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We study the influence of spatial heterogeneity on the antiviral activity of mouse embryonic fibroblasts
(MEF) infected with influenza A. MEF of type Ube1L�=� are composed of two distinct sub-populations, the
strong type that sustains a strong viral infection and the weak type, sustaining a weak viral load. We pre-
sent new data on the virus load infection of Ube1L�=� , which have been micro-printed in a checker board
pattern of different sizes of the inner squares. Surprisingly, the total viral load at one day after inoculation
significantly depends on the sizes of the inner squares. We explain this observation by using a reaction
diffusion model and we show that mathematical homogenization can explain the observed inhomo-
geneities. If the individual patches are large, then the growth rate and the carrying capacity will be the
arithmetic means of the patches. For finer and finer patches the average growth rate is still the arithmetic
mean, however, the carrying capacity uses the harmonic mean. While fitting the PDE to the experimental
data, we also predict that a discrepancy in virus load would be unobservable after only half a day.
Furthermore, we predict the viral load in different inner squares that had not been measured in our
experiment and the travelling distance the virions can reach after one day.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In experiments of mouse embryonic fibroblasts (MEF), we
infected MEF of type Ube1L�=� with influenza A virus to observe
their susceptibility and resistance to viral infection. The fibroblast
population is bimodal, consisting of cells that sustain a strong or
weak virus infection, respectively (Now and Yoo, 2016). In typical
cell experiments, these cells are mixed, forming a homogeneous
population. The importance and correlation between the virus
infection and population with heterotypic patterns has been stud-
ied in (Snijder et al., 2009). However, the effects of spatial com-
plexity between heterogeneous populations has not been
explored yet. Therefore, it is of interest to understand whether
the viral susceptibility changes when the spatial distribution of
the sub-populations becomes heterogeneous.

To analyse this question, (Park et al., 2017) employed a brand
new cell-printing method, which allowed printing of cell cultures
in a checker board pattern, where the two cell populations are sep-
arated into little squares (see Fig. 1(A)). The size of the inner
squares can be adjusted from almost complete separation (large
squares), to finely mixed (small squares), to fully mixed. In Park
et al. (Park et al., 2017), the experimental plates had 50% of
A549 human alveolar lung epithelial cells, and 50% of HeLa cervical
cancer cells. These two cell lines are known to possess relatively
‘‘strong” and ‘‘weak” infectivity to influenza A, respectively (Li
et al., 2009; De Vries et al., 2011). To their surprise, the total virus
load did ‘‘ not arise as a simple arithmetic summation of the individual
cellular activities”. Here we repeat the experiments with mouse
embryonic fibroblasts (MEF) of type Ube1L�=�using 50%”weak
infectivity” sub-type and 50% ‘‘strong infectivity” sub-type. Similar
to the experiments of (Park et al., 2017) we also find that the total
virus load after one day of inoculation depends on the spatial
arrangement of the cells. The finely mixed and fully mixed plates
had a much reduced total viral load as compared to the large scale
patterns (see data in Fig. 1(B)), suggesting a strong dependence of
the total viral load on the spatial arrangement.

In this paper we use mathematical modelling to explain the
spatial dependence of the virus load data. Mathematical modelling
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Fig. 1. (A): Design of the cell-printing pattern, (B): Viral load measurement after 24 h.
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of virus load is an active field of research (see Smith and Perelson,
2011; Beauchemin and Handel, 2011; Gallagher et al., 2018; Smith,
2018). While most of these models are based on ordinary differen-
tial equations, a few approaches use spatial modelling (Gallagher
et al., 2018; Wodarz et al., 2012; de Rioja et al., 2016). Here we base
our model on a Fisher-KPP reaction–diffusion model (Murray,
2007) and we use homogenization methods and numerical meth-
ods to analyze the model. To say it upfront, while going from
coarse to fine mixture, we observe a transition from an arithmetic
mean of two steady state virus load levels to a harmonic mean of
these values. As the harmonic mean is always smaller than the
arithmetic mean, it explains the observed reduction in virus load
for the finer mixed experiments. As we calibrate the model to
our experimental data we find that the model can not only explain
the observed virus load data, it can also predict values that were
not measured in the experiments. Moreover, we found the spatial
viral load distribution across the periodic domain by solving the
mathematical model numerically.

Our analysis shows a simple but relevant example of the effect
of spatial heterogeneity on cell responses to virus infection. It
shows that measurements done on cell populations in isolation
cannot simply be carried over to a heterogeneous mixture of cells.
The spatial arrangement seems to be important.

1.1. Outline

The paper is organized as follows: In the next section (Section 2)
we explain the experimental set up and the data collection. In Sec-
tion 3 we introduce the mathematical model. We chose a very clas-
sical Fisher-KPP reaction–diffusion equation (Murray, 2007), which
is quite sufficient for our purpose. We then perform the spatial
homogenization as it is relevant for our problem. From this analy-
sis the dichotomy between arithmetic and harmonic means arises.
In Section 4 we fit our model to our virus-load data using a log-
likelihood method, thereby explaining the observed virus load
dependence on the spatial arrangement. In Section 5 we present
numerical solutions of the corresponding model, which show the
spatial distribution of the viral infection across the checker board
pattern. We close with a discussion in Section 6.

2. Influenza A Infection Experiments

We consider mouse embryonic fibroblast (MEF) of Ube1L�=�,
where Ube1L stands for a ubiquitin like modifier activating enzyme
for ISGylation protein that conjugates an Interferon (IFN) stimu-
2

lated gene 15 (ISG15) to target proteins. The Ube1L�=� are null
mutations of Ueb1L, where the Ueb1L production is deactivated.
Studying these cells, we found that Ube1L�=� populations are bimo-
dal, with two sub-populations of differential antiviral activity
(Now and Yoo, 2016). Ube1L�=�ðSÞ and Ube1L�=�ðWÞ designates
those subpopulations with strong andweak infectivity, respectively
Appendix A.

To study the influence of the spatial distribution patterns on the
virus load of the population as a whole, we printed Ube1L�=�ðSÞ and
Ube1L�=�ðWÞ cells in a regular checker board pattern by using the
inkjet bio-printing system (Park et al., 2017). While fixing the size
of the checker board square to 30� 30mm2, the size of the inner
squares was varied using side lengths of 1.5 mm, 3 mm, 5 mm,
and fully mixed, (see Fig. 1(A)). Thus, the geometric separation of
Ube1L�=�ðSÞ and Ube1L�=�ðWÞ cells is increased as the size of the
inner squares is increased. The mixed case of 50/50 of
Ube1L�=�ðSÞ and Ube1L�=�ðWÞ cells is used as a control group. In
each of these experiments, the cells on the checker board and the
mixed plate were infected with Influenza A virus and incubated
for 24 h. The inoculation was performed uniformly over the entire
domain to avoid spatial heterogeneities through the inoculation
process. The infected cells were harvested and the total amount
of intracellular viral genome was measured using the real time
quantitative PCR method (Fig. 1(B)). All experiments use the inkjet
printing method that was developed in Park et al. (2017), The
experiments for the cell cultures in isolation were carried out twice
for each cell type, and in each case three plates were inoculated
with a density of about 6� 106 cells/mL. The homogeneous cell
populations were printed with the same set up as for the 1.5 mm
checker board printing, however, each square would carry the
same cell type (all black or all white, respectively). The results
for the homogeneous populations are reported in Tables A.5 and
A.6. The checker board measurements were also repeated three
times, and the results are shown in Table A.7.

The method of Livak (Delta Delta CT) has been used to compute
the relative quantification (gene expression)

RQ ¼ 2�ðDDCTÞ;

where CT represents the cycle number where the fluorescence that
is generated by the PCR of the influenza A gene is distinguishable
from the background noise cycle threshold (CT) of our sample. We
measure DCT by the following formula

DCT ¼ CTðtarget geneÞ � CTðreference geneÞ:



Fig. 2. Sketch of a periodic patchy environment of two cell types.
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Here, our target gene is influenza A hemagglutinin (HA) gene
and the reference gene is the mouse glyceraldehyde 3-phosphate
dehydrogenase (mGAPDH) gene. Thus, we can compute DDCT as
the following

DDCT ¼ DCTðexperimental sampleÞ � DCTðcontrol sampleÞ;
The full data set is shown in Appendix Tables A.5 and A.6 for the

homogeneous populations and in Table A.7 for the checker board
data. The data from Table A.7 are visually shown in Fig. 1(B).

Looking at the virus load data in Fig. 1(B), we can see clearly a
mismatch in the viral load depending on the inner square size from
mix, to 1.5 mm, to 3 mm and to 5 mm. However, each experiment
has the same ratio and the samemass of Ube1L�=� (W) and (S) cells.
Therefore, the antiviral activity of the cell population as whole is
not a simple summation of the individual cellular activities.

3. A mathematical model

Reaction diffusion equations (RDE) are a powerful tool when-
ever the spatial spread of a population is of importance. One of
the simplest examples of a RDE equation is the Fisher-KPP
equation

@

@t
vðx; tÞ ¼ D

@2

@x2
vðx; tÞ þ lðxÞvðx; tÞ 1� vðx; tÞ

KðxÞ
� �

; ð1Þ

where vðx; tÞ is the viral density at time t and location x;D is the dif-
fusion coefficient, describing the spatial spread of the virions, l is
the population growth rate of the virus, and K is the population car-
rying capacity. The viral infection and replication inside the cells is a
multilayered processes. First, virions enter the cell through endocy-
tosis. Then, after virion uncouating, the virus RNA replicates and is
reassembled into new virions. Virions are released through a num-
ber of processes, such as exocytosis and cell lysis. In the case of lysis
the cell membrane breaks down, releasing virions into the extracel-
lular fluid. Biologically, the virion growth rate parameter l in our
model can be seen as an effective growth rate, combining the details
of viral replication inside cells. While, the diffusion coefficient
describes the free virions spread. Since the model is used to describe
the spatially varying checker board patterns, we assume that the
growth rate lðxÞ and the virus carrying capacity KðxÞ are spatially
dependent. We assume that the transport of virus from cell to cell
is the same for all cell types, hence we assume D is not spatially
dependent and it is constant. The model can be considered for the
case of DðxÞ as well (see Shigesada et al., 1986, 2015; Maciel and
Lutscher, 2013), but the model with constant D is sufficient to
explain our data. Moreover, we have no biological indication to
assume that the diffusivities should be different, hence we assume
they are the same.

Fisher proposed Eq. (1) in his paper ‘‘The wave of advance of
advantageous genes” in 1937 (Fisher, 1937). He studied the diffu-
sion of species in one dimension and its traveling wave solutions
with considering the reaction term being logistic. In the same year,
Kolmogorov, Petrovsky, and Piskunov studied the reaction diffu-
sion equation in two dimensions and with more general monos-
table reaction term (Kolmogorov et al., 1937).

We chose the Fisher-KPP equation for our modelling problem
for several reasons. Firstly the available data on virus load on
checker board patterns are limited to the total virus load at a few
time points (0, 6 h, 12 h, 24 h). No microscopic measurements
are performed, hence no details on the virus replication inside
cells, the cell bursting, number of released virions, transport of viri-
ons inside the cell tissue, and cell death are available. It would be
fantastic to include those details in a more sophisticated modelling
framework, but at this stage this is neither possible nor needed. We
find that the simple Fisher-KPP approach is entirely sufficient to
3

explain the phenomenon on a macroscopic level. A second reason
to use Fisher-KPP is that it has proven useful in many applications
before, it is simple, and the behavior of this model is well under-
stood (Murray, 2007). There are certain model characteristics we
can use immediately. For example the invasion speed of the
Fisher-KPP model (1) is

c ¼ 2
ffiffiffiffiffiffiffi
Dl

p
: ð2Þ

The parameters of the Fisher-KPP Eq. (1) D;l;K will be esti-
mated based on the data from the experiments which we pre-
sented in the previous Section 2.

3.1. Homogenized Fisher KPP model

The experimental set up as described above is a paradigm for a
homogenization problem. A microscopic scale (inner squares) is
varied on a finer and finer scale, until in the limit, a homogeneous
mixture arises. We are in the fortunate position, that not only the
separated and fully mixed states are measured, but also several
intermediate values for intermediate mixture types. While homog-
enization is a well known scaling method in physical applications
(Pavliotis and Stuart, 2008; Holmes, 2012), it has only recently
been used for ecological problems in (Garlick et al., 2011; Maciel
and Lutscher, 2015; Yurk, 2018; Yurk and Cobbold, 2018). To our
knowledge, this method has never been used in the microbiologi-
cal context considered here.

Due to the symmetry of the problem, we present the argument
in a one-dimensional setting. The scaling method applies to higher
dimensions as well, but the one-dimensional setting is sufficient
for our purpose. To model the specific checker board pattern, we
divide the real line into small intervals of equal length, which sep-
arates weak and strong infectivity populations (see Fig. 2). On this
periodic domain we consider the spatial dependent Fischer-KPP Eq.
(1), where the virus growth rate lðxÞ and the virus load carrying
capacity KðxÞ vary between cell types, i.e.

KðxÞ ¼ KW ; x 2 patch of type weak
KS; x 2 patch of type strong

�
ð3Þ

lðxÞ ¼ lW ; x 2 patch of type weak
lS; x 2 patch of type strong:

�

We use W to indicate the Ube1L sub-population of weak infec-
tivity and S for strong infectivity. For the general analysis we sim-
ply consider periodic functions KðxÞ;lðxÞ.

We distinguish between two relevant spatial scales, the scale of
the individual patches y, represented by the inner squares and the
global scale of the whole experiment x, represented by the checker
board printing. Also, we assume that there is a small parameter
e > 0 such

y ¼ x
e
;

where e represents the ratio between the local and global scales. In
the experiment,

e ¼ the size of inner square
the size of the checker board

:
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Thus, we can compute the e for the 5 mm, 3 mm, and 1.5 mm
inner squares as e ¼ 1=6;0:1;0:05, respectively.

We use standard assumptions in homogenization (see e.g.
(Pavliotis and Stuart, 2008)) and assume that the growth rate
lðyÞ and the carrying capacity KðyÞ change only on the small scale
y and they do not vary on the large scale x. The virus load depends
on both scales, vðx; y; tÞ and the partial derivatives change as

d
dx
vðx; yðxÞ; tÞ ¼ @

@x
vðx; y; tÞ þ 1

e
@

@y
vðx; y; tÞ

If we introduce this assumption into (1) we get the multiscale
reaction–diffusion equation

@

@t
vðx; y; tÞ ¼ D

e2
@2

@y2
vðx; y; tÞ þ 2D

e
@2

@x@y
vðx; y; tÞ

þ D
@2

@x2
vðx; y; tÞ þ lðyÞvðx; y; tÞ 1� vðx; y; tÞ

KðyÞ
� �

:

ð4Þ

We are seeking here a leading order approximation (v0) to com-
pute the viral load which is valid for small e. To analyze this equa-
tion we use a perturbation expansion in the small parameter
e � 1:

vðx; y; tÞ ¼ v0ðx; y; tÞ þ ev1ðx; y; tÞ þ e2v2ðx; y; tÞ þ � � � ; ð5Þ
where all functions v jðx; y; tÞ; j ¼ 0;1;2; . . . are assumed to be peri-
odic in y of period 1.

We substitute this expansion (5) into (4) and collect terms of
equal order in e. The leading order term is of order e�2:

� e�2: We obtain 0 ¼ D @2

@y2 v0ðx; y; tÞ, which leads to a general form
v0ðx; y; tÞ ¼ c1ðx; tÞyþ c2ðx; tÞ
Since v0ðx; y; tÞ is periodic in y, the first term c1 ¼ 0 and we find
that v0 does not depend on y. We write v0ðx; tÞ instead of using
c2ðx; tÞ.

� e�1: In this case we find
0 ¼ D
@2

@y2
v1ðx; y; tÞ þ 2D

@2

@x@y
v0ðx; tÞ:

Since v0 does not depend on y, the second term is zero. Hence
the first term is zero as well. Again arguing with periodicity,
we find that also v1 is independent of y and we write v1ðx; tÞ.

� e0: Here we find
Fig. 3. Sketch of periodic patchy environment and the homogenization limit.
@

@t
v0ðx; tÞ ¼ D

@2

@y2
v2ðx; y; tÞ þ 2D

@2

@x@y
v1ðx; tÞ

þ D
@2

@x2
v0ðx; tÞ þ lðyÞv0ðx; tÞ 1� v0ðx; tÞ

KðyÞ
� �

:

ð6Þ

Instead of solving this equation for v2 we simply integrate over
one period y 2 ½0;1�: Since v0 and v1 do not depend on y, and
since v2 is periodic, several terms simplify. We find the homog-
enized equation:

@

@t
v0ðx; tÞ ¼ D

@2

@x2
v0ðx; tÞ þ

Z 1

0
lðyÞdy v0ðx; tÞ �

Z 1

0

� lðyÞ
KðyÞdy v

2
0ðx; tÞ: ð7Þ

To understand (7) we introduce the arithmetic mean and the
harmonic mean as

hlia ¼
Z 1

0
lðyÞdy; hKih ¼

Z 1

0

1
KðyÞdy

� ��1

and we consider three cases:
4

Case 1: Consider KðyÞ ¼ K constant. Then (7) becomes a stan-
dard Fisher-KPP equation
@

@t
v0 ¼ D

@2

@x2
v0 þ hliav0 1� v0

K

� �
; ð8Þ
where the homogenized growth rate hlia ¼ 1
2 ðlS þ lWÞis the arith-

metic mean of lðyÞ.
Case 2: Consider lðyÞ ¼ l constant. In this case (7) becomes
@

@t
v0 ¼ D

@2

@x2
v0 þ lv0 1� v0

hKih

� �
; ð9Þ
where the carrying capacity arises as harmonic mean of KðyÞ:
hKih ¼
1

1
2

1
KS
þ 1

KW

� � :

Case 3: We can also write the general homogenized Eq. (7) as a

Fisher-KPP equation, however, with less intuitive aver-
age terms as
@

@t
v0 ¼ D

@2

@x2
v0 þ hliav0 1� v0

hlia hlK ia
� 	�1

 !
: ð10Þ
Here the effective growth rate and effective carrying capacity are
~l ¼ hlia; ~K ¼ hlia
hlK ia

: ð11Þ
As illustrated in Fig. 3, the fine printing of the virus hosts in
patches of different sizes leads to different averaging. If the indi-
vidual patches are large, then they can be considered as almost
independent, and the growth rate and the carrying capacity will
be the arithmetic means hlia; hKia of the patches. On the other
hand, for finer and finer patches we have shown that the average
growth rate is still the arithmetic mean hlia, however, the carrying
capacity uses the harmonic mean. For example in Case 2 above it is
hKih and it is known that

1
1
2

1
KS
þ 1

KW

� � ¼ hKih 6 hKia ¼
1
2
ðKS þ KW Þ; ð12Þ

where equality is satisfied when KS ¼ KW . Hence a reduction of the
overall carrying capacity for finer patches is a direct consequence of
the averaging procedure.

4. Application to the Fibroblast experiments

Case 1, where KðyÞ = const., cannot describe the observed data,
since the averaging of the growth rate does not change from coarse
to fine experiments. However, Cases 2 and 3 can. Since Case 2 is
nested in Case 3, and since Case 2 is sufficient to explain the
observed phenomenon, we focus our analysis on Case 2, where
the virus growth rate l is (almost) constant between the two cell
types, while the carrying capacities are significantly different:
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l ¼ lS ¼ lW ; and hKih ¼
1

1
2

1
KS
þ 1

KW

� � :
4.1. Fitting with PDEs

The above formulas (12) only give information about the mixed
case and the most separated case. However, they do not give infor-
mation about the intermediate scales such as the 1.5 mm and
3 mm experiments. To fit those data as well, we employ the
Fisher-KPP model (1). Details of the numerical solution are given
in Section 5.

We use a least-squares approach to estimate the error

E ¼
X4
i¼1

ðMi value� PDEi valueÞ2; ð13Þ

where i ¼ 1;2;3;4 represent the inner squares sizes: mix, 1.5 mm,
3 mm, and 5 mm respectively. Mi denotes the measurement value
and PDEi the integral of the solution curve of the PDE.

4.2. Calibration I: Naive approach

Based on the above calculations it is straight forward to simply
compare the arithmetic means and harmonic means with the
available data. In Table 1 we show the virus load data at t ¼ 24h
that correspond to the data shown in Fig. 1(B). The raw data are
in Table A.7.

We assume for now that the 5 mm plate corresponds to the sep-
arated case, i.e. hKia ¼ 3:3996, while the mixed case corresponds to
the harmonic mean hKih ¼ 1:2957. To find KS;KW we then simply
solve the two equations for the means (12) to find

KW ¼ 0:7252; and KS ¼ 6:0740:

To investigate the agreement with the intermediate cases of
1.5 mm and 3 mm, we solve the full PDE (1). For this we also need
the diffusion constant D and the virus growth rate l. From the data
in Tables A.5 and A.6, we found a range of values of the growth rate
for the virus in weak and strong infectivity cells. While
lW 2 ½0:1155;0:3547�, we found lS 2 ½0:1155;0:4722�. Therefore,
we choose the intermediate value hlia ¼ 0:23 per hour.

We do not have any direct information from the data to esti-
mate the value of the diffusion coefficient D. de Rioja et al.
(2016) use a similar spatial virus model for cancer viral therapy,
and they use a diffusion coefficient of DRioja ¼ 0:0144 mm2 per
hour. This corresponds to an invasion speed of c ¼ 0:115 mm per
hour, resulting in a distance travelled in 24 h of 2:76 mm. This
seems too small for our situation. If the travel distance is
2:76 mm in 24 h, then the 3 mm and 5 mm cases would not have
been able to effectively communicate viral load values over a time
range of 24 h. Hence to explain the observed homogenization
effect, we expect a significantly larger diffusion coefficient than
0.0144. Consequently, we take the diffusion coefficient as an
unknown variable and compute the error (13) to the measure-
ments. In Table 2 we vary D from 0.02 to 0.6 mm2per hour and
we solve the Fisher-KPP Eq. (1) as described in Section 5. We
observe that for increasing D the fit for 1.5 mm gets better, the
Table 1
Virus load data, standard deviation, standard error and error bars.

Inner Square Mix 1.5 mm

Mean 1.2957 1.3305
Stand. Dev. 0.2002 0.2917
Stand. Error 0.1156 0.1684
Error Bar ½1:1801;1:4113� ½1:1621;1:49

5

3 mm fits well throughout, and the 5 mm fit gets worse. Hence
in the end we do not observe a usable fit from this (naive) proce-
dure. We show the data for the case of D ¼ 0:5 as red curve in
Fig. 4(A).
4.3. Calibration II: Extension to a 15 mm case

The above mismatch for the 5 mm plate is related to the fact
that the 5 mm squares are still relatively mixed, and they might
not correspond to the fully separated state. Hence, numerically,
we test this hypothesis by including a hypothetical 15 mm case,
where the cell types are separated into one compartment for cells
of weak infectivity and one compartment for cells of strong
infectivity.

The corresponding virus load has not been measured (due to
technical limitations of the bio-printing method), but we can still
solve the PDE for this case. We define a maximal error tolerance
of Emax ¼ 0:1, which is the smallest error bar from the data (see
Table 1). As we vary the values for D 2 ½0:02;0:6� mm2 per hour
and K15mm 2 ½5:5;12� we see in Fig. 5(A) that the error is decreasing
for increasing D and K15mm. The first value that is below the error
tolerance of 0:1 is the choice of D ¼ 0:5 (red marker in Fig. 5(A)).
For larger values of D we still can decrease the error. A full mini-
mization is, however, not very meaningful, since the fitting errors
become much smaller than the measurement errors of the data.
For fixed D ¼ 0:5 we have a range of suitable values for K15mm. Here
we can find a clear minimizer at K15mm ¼ 9:6 with an error of
E ¼ 0:0974. (see Fig. 5(B)). Hence for the purpose of our modelling
we chose

D ¼ 0:5 and hKia ¼ K15mm ¼ 9:600; ð14Þ

which, using (12) leads to

KW ¼ 0:6713; and KS ¼ 18:529: ð15Þ
These results suggest that strong infectivity cells can support

about 25 times more virus than weak infectivity cells.
In Table 3 and Fig. 4(A) we compare the measured values to the

optimized PDE results and also record the error and relative error
when K15mm ¼ 9:6 at t = 24. We see that the model results are very
close to the measurement, well within the error bars. A fit of this
level of accuracy is quite uncommon for biological data, and we
are confident that the chosen PDE model does explain the data
well. We summarize the calibrated model parameters in Table 4.

We further use our optimized PDE model to investigate the
virus load after 12 h as well. For the mix, 1.5 mm, 3 mm, and
5 mm we find simulated virus load numbers of 0.7372, 0.7643,
0.8183, and 0.8766, respectively. Although there is a slight increase
from mixed to separated, the difference is small and would not be
observable within measurement tolerances. Hence the homoge-
nization effect would not be observed after 12 h, an observation
that has been confirmed in our experiments (experimental values
not shown). The typical replication process of virus inside cells
takes between 5 and 12 h (Boianelli et al., 2015). Hence at 12 h only
a few cells would have released their virus contents, and the
homogenization effect will not yet have kicked in.
3 mm 5 mm

1.9304 3.3996
0.8111 0.9968
0.4683 0.5755

89� ½1:4621;2:3986� ½2:8241;3:9751�



Table 2
Simulated virus load data when D is varied at t = 24 h.

D 0.02 0.05 0.1 0.3 0.5 0.6 Measurements

Mix 1.2365 1.2365 1.2365 1.2365 1.2365 1.2365 1:2957� 0:1156
1.5 mm 2.3060 2.0169 1.7582 1.4590 1.3800 1.3590 1:3305� 0:1684
3 mm 2.5734 2.4397 2.2762 1.9069 1.7304 1.6737 1:9304� 0:4683
5 mm 2.6757 2.6031 2.5175 2.2945 2.1431 2.0830 3:3996� 0:5755

Fitting Data No No No No No No

Fig. 4. (A): Measurement values of virus load for the various checker board patterns. Overlaid is the naive fit for D ¼ 0:5 in red and the best fit using a hypothetical 15 mm
experiment in blue, (B): Comparison of the estimated carrying capacities KW ;KS with the virus load data of each cell type in isolation. The horizontal lines indicate the levels
KW ¼ 0:6713 (blue), and KS ¼ 18:529 (orange). The data from Tables A.5 and A.6 are presented as (X,black)= weak cells experiment 1, (X,red)= weak cells experiment 2, (circle,
blue)= strong cells experiment 1 and (circle,green)=strong cells experiment 2.

Fig. 5. (A): Error values at 24h when K15mm and D are varied. The red marker indicates D ¼ 0:5 and K15mm ¼ 9:6 which we chose as most suitable model parameter, (B):
Optimization of K15mm for fixed D ¼ 0:5.

Table 3
Comparison of the measurements with the optimized PDE model.

Size of Inner Square Measurement PDE Error2 Relative Error

Mix 1.2957 1.2365 0.0035 4.6 %
1.5 mm 1.3305 1.4635 0.0177 10 %
3 mm 1.9304 2.1889 0.0669 13.4 %
5 mm 3.3996 3.3033 0.0093 2.8 %

Least Square Error 0.0974
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Table 4
Summary of calibrated model parameters.

Parameter Description Value Unit

D Diffusion coefficient 0:5 mm2 per hour
hlia Arith. mean of growth rate 0:23 per hour
KW Carrying capacity of weak

infectivity cells
0:6713 viral load

KS Carrying capacity of strong
infectivity cells

18:529 viral load

KMix ¼ hKih Carrying capacity of mixed plate 1:2957 viral load
K15mm ¼ hKia Carrying capacity of 15 mm

printed plate
9:600 viral load
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4.4. Comparison to experiments of homogeneous populations

We compare these results (15) with the experiments of viral
load infections on each cell type in isolation. In Fig. 4(B) we plot
the virus load data from Tables A.5 and A.6 as functions of time.
We use symbols and colors to distinguish between the cell types
and experiments as (X, black) = weak cells experiment 1, (X, red)
= weak cells experiment 2, (circle, blue) = strong cells experiment
1 and (circle, green) = strong cells experiment 2. In addition we
plot the estimated KW and KS from (15) as horizontal lines.

We observe that there is a large difference in the virus load data
between experiment 1 and 2 for each of the weak and strong cases.
Hence the data do not seem to be directly comparable. The virus
load of the strong responders is certainly one or two orders of mag-
nitude larger than those of the weak responders, and our estimates
reflect this fact nicely. However, the data do not allow a quantita-
tive comparison.
5. Numerical analysis of the PDE model

The above results are based on numerical solutions of our PDE
model (1), which we performed as follows.
Fig. 6. Numerical simulation when lS ¼ lW ¼ 0:23 and D ¼ 0:5 with vðx;0Þ ¼ 0:1, and
intervals, (D): 1.5 mm intervals, (E): 1 mm intervals, (F): mix plate. Note that the z-axis

7

5.1. Mix plate

SincelS ¼ lW , we can solve the homogenized Eq. (9) for the Case
2 by a Forward-Time-Central-Spacemethod (Smith, 1985). Asl and
K are constant and the initial condition is non-negative, the solution
should converge to the carrying capacity KMix ¼ hKih ¼ 1:2957,
which has been confirmed numerically as shown in Fig. 6(F).

5.2. Spatially printed plates

For the spatially printed plates, we consider two patch types,
‘‘strong” which represent strong infectivity cells and ‘‘weak” which
represent weak infectivity cells. Accordingly, the carrying capacity
is spatially constant within a patch but different between patches.
While, the diffusion coefficient D and growth rate l are the same in
the two patches. We partition the entire interval into sub-intervals
(‘patches’) ðyi�1; yiÞ; i 2 N. Thus, we have

@v i

@t
¼ D

@2v i

@y2
þ liv i 1� v i

Ki

� �
; for y 2 ðyi�1; yiÞ:

Since the diffusion coefficient does not vary between the
patches, the flux is continuous across an interface

@yvðyþi ; tÞ ¼ @yvðy�i ; tÞ:
Here, yþi and y�i denote right and left sided limits at yi. The prob-

ability of a virion at interface yi moving to the right or left is the
same and equal to 0:5. Thus

vðyþi ; tÞ ¼ vðy�i ; tÞ;
which ensures continuity of the solution at the interfaces.

The simulations in Fig. 6 confirm our model assumption as only
in the 15 mm case (Fig. 6(A)) the carrying capacity of KS ¼ 18:529
of the strong infectivity cells is reached. In the other simulations
(B)–(F), the inner maxima, corresponding to the strong cell type,
are much lower than the carrying capacity of 18. We see the
homogenization effect in action, as the relative differences
vxð0; tÞ ¼ vxð30; tÞ ¼ 0 for (A): 15 mm intervals, (B): 5 mm intervals, (C): 3 mm
changes between these figures.
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between local maxima and local minima are flattened for decreas-
ing inner interval sizes. We also observe an overshoot at the right
boundary, which is due to the chosen Neumann boundary
conditions.
6. Conclusion

In this paper, we apply the method of homogenization to a spa-
tially structured Fisher-KPP model for the virus-load of a virus
infection of cell cultures. The method of homogenization is well
known in physics (Pavliotis and Stuart, 2008) and ecology (Yurk
and Cobbold, 2018; Garlick et al., 2011), but here we apply it in a
new way to microbiological data. We found a biological situation
where the averaging matters. Where both, the arithmetic mean
and the harmonic mean, provide valid information about viral load
and they are not the same. It is the first experiment we know
where the type of averaging matters for the infectivity of cell
populations.

These observations have been made possible through the revo-
lutionary technique of inkjet bioprinting as pioneered by Park et al.
(Park et al., 2017). Besides checker-board patterns, also other pat-
terns, such as the Eiffel Tower for example, can be printed and
analysed. This opens the door for modelling of more realistic
heterogeneous tissue such as lung tissue for example.

The calibrated PDE model has been used to compute scenarios,
which were not done experimentally, and hence serve as predic-
tions, such as the 1 mm and 15 mm cases, as well as the homoge-
nization effect after 12 h. The viral load in the 1 mm inner square is
reduced dramatically compared to the 5 mm and 15 mm and being
very close to the measurement value of the mixed case. Also, using
the formula for the invasion speed (2) we are able to compute the
invasion speed in our experiment. For D ¼ 0:5 and l ¼ 0:23 we
find an invasion speed of c ¼ 2

ffiffiffiffiffiffiffi
Dl

p ¼ 0:68 mm per hour: Which
means in 24 h virions travel a distance of 16:3 mm, which is about
half of the domain size. Hence the travel distance within 24 h is on
the macroscopic scale of the experiment. This agrees well with the
underlying assumption of homogenization that two spatial scales
are considered.

Our observations are based on highly controlled experiments
with two cell types and a clear geometric setup. Nevertheless,
the effect of population mixing versus segregation on total viral
load is likely to be present also in more natural occuring tissues.
One such area would be viral therapy of cancer (Wodarz et al.,
2012; de Rioja et al., 2016), where a heterogeneous cancer might
react quite differently to viral therapy as compared to a homoge-
neous cancer. We found a 8 times increase of viral load frommixed
to fully segregated. This can have a drastic impact on tissue
response and resulting patient health. For example in a recent
study by Néant et al. (2021) (Supplement Fig. S1), on SARS-CoV-2
infection in France, a threshold of 106 was identified as a predictor
of COVID-19 mortality. A factor 8, as we found here, can easily
make a difference in the infection outcome. The spatial distribution
of SARS-CoV-2 virus in tissue has been studied in Getz et al. (2020),
again, identifying to a highly heterogeneous lung tissue.

It should be noted that our model is spatially one dimensional,
while the experiments are two dimensional. We argue that due to
model symmetry a one-dimensional approach is sufficient. In fact,
the model performs well, all results are within error tolerances,
and we do not expect any further gain through a two dimensional
version.

Still, there is always room for improvement. While we built the
model exclusively for the available data, it would be worthwhile to
include more of the viral infection dynamics, such as endocytosis,
viral reproduction, exocytosis, as well as cell death (see Getz et al.,
2020). Also the transport of virions from cell to cell can be formu-
8

lated in a much more detailed way, using cell membranes, fluid
flow around the cells and possible ‘‘intracellular connections”,
which are know to transport virions as well (Roberts et al.,
2015). Here we get away with a simple effective diffusion process
to explain the observed data.

Another way to evaluate the diffusion coefficient D is by apply-
ing the Stokes–Einstein equation for the diffusion coefficient D of a
spherical particle of radius r in a fluid of dynamic viscosity g at
absolute temperature T (Murray and Jackson, 1992), which in our
case becomes

D ¼ kBT
6pgr

¼ 0:02 mm2 per hour;

where kB is Boltzmann’s constant, r ¼ 50 nm is a typical virus size,
and g ¼ 0:00094 pa:s is the viscosity of DMEM (10 % FBS) medium
at T ¼ 25 	C (Fröhlich et al., 2013). However, the simulation results
show that this value is very low and it does not fit the data. We
believe that a reason for this discrepancy is the formation of capil-
laries between cells that are touching along cell membranes.
Breugem (2007) showed that depending on the capillary pore size,
the diffusivity could increase by orders of magnitude. Again, in our
case we have no information about the pore sizes between the cells
in our experiments.

Biologically, our results are surprising because it means in viral
infection, spatial separation between the cell sub-populations is
not beneficially to the cell population as a whole. Therefore, for
overall fitness of cell population, it is better to be mixed. We
believe that this is a strategy the nature chooses to increase fitness.

7. Data availability

Data are in Appendix A.
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Appendix A. Experimental data

Here we present the raw-data as measured in our viral load
experiments. Tables A.5 and A.6 represent the kinetics of influenza
A virus separately in the homogeneous cell populations in a first
and second experiment with triplicated data sets. In both experi-
ments, the CT (HA) gene expression, CT (mGAPDH) gene



Table A.5
The viral load of influenza A virus in weak and strong population in the first experiment with three data sets for one day. N.D means not determined.

Sample name CT (HA) (Target gene) CT (mGAPDH) (Reference gene) DCT DDCT RQ

Weak 0 h-1 32.906 13.687 N.D N.D N.D
Weak 6 h-1 22.480 16.430 6.0500 0.1090 0.9272
Weak 12 h-1 20.533 15.500 5.0330 �0.9080 1.8764
Weak 24 h-1 20.008 14.719 5.2890 �0.6520 1.5713

Weak 0 h-2 33.670 14.912 N.D N.D N.D
Weak 6 h-2 22.681 16.685 5.9960 0.0550 0.9626
Weak 12 h-2 20.690 15.757 4.9330 �1.0080 2.0111
Weak 24 h-2 20.184 14.417 5.7670 �0.1740 1.1282

Weak 0 h-3 33.175 15.184 N.D N.D N.D
Weak 6 h-3 22.137 16.360 5.7770 �0.1640 1.1204
Weak 12 h-3 20.611 15.687 4.9240 �1.0170 2.0237
Weak 24 h-3 19.864 13.947 5.9170 �0.0240 1.0168

Strong 0 h-1 33.714 14.757 N.D N.D N.D
Strong 6 h-1 21.071 15.869 5.2020 �0.7390 1.6690
Strong 12 h-1 9.745 15.780 3.9650 �1.9760 3.9340
Strong 24 h-1 17.433 13.385 4.0480 �1.8930 3.7141

Strong 0 h-2 34.002 13.825 N.D N.D N.D
Strong 6 h-2 20.420 15.398 5.0220 �0.9190 1.8908
Strong 12 h-2 19.875 15.901 3.9740 �1.9670 3.9095
Strong 24 h-2 18.039 14.757 3.2820 �2.6590 6.3160

Strong 0 h-3 34.402 14.588 N.D N.D N.D
Strong 6 h-3 20.254 15.299 4.9550 �0.9860 1.9807
Strong 12 h-3 19.902 15.728 4.1740 �1.7670 3.4035
Strong 24 h-3 18.447 14.939 3.5080 �2.4330 5.4002

Table A.6
The viral load of influenza A virus in weak and strong population in the second experiment with three data sets for one day. N.D means not determined.

Sample name CT (HA) (Target gene) CT (mGAPDH) (Reference gene) DCT DDCT RQ

Weak 0 h-1 N.D 13.927 N.D N.D N.D
Weak 6 h-1 24.539 19.245 5.2940 �0.3600 1.2834
Weak 12 h-1 18.613 15.948 2.6650 �2.9890 7.9390
Weak 24 h-1 20.678 14.778 5.9000 0.2460 0.8432

Weak 0 h-2 N.D 14.059 N.D N.D N.D
Weak 6 h-2 23.796 17.951 5.8450 0.1910 0.8760
Weak 12 h-2 19.146 16.261 2.8850 �2.7690 6.8164
Weak 24 h-2 20.581 15.002 5.5790 �0.0750 1.0534

Weak 0 h-3 37.975 14.316 N.D N.D N.D
Weak 6 h-3 23.748 17.925 5.8230 0.1690 0.8895
Weak 12 h-3 19.805 17.057 2.7480 �2.9060 7.4950
Weak 24 h-3 20.570 14.960 5.6100 �0.0440 1.0310

Strong 0 h-1 N.D 14.942 N.D N.D N.D
Strong 6 h-1 21.493 16.308 5.1850 �0.4690 1.3841
Strong 12 h-1 16.076 14.713 1.3630 �4.2910 19.576
Strong 24 h-1 15.642 14.052 1.5900 �4.0640 16.726

Strong 0 h-2 36.907 14.285 N.D N.D N.D
Strong 6 h-2 21.513 16.950 4.5630 �1.0910 2.1302
Strong 12 h-2 16.607 15.885 0.7220 �4.9320 30.527
Strong 24 h-2 16.010 13.580 2.4300 �3.2240 9.3437

Strong 0 h-3 N.D 13.836 N.D N.D N.D
Strong 6 h-3 20.211 15.401 4.8100 �0.8440 1.7950
Strong 12 h-3 15.965 14.355 1.6100 �4.0440 16.495
Strong 24 h-3 15.060 13.967 1.0930 �4.5610 23.605
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expression, DCT;DDCT and RQ have been measured for weak and
strong infectivity cells at t = 0, t = 6, t = 12 and t = 24 h respectively.
The viral load is represented by the RQ value, where the RQ is the
relative quantification as we mentioned in Section 2.
9

Table A.7, represents the viral load for the checker board exper-
iments at one day with three independent samples. In the micro-
pattering experiment, the CT (HA) gene expression, CT (GAPDH)
gene expression, RQ and the average RQ (average viral load) have



Table A.7
The influenza A viral load on the micro-patterning for the different inner square sizes with three samples at one day.

Size of inner square CT (HA) CT (GAPDH) RQ Average RQ

Mix-1 15.366 15.157 1.0669
Mix-2 14.849 15.013 1.3816 1.2957
Mix-3 14.695 14.917 1.4387

1.5 mm-1 15.148 14.845 1.0000
1.5 mm-2 15.172 15.395 1.4396 1.3305
1.5 mm-3 15.461 15.793 1.5520

3 mm-1 14.621 15.638 1.7034
3 mm-2 15.266 15.087 1.2569 1.9304
3 mm-3 14.440 15.294 2.8308

5 mm-1 14.191 15.060 2.2519
5 mm-2 14.948 16.609 3.8978 3.3996
5 mm-3 14.547 16.262 4.0492

Arwa Abdulla Baabdulla, H. Now, Ju An Park et al. Journal of Theoretical Biology 527 (2021) 110816
been measured in the mix plate, 1.5 mm, 3 mm and 5 mm,
respectively.
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