2). The results of this estimation process are summarized in Table 1.

4.2 Sensitivity analysis

Using the parameters in Table 1 as our baseline parameters, we performed a basic
parameter sensitivity analysis in order to determine the relative importance of the
model parameters on the system outcome. A baseline solution for our tumor density,
u, was obtained using the parameters in Table 1. For each model parameter, solutions
were obtained for 30 different choices of the parameter value uniformly distributed
within the range £10% of the baseline value. We report in Fig. 4 the maximal change
from our baseline solution in metastatic tumor density at time ¢ = 840 days for each
of our model parameters, with the maximum taken over all 30 tested values of each
parameter. The endpoint time of + = 840 days was chosen so that our solutions had
all reached steady state. Therefore, Fig. 4 compares the effect of our parameters on
the final steady state of the system.

Red bars indicate that the observed change occurred as a result of decreasing the
parameter in question, while green bars indicate that an increase in that parameter was
responsible for the observed change. As Fig. 4 clearly demonstrates, there are only
four model parameters that have any significant change on the model outcome: min,
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Fig. 4 Maximum percentage change in tumor density compared to baseline at time ¢ = 840 days. Red
bars indicate that the resulting change in tumor density resulted from a decreased parameter value, while
increased parameters are indicated by the green bars. Asterisks denote values that are of the order 1073,
Invisible graphs without asterisks are smaller than 10~4. Further details in the text (Color figure available
online). For full details, please see Table 3 in the “Appendix”

(the minimum rate of CT immune cell mediated tumor cell death), max; (maximum
increase to tumor establishment and growth as mediated by TE immune cells), » (tumor
cell growth rate), and ¢ (arrival rate of circulating tumor cells). All four of these
parameters appear in the governing equation for tumor density. Furthermore, two of
the four are threshold parameters; parameters for which we have scant experimental
data to use in parameterization (see the previous section). The effect of a 10% change
in all other parameters on the final tumor outcome is minimal—of the order 1073 or
less. Since miny and ¢ are two of the most sensitive parameters in this setting, our
choice to use them as bifurcation parameters in Sect. 3 (see Fig. 3) is well justified. The
results of Fig. 4 provide an increased degree of confidence in our model predictions,
as the end results are relatively robust to small perturbations in most of the model
parameters.

4.3 Time-dependent sensitivities

Although the results of Fig. 4 demonstrate the robustness of our final tumor density
to small changes in parameter values, these particular results do little to elucidate
the effects of perturbing the parameter values on the model dynamics. In order to
address this particular shortcoming, we performed the same analysis (comparing tumor
density of a perturbed solution to our baseline solution) once a week for 120 weeks,
thereby giving us time-dependent sensitivities to perturbations in parameter values.
The results of this extended sensitivity analysis are presented in Fig. 5. Figure 5 shows
the percentage increase (top) and decrease (bottom) for each of our model parameters
(horizontal axis) over the course of 120 weeks (vertical axis). Percentages are indicated
by the color bars. Before further analysis of these results, we will note that the abrupt
horizontal line in both plots around the 3540 week mark is a result of a significant
change in tumor growth rate at about that time in the baseline solution (see panel (A)
in Fig. 6).
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Fig.5 Maximum percentage change in tumor density compared to baseline at various times. Top is increase
in tumor density compared to baseline, and bottom is decrease. Time is measured in units of weeks. Figure 4
represents the final time point in both top and bottom plots (Color figure available online)

Consider first the top plot of Fig. 5. Most of the parameters have similar effects
progressing through time: increasing until a point of maximal influence, followed by
a period of decreasing influence. What this pattern tells us is when, relative to the
baseline solution, the growth is most influenced by the parameter of interest. Take,
for example, the parameter low;. For small times, we see little change from baseline.
However, around the ¢+ = 20 weeks mark, we see the difference between baseline
increase to a maximum of nearly 500% by ¢ = 30. This period of increase reflects the
fact that the baseline solution remains relatively unchanged over this period, whereas
the perturbed solution is in a phase of rapid growth. The period of decreased effect
compared to baseline (beginning at + = 30) is indicative of the perturbed system
arriving at steady state, and the control system “catching up”. Finally, at long times
when both solutions are in steady state, we see the effect of the parameter perturbation
on the steady state (Fig. 4 can be interpreted in this way). With this view, we can see
that the effects of low; are relatively early in disease progression compared to p or ¢,
and, despite its large peak, has little effect on the final outcome. Interestingly, the four
most sensitive parameters by the end of the simulation all have relatively little effect
during the transient phase of the model dynamics. Finally, we note that the effect of
the establishment rate of tumor cells, ¢, has two distinct peaks: an early one (almost
immediately after the start of the simulation) and a later one that coincides with the
peaks associated with most of the other model parameters.
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Next, we consider the bottom plot in Fig. 5. The dynamics here can be interpreted
similarly, but this time with the results showing how much smaller the perturbed
tumor is compared to baseline. Note that the length of the area colored yellow or
red serves as a measure of the delay in tumor growth instigated by a change in the
corresponding parameter. Thus, we see that the parameters 7, ¥, x, and low; are
capable of the largest delays in tumor growth. Note that all of these parameters are
associated with the pro-tumor TE immune cells. The four most sensitive parameters for
long times cause relatively small delays in tumor growth. Additionally, the length of
area colored yellow/red also serves as a measure of how “close” the perturbed system
is to a bifurcation. Indeed, the dynamics in the TE immune cell clearance rate, 7, show
an extended period of time wherein the perturbed system remains small compared
to the baseline solution (large area of red extending from ¢ = 35 weeks to t = 85
weeks), which indicates a close proximity of the phase line to the horizontal axis (see
panel (C) in Fig. 6) and therefore, a close proximity of the perturbed system to a
bifurcation. For the perturbations considered here, no bifurcations were observed, but
larger perturbations do see multiple bifurcations (see, for example, Fig. 3). Finally, as
noted in the previous case, ¢ has the earliest effect, and several parameters (¢, ups, o,
and w) now show the double peak dynamics discussed previously. Moreover, most of
the parameters have non-trivial early effects, suggesting that there are multiple ways
to inhibit early metastatic growth, with few of them having significant lasting effects.

5 Simulation of clinically relevant cases

In this section we study some clinically relevant questions numerically. In Sect. 5.1 we
show that the model can predict both metastatic growth and metastatic decline after
resection of the primary. Section 5.2 scrutinizes several mechanisms to see which can
explain metastatic blow-up. In Sect. 5.3 we argue that an observation of the immune
population three to four weeks after surgical removal of the primary tumor can give
valuable information about the progression of metastasis. Finally, in Sect. 5.4, we
discuss treatment strategies to prevent metastatic blow-up based on our mathematical
model.

5.1 Metastatic growth or decline

To begin a computational analysis of the above model and its dynamics on the slow
manifold, we consider a case that shows both metastatic growth and metastatic decline
after resection of the primary. The naive method of simulating primary resection is to
set the source terms ¢ = 0 and ¥ = 0. This simulates the successful removal of 100%
of the tumor and TE immune cells at the primary site and assumes no recurrence and
no inflammation at the primary site. In contrast, Wilkie and Aktar (2020) simulated
primary resection by the removal of 100% of the cancer cells and 99% of the immune
cells at the primary tumor site (see Sect. 6 for a detailed discussion of the different
models for primary resection).
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Fig. 6 Results of simulated primary resection (P1). (A) The effect of primary resection on secondary
tumor growth depending on resection time. Early interventions result in disease extinction (green) and late
interventions result in disease persistence (red). (B) Model dynamics in 3-space, with the slow manifold for
¢, ¥ # 0is the dashed black curve, and the dashed blue curve denotes the slow manifold when ¢ = 0 = .
(C) Phase line diagrams for the cases when the source is on (black) and off (blue). Steady states are indicated
by circles, solid representing stable and hollow representing unstable. The steady states are also marked in
plots (A) and (B) for illustration. Parameters as in Table 1 (Color figure available online)

The results for this simple case of primary resection are presented in Fig. 6. Panel
A shows the metastatic tumor density as a function of time in the cases of no (black
curve), early (green curves), and late (red curves) primary resections. If intervention
at the primary site is performed sufficiently early, the metastatic tumor goes extinct
(green). If, however, the primary tumor is left untreated for too long, the metastatic
tumor grows, resulting in metastatic persistence (red). Note that we only highlight
a few simulation curves, which range in the critical region to show the threshold
phenomenon.

Panel B shows two slow manifolds as dashed lines, pre-resection in dashed black
and post-resection in dashed blue. All solutions begin at (x, y) = (1, 0) and quickly
move onto the pre-treatment slow manifold (dashed black). At resection, the orbits
transition from the dashed black to the dashed blue manifold, which has two additional
equilibria—an extinction state and an unstable saddle point (open circle). Depending
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on which side of the saddle the orbits land, they will either go extinct (green curves)
or persist (red curves). Note that the transition along the saddle point can take quite
some time, giving one possible explanation for metastatic dormancy as previously
described by Wilkie and Hahnfeldt (2017) in the context of primary tumor dormancy.
Panel B also shows the close alignment of the solutions (colored solid lines) with the
slow manifolds (dashed lines), confirming our scaling approach made earlier. Panel C
shows the corresponding phase-line diagrams for the control (black) and post-resection
(blue) parameters on the corresponding slow manifolds, M.

Even though this process allows for metastatic growth post-resection, the resulting
metastasis is smaller than the control case (red lines compared to black line in panel
A). Hence metastatic blow-up is impossible in this case.

5.2 Metastatic blow-Up

We are interested in determining conditions that result in metastatic blow-up upon
primary intervention, which we define as follows (see Sect. 1 for further details and
references):

Definition 1 We say that the model predicts metastatic blow-up if primary intervention
eventually leads to a significantly larger metastatic tumor as compared to the case of
no intervention at the primary site.

We saw already that the previous case, analyzed in Sect. 5.1 cannot lead to metastatic
blow-up. In fact, if the pre-intervention system has only one stable equilibrium, the
results from the previous section show that blow-up is impossible as the removal
of the source of CTCs decreases the value of the largest possible stable state. As a
consequence, to observe metastatic blow-up we require bi-stability in our pre-resection
system, to allow for one small dormant state and a larger full disease state. For the
following simulations we chose parameters that allow for this bi-stability, and which
are in the biologically relevant range. More specifically, we changed two parameters
from those presented in Table 1: up; = 0.2 and r = 2.0 x 10~*. The black curves
in Fig. 7 show the dynamics of this newly parameterized model. The black phase-
line on the right shows two stable attractors (solid black circles), separated by an
unstable saddle point (open circle). Due to its importance in shaping the overall model
dynamics, we will denote by # the value of this unstable saddle point, and refer to it
as the blow-up threshold.

In order to analyze the ability of our model to reproduce metastatic blow-up, we
consider individual mechanisms in increasing order of complexity:

(M1) Naive Primary Resection Here we consider the naive primary resection
model, where 100% of the primary tumor is removed, and no inflammation is
induced. We use this case as a null-hypothesis. Primary resection is modeled by
setting the two influx terms equal to zero: ¢ = 0, ¥ = 0.

(M2) Primary Resection and Systemic Inflammation Primary resection is an
invasive surgical procedure which produces a significant, yet transient, systemic
inflammatory response. For example, serum interleukin (IL) 6 concentrations have
been shown to increase upwards of 500 times compared to basal levels in response
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to open curative resection for colonic cancer (Pascual et al. 2010). Even the less
invasive primary tumor biopsy can be responsible for systemic inflammation (mea-
sured by presence of neutrophils in lung airways in a murine model of metastatic
breast cancer) of strength three to four fold basal levels (Hobson et al. 2013). The
application of NSAIDs can significantly reduce the risk of short-term metastatic
blow-up in breast cancer (Forget et al. 2010; Retsky et al. 2013). In this second
model of primary tumor resection, in addition to the naive simulation of primary
resection (M1) we include a transient inflammatory response at the secondary site
by multiplying the number of CT immune cells at the metastatic site at the time
of intervention by a factor 6§ > 1 (referred to as the “inflammation level”). This
results in a short spike in CT immune cells that rapidly dissipates in the space of a
few days to a week (depending upon the inflammation level simulated), matching
timescales reported in the literature (Forget et al. 2010; Hobson et al. 2013; Pascual
et al. 2010; Retsky et al. 2013).

(M3) Primary Resection, Systemic Inflammation, and Increased Pro-tumor
Immune Presence Based on the results of Benzekry et al. (2017) and Hanin
and Rose (2018), suggesting that the growth rate of metastases increases upon
primary resection, we investigate potential mechanisms within our model that will
allow us to reproduce these results. The major role of pro-tumor TE immune cells
in our model is through the growth-enhancement function, y (y). We postulate
that the population of TE immune cells grows in response to the primary tumor
resection. Such a hypothesis, while novel (and speculative), is in the same spirit of
previous suggestions (summarized in Sect. 1). Within our modeling framework,
there are three separate ways to increase the TE immune cell population after
primary resection:

(M3a) Increasing the tumor-mediated recruitment rate, a;.
(M3b) Decreasing the death rate of TE immune cells, .
(M3c) Increasing the rate of tumor-education of CT immune cells, x.

(M4) Biopsy-induced Inflammation: As a slight tangent, we also use our model
to simulate the effects of a primary tumor biopsy on the growth of a metastatic
tumor. The simulation is similar to that described in (M2), with the exception that
we do not turn the source terms to zero, and, in order to closely match previously
reported results, the inflammation level simulated is significantly lower than in the
case of primary resection.

We want to investigate if any or all of the above processes can explain metastatic
blow-up. A summary of the results is given in Table 2.

(M1) Naive primary resection

In this and all of the following simulations (unless noted otherwise), primary resection
is performed two years from the beginning of the simulation. This date is chosen so
that the metastatic tumor has reached a steady state. The blue lines in Fig. 7 show
the resection case. We see in the phase-line plot on the right, that upon resection, the
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metastasis declines to a very small positive value, hence in this case neither metastatic
blow-up, nor metastatic growth is possible after resection of the primary.

(M2) Primary resection and inflammation

Figure 8 illustrates the results of including an inflammatory response (as previously
described) to primary resection. Panel A shows the metastatic tumor density as a
function of time in the case of no primary intervention (black) and in the case of primary
resection (¢ = 0 = ) with various inflammatory responses, ranging from § = 2
times baseline to & = 500 times (Pascual et al. 2010) (green to red curves). Although
there is a short period of inflammation-induced metastatic growth for sufficiently
large inflammatory responses (panel C), in all cases the growth arrests and the tumor
eventually shrinks to a small, positive steady state value.

We can again exploit the slow manifold approximation of the full system to under-
stand what is responsible for these dynamics (panels B and D). In panel B we show the
phase-line diagrams for the control case (black dashed), for the resection case (blue-
dashed) and for the highly inflamed case (dashed magenta). The highly inflamed line
corresponds to the dynamics when the saturating functions y (y) and o (x) are saturated
near their maximal values.

Panel D shows that for sufficient levels of resection-induced inflammation, the
dynamics jump from the control state (black) to the highly inflamed state (magenta),
during which time the metastatic tumor grows. Once the inflammation subsides, the
solution drops to the post-resection state (blue) and decays to a small metastatic tumor.
Even if the inflammation-induced growth is sufficient to push the metastatic tumor
density into the basin of attraction of the larger control steady state (red curve), the
fact that the primary tumor has been removed (and so ¢ = 0 = ) means that the
dynamics governing metastatic growth post-resection are different than they were
pre-resection, and the only stable equilibrium is a small, positive value.

Taken together, the results from Fig. 8 demonstrate that removing the source
terms has a stronger effect on the post-resection dynamics than a brief period of
inflammation-mediated growth can overcome. This case does not support metastatic
blow-up.

(M3) Resection, inflammation, and increased TE immune cells

It is in this step that we must leave the realm of experimentally or clinically doc-
umented effects, and begin exploring potential biological mechanisms proposed by
our mathematical model. We consider the three cases (M3a), (M3b), and (M3c) each
conditioned on the requirement that any saddle point that appears in the phase-line
diagram post-resection must coincide with the original blow-up threshold, i. This
requirement limits the number of admissible solutions, and allows for a meaningful
comparison of the three treatment cases. For simplicity, we will refer to this condi-
tion as “the geometric condition.” Panel C in Fig. 9 illustrates this condition in the
case of increasing the parameter x: the leftmost equilibrium is shared between the
pre-resection (black) and the post-resection (blue) curves.
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Fig.7 Case (M1): Simple simulation of primary resection. In both panels, primary resection is simulated
by setting the source terms ¢p = 0 = y after two years. a Time dynamics of metastatic tumor density for
a control case (black curve) and in the case of primary resection (blue curve). The dots on the vertical axis
correspond to the steady states and their stability in the control (black) and post-resection (blue) cases. b
Dashed lines are the phase-line diagrams for the control (black) and post-resection (blue) cases. Solutions
to the full model are the solid lines superimposed, with direction of movement indicated by the arrows.
Parameters as in Table 1, with the exceptions of up; = 0.2 and r = 2.0 x 104 (Color figure available
online)

(M3a) In order to satisfy the geometric condition in case (a), we increase the tumor-
mediated recruitment rate of TE immune cells a> by a factor of 7.35. Such a large
increase results in the violation of the assumption (A2), resulting in unbounded solu-
tions (results not shown) and leading us to reject this case as a potential mechanism
for metastatic blow-up.

(M3b) Decreasing the TE immune cell death rate from 7 to 0.3798 -  satisfies the geo-
metric condition for case (b). Resulting model solutions remain bounded and metastatic
blow-up is possible for sufficiently strong inflammatory responses to the primary resec-
tion. However, the rate of blow-up does not match clinical observations. Retsky et al.
(2013) report two peaks in breast cancer relapse—a pronounced early peak occurring
approximately 18 months after treatment, and a broader late peak beginning approx-
imately four years after treatment and extending to over 15 years post-treatment. In
contrast, the blow-up observed as a result of mechanism (b) occurs within at most 6
months (results not shown)—much too soon post-resection to be responsible for the
clinical observations.

(M3c) Finally, the geometric condition is satisfied via mechanism (c) by increasing
the rate of tumor education of immune cells, x, by a factor of 2.42 (panel C in Fig. 9).
In this case, not only do solutions remain bounded, but metastatic blow-up is possible
for sufficiently large inflammatory responses and the rate of blow-up also much more
closely matches the clinical observations of Retsky et al. (2013) (panel A in Fig. 9).
Panel D shows that the saddle point (open circle) acts like a threshold, determining the
final outcome of the metastatic tumor: solution trajectories that fall from the highly-
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Table 2 Summary of the ability of different mechanisms to reproduce metastatic blow-up

Mechanism Figure Dormancy Blow-up
(M1) Naive resection 6,7 Yes No
(M2) Resection and systemic inflammation 8 No No

(M3) Resection, inflammation, and increased TE immune cells - -

(M3a) Increased recruitment - No No
(M3b) Decreased clearance - No Yes
(M3c) Increased education 9 Yes Yes
(M4) Biopsy-induced inflammation 10 No Yes

inflamed magenta curve onto the post-resection blue curve to the left of the threshold
decay to a small, dormant tumor (green curve), whereas those that fall to the right
(red curve) will eventually result in metastatic blow-up. In this setting it is clear why
the terminology blow-up threshold has been adopted for this unstable saddle point .
The time of dormancy is determined by a slow transition along this saddle point. It
is because of the relative flatness of the post-resection curve that extended periods of
dormancy before metastatic blow-up are possible.

(M4) Biopsy-induced inflammation

Although generally harmless, Hobson et al. (2013) have reported evidence to suggest
that the inflammation induced from a biopsy of a primary tumor can lead to an increased
incidence of metastasis. Therefore, as a final application of our model in this section,
we simulate a small jump in inflammatory cells at the metastatic site in response to a
primary tumor biopsy (simulated as previously described), and investigate under what
conditions this can result in metastatic blow-up. It is important to note that in these
simulations, we have not simulated primary resection, and so we leave the positive
source terms ¢ and i untouched.

The results of this investigation are summarized in Fig. 10. Whereas the right
plot is a bifurcation diagram in the parameter ¢, the left plot shows the outcome
at the metastatic site for different combinations of the parameter ¢ and the level
of inflammation 6 incurred from the biopsy at the primary site (vertical axis). The
maximum inflammation level was chosen to be ten times basal levels to match the
order of magnitude reported in the literature (Hobson et al. 2013).

For small values of ¢ (corresponding to small, or early-stage primary tumors), the
system exhibits bi-stability (right, green branches). However, as the initial metastatic
tumor population is always assumed to be #(0) = 0, the system will always tend
towards the smaller of the two stable steady states—indicated in the left figure by the
large green region. As ¢ increases past a bifurcation point at approximately ¢* ~
1.9 x 107, this bi-stability is lost, and only one steady state (corresponding to a large
metastatic tumor) remains—indicated in the left plot by the region colored red. For a
small window near the bifurcation value of ¢*, however, a third outcome is possible:
metastatic blow-up. If a sufficiently strong inflammation is triggered (6 large enough),
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Fig.8 Case (M2): Simple resection with transient period of inflammation. In all panels, primary resection is
simulated at the two-year mark by setting the source terms ¢ = 0 = i and by increasing the density of CT
immune cells at the metastatic site by 2, 5, 10, 25, 50, 100, 250, or 500 times (arrow in panel C indicates the
direction of increasing simulated inflammation). a Time dynamics of metastatic tumor density for a control
case (black curve) and in the case of primary resection with various strengths of post-resection inflammation
(green and red curves). The dots on the vertical axis correspond to the steady states and their stability in
the cases of control (black), inflammatory (magenta), and post-resection (blue) parameters. The region
enclosed in the dashed box is enlarged in panel (C), where the arrow indicates the direction of increasing
inflammation. b Dashed lines are the phase-line diagrams for the control (black), inflamed (magenta), and
post-resection (blue) parameters. Solutions to the full model are the solid lines superimposed, with direction
of movement indicated by the arrows. The boxed region is depicted in panel (D), where red (i) and green
(ii) curves correspond to inflammation levels of 100 and 2 times, respectively. Parameters as in Table 1,
with the exceptions of up; = 0.2 and r = 2.0 x 1074 (Color figure available online)

then the metastatic tumor can grow beyond the unstable node (red branch on the
right) and find itself in the larger steady state’s basin of attraction, resulting in a
larger metastatic tumor compared to the case of no intervention at the primary site
(i.e. metastatic blow-up). Hence systemic inflammation induced from even a small
intervention at the primary site (such as a biopsy) is a potential mechanism to jump
from a small metastasis to a large one. However, the region in parameter space where
this can happen is rather small.
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Fig.9 Case (M3c): Resection with transient inflammation and increased immune cell education rate post-
resection. In all panels, primary resection is simulated at the two-year mark by setting the source terms
¢ = 0 = , by increasing the density of CT immune cells at the metastatic site by the times indicated in
Figure 8 (arrow in panel A indicates the direction of increasing simulated inflammation), and by increasing
the rate of immune cell education, x, by a factor of 2.42. a Time dynamics of metastatic tumor density for
a control case (black curve) and in the case of primary resection with various strengths of post-resection
inflammation (green and red curves). The dots on the vertical axis correspond to the steady states and
their stability in the cases of control (black), inflammatory (magenta), and post-resection (blue) parameters.
b Dashed lines are the approximate phase-line diagrams for the control (black), inflamed (magenta), and
post-resection (blue) parameters. Solutions to the full model are the solid lines superimposed, with direction
of movement indicated by the arrows. The region within the vertical box (dotted lines) is depicted in panel
(D), where red (i) and green (ii) curves correspond to inflammation levels of 100 and 2 times, respectively.
The horizontal box (dash-dotted lines) in panel (B) is depicted in panel (C), which depicts the pre- (black)
and post-inflammation (blue) dynamics only. Parameters as in Table 1, with the exceptions of up; = 0.2
and r = 2.0 x 10~* (Color figure available online)

5.3 Immune cells as diagnostic tool

In the previous section we identified a mechanism for metastatic blow-up: an increased
metastatic growth triggered by the inflammation resulting from primary tumor resec-
tion and sustained by a post-resection increase of tumor-educated immune cells. Based
on this process we investigate the consequences and potential benefits of our newly
gained understanding for diagnosis and treatment.
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Fig.10 Case (M4): Effect of primary inflammation on metastatic tumor. (Left) Metastatic outcomes for pairs
of inflammation level 6 (vertical axis) and arrival rate of CTCs ¢ (horizontal axis). Portions of parameter
space colored green indicate situations in which biopsy-induced inflammation has little to no effect on long
term dynamics, and the metastatic tumor remains small. Regions in red indicate parameter values for which
a large metastatic tumor is expected independent of any primary intervention. Parameters in the blue region
result in metastatic blowup in response to the inflammation at the primary site. (Right) Bifurcation diagram
in the source of CTCs, ¢, illustrating the number and value of steady states for different values of ¢. Green
steady states are stable, whereas red states are unstable. Parameters as in Table 1 with the exceptions of
upy =0.landr = 2.0 x 1073 (Color figure available online)

A critical parameter in case (M3c) was the blow-up threshold i, corresponding to
the u-value of the saddle point on M. By Proposition 2, the manifold M is a graph
on u, hence we can express the blow-up threshold in terms of the immune population
x(), y(&t) at the metastatic site. The advantage of this approach lies in the relative
simplicity of measuring local immune cell populations at likely locations of metastatic
disease compared to the difficulty of detecting micrometastases. Figure 11 shows the
fraction of immune cells at the metastatic site that are CT for a control scenario (black
curve) in addition to the primary resection scenario (M3c), as detailed in the previous
section. The dashed horizontal line denotes the blow-up threshold of

x(it)

0.927 ~ —————,
x(u) + y(u)

where & = 0.1384 is the blow-up threshold tumor value and x («) and y(u) are com-
puted using the result from Proposition 2 and the post-resection parameter values.
Whereas the CT immune cell population remains high in the control case—thereby
inhibiting metastatic growth and resulting in a small, dormant metastasis—the per-
turbation to the system caused by primary tumor resection prompts a short period of
transience that includes an increase to the CT immune fraction (from the inflamma-
tion) followed by a dip (from tumor-induced immune cell phenotypic plasticity) and
a short recovery. For lower levels of inflammation (green curves) the CT immune cell
fraction recovers above the blow-up threshold, allowing for an effective anti-tumor

@ Springer



Implications of immune-mediated metastatic growth on... 833

0.95 }¥ ——————

o
©
T

o

[oe]

o
T

I 0.96

o
3

CT Immune Fraction

0.75

-10 0 10 20
Days post-resection

0.65 I | | I | | | | I
0 1 2 3 4 5 6 7 8 9 10

Time (years)

Fig. 11 Fraction of CT immune cells at the metastatic site (as a fraction of total immune cell population) as a
function of time for the same simulation presented in Fig. 9. Horizontal dashed blue line denotes the fraction
of CT immune cells predicted at the non-zero unstable node for the post-resection parameter values (92.7%
CT immune cells). Inset is a detail of the boxed area of the main figure. Black line corresponds to control
(no resection) dynamics. Colors represent different strengths of the inflammation response to resection and
are the same as in Fig. 9. Parameters as in Table 1, with the exception of max; = 2.5, r =2 x 1074, and
¢ = 1.8519 x 1075 (Color figure available online)

immune response, capable of inhibiting metastatic blow-up. In contrast, metastatic
blow-up occurs whenever the dip in CT immune cell fraction does not recover above
the blow-up threshold, &z ~ 0.927. In all cases, the period of transience—and therefore
the determination of decay or blow-up—is complete in at most three weeks after the
primary resection (Fig. 11, inset). Mathematically, this is a consequence of the differ-
ent time scales: resection is a perturbation of the dynamics from the slow manifold,
and the transience is a result of the fast dynamics settling onto the post-resection slow
manifold. Biologically, this suggests that the makeup of immune cell populations at
potential sites of metastasis can successfully distinguish between metastatic decay and
(delayed) blow-up in as little as three weeks after the primary resection.

5.4 Combination treatments and control of immune cells

Diagnosis and prediction are important, but remain toothless without effective treat-
ment strategies. In addition to the strategy of reducing the inflammation associated
with primary tumor resection (see Fig. 9), the results from the previous section (and
our previous work (Rhodes and Hillen 2019)) suggest that targeting the tumor-induced
immune cell phenotypic plasticity (tumor education) may be another valid strategy.
In the top panel of Fig. 12, the time from primary resection to metastatic blow-up
(defined here as the metastatic tumor reaching a density of 0.5) is shown as a func-
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Fig. 12 Times (in years post-resection) to metastatic blowup as a function of both the strength of the
inflammatory response to primary resection (vertical axis) and the education rate, x, of the CT immune
cells by the tumor (horizontal axis). Any times greater than 20 years have been depicted in white. Times
defined as the time it takes for tumor density to reach 0.5. The parameters responsible for the four dotted
curves in the bottom plot are depicted in the top by circles of corresponding colors. The solid black line in
the bottom plot depicts the control (no resection) dynamics. Dashed black (i) is a reference parameter set
in which blow-up is observed. The blue (ii) and magenta (iv) curves are obtained by decreasing only the
education rate (to 0.116) or the inflammation (to 30), respectively. The green (iii) curve represents a case
in which both the education rate and the inflammation levels are decreased (to 0.1165 and 40, respectively)
(Control parameters as in Fig. 11 Color figure available online)

tion of primary resection-induced inflammation (vertical axis) and the rate of tumor
education (horizontal axis). Areas in white correspond to parameter values in which
blow-up is impossible, or occurs only after 20 years or longer. Times less than 20
years are as indicated. While there are regions where metastatic blow-up is delayed
for a decade or longer, the topmost panel of Fig. 12 is dominated by delays of 5 years
or under, matching the clinical data of Retsky et al. (2013) mentioned in the previous
section.

The parameter pair indicated by (i) serves as a reference parameter set for which
blow-up is expected, and from which we can evaluate different treatment strategies.
In line with the experimental evidence of Park et al. (2018) and the clinical evidence
of Forget et al. (2010) and Retsky et al. (2013), our model predicts that decreasing
the inflammation associated with primary tumor resection—moving down from (i) to
(iv)—can delay blow-up or prevent it entirely. Similar effects can also be achieved by
decreasing the ability of the tumor to educate CT immune cells—moving left from (i)
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to (ii). By combining these two strategies—(i) to (iii)—similar anti-tumor effects can
be achieved using therapeutic strengths that would fail if applied in isolation. Solution
trajectories corresponding to the strategies (i)—(iv) are presented in the lower panel of
Fig. 12.

Although only speculative at this point, our theoretical results concerning the pre-
diction and treatment of metastatic disease prior to clinical detection are intriguing
and warrant further biological and theoretical investigation.

6 Discussion

As the major cause of cancer-related deaths, a full understanding of the metastatic
process is of significant value. Multiple recent lines of investigation—including the
discovery of the immune-mediated pre-metastatic niche (PMN) (Kaplan et al. 2005),
early metastatic seeding (Friberg and Nystrom 2015; Hanin and Rose 2018; Riggi
et al. 2018), and decreased metastasis in response to treatments with NSAIDs (Joyce
and Pollard 2009; Marx 2004; Retsky et al. 2013)—have brought the long-held view
of metastasis as the final, unavoidable step in cancer progression into question, and
spurred new experimental and theoretical investigations of the process. Two phenom-
ena that are of particular interest are those of metastatic dormancy and blow-up. With
the goal of investigating the potential implications of the immune-mediated theory of
metastasis (Shahriyari 2016; Rhodes and Hillen 2019) we have introduced, analyzed,
parameterized, and simulated a model of tumor-immune dynamics at the site of a
metastatic tumor. The model includes both anti- and pro-tumor immune effects, in
addition to the experimentally observed phenomena of tumor-induced immune cell
phenotypic plasticity (Oleinika et al. 2013)—which we have referred to as tumor
“education” (Liu and Cao 2016) of anti-tumor immune cells to play a pro-tumor role.
By exploiting the difference in timescales between fast immune dynamics and slow
tumor dynamics (Hanin and Rose 2018; Pascual et al. 2010), we used techniques from
geometric singular perturbation theory and quasi-steady state analysis to reduce the
complexity of our model, allowing for meaningful analysis. In particular, we made
use of our analytical results to determine conditions necessary for our model to exhibit
metastatic dormancy and blow-up.

Wilkie (2013) has provided a detailed review of mathematical models for immune-
mediated primary tumor dormancy, and the author describes two main mathematical
mechanisms for dormancy. The first is as small amplitude oscillations around a small
positive value, and the second is as a small positive steady state. Although we did not
find that our model admitted oscillations, dormancy as steady state was possible in our
model (see Fig. 9). Furthermore, we found that dormancy could also be characterized
as a transient state that occurred as the dynamics traveled near a saddle point (again,
see Fig. 9). Wilkie and Hahnfeldt (2017) also described a saddle point mechanism
for dormancy within their tumor-immune model of a single tumor that incorporated
pro-tumor immune effects via a dynamic tumor carrying capacity.

In our analysis we did not focus on the phenomenon of concomitant resistance (CR)
(Chiarella et al. 2012; Michelson and Leith 1995; Prehn 1993; Ruggiero et al. 2012).
One reason is that we wanted to focus on naturally occurring metastases instead of
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pre-seeded cancers. However, the model can easily be used to analyse CR in detail, by
allowing the influx from a primary tumor ¢ (¢) and the influx of immune cells from the
primary ¥ (¢) to depend on time, to simulate a growing primary tumor. Considering
the length of our paper, and the many aspects that we did cover, we chose not to discuss
CR in too much detail.

Model analysis allowed for the characterization of different mechanisms under-
lying metastatic progression. Proposition 3 provides us with a threshold metastatic
tumor density, u4 (approximately 0.1 in the simulations presented herein), that may
be interpreted as a “switch” whereby the largely cytotoxic immune effects become
largely tumor-promoting as the metastatic tumor density increases beyond u.. In
other words, for sufficiently small metastatic tumors, the cytotoxic immune response
can adequately control the metastasis, resulting in relatively slow growth (as in Fig. 6a)
or dormancy (as in Figs. 7, 8, 9), whereas larger metastatic tumors can effectively cor-
rupt the cytotoxic immune response, resulting in a largely pro-tumor environment and
increased metastatic growth (the abrupt change in growth rate at approximately day
210 in Fig. 6a or the red curves in Fig. 9a). These results provide theoretical support
for the concept that tumor “education” of immune cells may be a potential mecha-
nism to flip the “angiogenic switch” by recruiting immune cells that provide the local
environment with pro-angiogenic signals (Giancotti 2013; Joyce and Pollard 2009).

For blow-up, a number of conditions had to be met. First, without any form of
primary intervention, the model had to predict a small, dormant metastatic tumor. In
the absence of this condition, primary resection could only hinder further metastatic
growth (Fig. 6). Second, blow-up was impossible without assuming a change in the
model parameters in response to the primary resection (Fig. 8). We tested three possible
mechanisms: increased recruitment of pro-tumor immune cells, decreased pro-tumor
immune cell death rate, and increased rate of tumor education of CT immune cells.
Only the final strategy was able to successfully reproduce biologically realistic post-
resection dormancy and (delayed) blow-up (Fig. 9). Third, the primary resection had
to induce a short period of growth at the metastatic site, so that a threshold tumor
density (unstable node) was passed, and the solution entered the basin of attraction of
a larger steady state (Fig. 10). In particular, the naive model of primary resection used
in previous studies (Eikenberry et al. 2009; Rhodes and Hillen 2019; Walker et al.
2018) needed to be replaced with a slightly more sophisticated model. The inclusion
of systemic inflammation caused by primary resection surgery (or even a biopsy of the
primary tumor), together with tumor “education” of CT immune cells, made it such
that metastatic blow-up was possible (Figs. 9, and 10).

Recently, Wilkie and Aktar (2020) introduced a novel model of post-resection
inflammation. Primary resection was simulated by removing 100% of the local cancer
cells and 99% of the local immune cells, and by decreasing the primary site tumor cell
carrying capacity by 99%. In simulations both with and without the additional post-
resection inflammation the model exhibited metastatic blow-up. Blow-up was a result
of immune cell re-distribution from the primary site to the secondary site. Although
our models for post-resection inflammation differ in the details, they both emphasize
the same mechanism; namely the large population of pro-tumor immune cells at the
secondary site post-resection, which is ultimately responsible for increased metastatic
growth and subsequent blow-up.
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Figure 11 demonstrates that a significant population of TE immune cells arrives at
the site of future metastasis prior to significant tumor colonization, thereby creating
a permissive PMN (within the context of our model). Furthermore, Fig. 9 shows that
extended metastatic dormancy and subsequent blow-up are still possible, despite [and
in fact, largely as a result of resection-induced inflammation (Retsky et al. 2013)] pri-
mary tumor removal. While it is true that the removal of the primary tumor would stop
any niche preparation that had been underway, our model suggests that the ground-
work was already complete by that time. Moreover, it is the inflammation incurred as
a result of the resection that jump starts further metastatic growth. In other words, the
concepts of PMN and delayed blow-up need not be mutually exclusive, as suggested
by Riggi et al. (2018) (although some of this confusion may be a consequence of loose
definitions).

Our results mirror those of both Benzekry et al. (2017) and Hanin and Rose (2018),
which demonstrated that an increase to metastatic growth after primary resection
was needed to explain observed data. Within our modeling framework, the initial
escape from dormancy is triggered by the inflammation resulting from primary tumor
resection. As mentioned earlier, this may be a potential mechanism to flip the so-
called “angiogenic switch.” Subsequent growth and eventual metastatic blow-up is
sustained by a strong population of pro-tumor TE immune cells at the metastatic
site, which is maintained by a post-resection increase to tumor-mediated immune cell
phenotypic plasticity. Our results provide support for the theory of metastatic blow-up
as a consequence of a systemic inflammatory response to primary tumor resection.
There are now mathematical works that have investigated each of the four proposed
mechanisms underlying metastatic blow-up described in Sect. 1, and further work—
both experimental and theoretical—must be done to more strongly distinguish between
these hypotheses.

Thanks to our sensitivity analysis (Figs. 4 and 5), bifurcation analysis (Fig. 3), and
the accurate reproduction of biologically feasible behavior within reasonable parame-
ter constraints, we posit that the biological predictions discussed herein are biologically
plausible and of significant potential value. In particular, the concept of a post-resection
change in metastatic behavior has now been demonstrated in at least four distinct the-
oretical settings (herein, Benzekry et al. (2017), Hanin and Rose (2018), and Wilkie
and Aktar (2020)), and warrants further targeted biological investigation.

Additionally, the observations of den Breems and Eftimie (2016) that the ratio of
pro-tumor to anti-tumor macrophages may be a valuable predictive measure were also
found herein, this time in the metastatic setting. Indeed, our modeling results suggest
that within three weeks of the primary tumor resection, and well before the metastatic
tumor is clinically detectable, the immune cell composition at a potential site of metas-
tasis can predict whether or not metastatic blow-up will occur (Fig. 9). Providing some
level of credibility to these theoretical results come from recent combined theoretical-
experimental work that has revealed the important effects of immune cell phenotypic
plasticity on therapeutic outcome (Griffiths et al. 2020). Although compelling, further
biological studies are needed in order to confirm our theoretical results, including
the determination of (i) whether a post-resection jump in pro-tumor immune cells at
distant sites is actually observed, and, (ii) if such a jump does occur, what are the
mechanisms responsible?
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In addition to confirming previous experimental (Park et al. 2018) and clinical
(Retsky et al. 2013) results by reproducing the anti-metastasis effects of inhibiting
inflammation associated with primary tumor resection (Figs. 9 and 12), our model
also provides another potential target for therapy: inhibiting tumor-induced immune
cell phenotypic plasticity (Oleinika et al. 2013) (Fig. 12). While intriguing, this result
also does have its limitations. For instance, what exactly is meant by “tumor-induced
immune cell phenotypic plasticity,” what are the mechanisms underlying it, and is it
reversible? Answers to these questions must first be found before putative therapeutic
targets can be suggested.

Whereas the results presented in this work are exciting, we stress that caution
should be taken when interpreting the results as they are based on a model which
relies on many simplifications and assumptions. First and foremost, we have used
a non-spatial ODE model to describe an inherently spatial process. While this was
done in order to simplify the model to allow for deeper analysis, future work should
certainly include the effects of space as well as the architecture of the body. Such
considerations have been taken previously, with a spatially explicit stochastic model
introduced by Frei et al. (2020), a detailed multi-site ODE model of tumor-immune
dynamics developed by Poleszczuk et al. (2016) and Walker et al. (2017, 2018) and,
combining the approaches, Franf3en et al. (2019); Fran3en and Chaplain (2019) have
developed a multi-site PDE model. Future work includes adding pro-tumor immune
effects in such modeling frameworks.
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A Appendix

Here we prove Proposition 3 and provide additional details concerning the parameter
sensitivity analysis reported in Fig. 4. We begin by proving Proposition 3.

Proof Consider (u, x(u), y(u)) € M. We compute the derivatives x, («) and y, ().
We begin with x,,:

X, () = 0y < a )
— (Au) — pu — w — ed(u))
o« ()J(u) —p— ed’(u))
C ) = pu— w — ed(u))*

(14)

The sign of x,, depends entirely on the sign of

M) —p —ed ().
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With the choices we made for A(u) and ed(u), we arrive at the following chain of
equivalent conditions:

Xy (u) >0
M) —p—ed W) >0
albl 0
— — —p—x >
(b1 +u)? P (15)
a1b1 2
> (b1 +u)
p+x
b
0> u® +2bju + b? — 2L
o+ x

The roots to the above quadratic are given by

b
Uy = —by £ | 2L (16)
p+x

This gives distinct, real roots (assuming that a;b; # 0) with at least one of them
negative. If u > 0, then we see that x,, > 0 for u < u4 and negative otherwise. If
u4 < 0, then we simply have x,, < O for all non-negative u.

Next, we consider y,. We show simply that y, is non-negative, as

v+ ed(u)x(u)
Yl =0 ( “(fw -1 )
—(ed' (u)x (u) + ed (u)x, () (f () — ©) + (¥ + ed(w)x(w)) f'(u)
- (f ) —1)?
- —(ed' (u)x (u) + ed (u)x, (u))(f (u) — 1)
- (f () —1)? '
(17)

The final inequality results from the fact that (y + ed(u)x(u)) f'(u) > 0 since f
is increasing (A1). Now, we can use the expressions for x(z) and x,,, as well as our
choice of ed () = xu to arrive at

_ xo xue (X (u) — p — ed'(u)) B
(N = [—(k(u) —pu—w—edw) (Au)—pu—ow-— ed(u))z] (= fa)
_ xo (t — f)) [1_ u(A (u) —p —ed'(u)) }
—(A(u) — pu — w — ed(un)) Au) — pu — w — ed(u)

(18)

The sign of this expression depends only on the sign of the term

1 — u(X () — p —ed' (u)) _ Mu) — o —ed(u) — AN Wwu + ed' (u)u
Au) — pu — w — ed(u) - AMu) — pu — w — ed(u) ’
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By assumption (A2), the denominator is always negative, and therefore the sign of
the above expression is determined by the sign of its numerator. With the choices for
ed(u) and X(u) from Sect. 2.3, the numerator simplifies to

u(a; — w) — 2bjou — a)b%

(b1 +u)?
Using the fact that a; — w < 0 (A2) guarantees that the quadratic is negative for all
u > 0, and therefore y, («) > 0 for all u > 0. ]
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