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c A multiscale model of glioma invasion along the aligned neural fibre tracts is presented.
c Diffusion tensor imaging (DTI) data is connected to parameters of the macroscopic model.
c We show the impact of alignment on the invasion pathways using synthetic and real DTI datasets.
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a b s t r a c t

The nonuniform growth of certain forms of cancer can present significant complications for their treatment,

a particularly acute problem in gliomas. A number of experimental results have suggested that invasion is

facilitated by the directed movement of cells along the aligned neural fibre tracts that form a large

component of the white matter. Diffusion tensor imaging (DTI) provides a window for visualising this

anisotropy and gaining insight on the potential invasive pathways. In this paper we develop a mesoscopic

model for glioma invasion based on the individual migration pathways of invading cells along the fibre

tracts. Via scaling we obtain a macroscopic model that allows us to explore the overall growth of a tumour.

To connect DTI data to parameters in the macroscopic model we assume that directional guidance along

fibre tracts is described by a bimodal von Mises–Fisher distribution (a normal distribution on a unit sphere)

and parametrised according to the directionality and degree of anisotropy in the diffusion tensors. We

demonstrate the results in a simple model for glioma growth, exploiting both synthetic and genuine DTI

datasets to reveal the potentially crucial role of anisotropic structure on invasion.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Gliomas—tumours arising from the glial cells of the central
nervous system (CNS)—form an often invasive class of tumours
with poor prognosis following their anaplastic transformation.
A severe impediment to their treatment is the diffuse and
heterogeneous rate of invasion that leads to an ‘‘invisible’’ outer
tumour, undetectable under current imaging resolution. This
heterogeneous pattern of spread has, partly, been attributed to
the anisotropic invasion of glioma cells along aligned structures in
the brain, such as the bundled neural fibre tracts characteristic of
white matter (Giese et al., 1996, 2003; Clatz et al., 2005; Bondiau
et al., 2008; Konukoglu et al., 2010; Jbabdi et al., 2005).

Diffusion tensor imaging (DTI), discussed in Section 2, is an
imaging technique which measures the anisotropic diffusion of
water molecules in a tissue. The alignment in highly structured
ll rights reserved.

x: þ44 131 4513249.

),
tissues, such as the brain, muscles and bones, is revealed in the
anisotropy of these diffusion tensors and, in the context of the
brain, DTI can therefore map the pathways of neural fibre tracts
and help construct an atlas of the brain’s white matter architec-
ture (Basser, 2008). Given the hypothesised invasion of glioma
cells along fibre tracts, DTI therefore has the potential to predict
tumour expansion and guide therapy.

Mathematical/computational modelling provides one
approach for forecasting these invasive pathways and a number
of macroscopic models have been developed which employ DTI
data to inform the white matter architecture and simulate the
nonuniform growth of a glioma, e.g. Clatz et al. (2005); Jbabdi
et al. (2005); Cobzas et al. (2009); Konukoglu et al. (2010); and
Mosayebi et al. (2011). Unexplored questions within this model-
ling, however, include (1) connecting the DTI data/local tissue
architecture to an individual-level model for the invasive pathway
of the cancer cell and (2) how to then scale this model into
a macroscopic model for tumour growth. In this paper we present
a method for exploring these questions by first formulating a
transport equation and then employing scaling arguments to derive
the corresponding macroscopic model. Transport equations are
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fundamentally based on the characteristic pathways of individual
cell movement, parametrised according to ‘‘measurable’’ properties
such as velocities, turning rates and turning angles. Scaling leads to
macroscopic equations in the form of anisotropic reaction–diffusion
equations and we apply these models to artificial and genuine DTI
datasets to show the utility of this approach.

1.1. Modelling anisotropic invasion

Predicting the rate and pattern of spread of an invasive cancer as
it infiltrates healthy tissue is fundamental for delivering an effective
and targeted treatment. Paramount to this goal is uncovering the
various navigational cues that govern the migratory pathways of
cells. One such determinant can be found in the structure of the
environment (or substrate) through (or on) which the cells are
moving: the directional movement of cells in response to aniso-
tropy in the environment, termed contact guidance (Dunn and
Heath, 1976; Guido and Tranquillo, 1993). Aligned migration of
cells is a common characteristic, found in processes ranging from
embryonic development to immune cell guidance, wound healing,
and, of course, cancer invasion (Haston et al., 1983; Wood and
Thorogood, 1984; Wolf et al., 2003). Environmental anisotropy is a
widespread feature of tissues, stemming from the ordered align-
ment of collagen fibres in connective tissues, the network structure
of the blood vasculature and lymphatic system and the bundling of
nerve fibre tracts in the white matter of the central nervous system.

Mathematical modelling of cell migration and tumour invasion
has developed significantly over recent years and a range of
models have been specifically developed with glioma growth
and treatment in mind, e.g. see the reviews of Swanson et al.
(2003), Hatzikirou et al. (2005), and Mandonnet et al. (2008).
A significant number of these studies have concentrated on the
macroscopic process of glioma expansion, employing relatively
simple equations of reaction–diffusion type to model the evolving
density of glioma cells, cðx,tÞ, where x describes the position in
the CNS and t denotes time:

ct ¼rðDCðx,tÞrcÞþ f ðc,x,tÞ: ð1Þ

Terms on the right hand side, respectively, model the spatial
expansion or invasion of the tumour and cell proliferation. While
earlier models assumed isotropic and homogeneous growth, setting
DC to be a scalar and constant diffusion coefficient, later models
have taken into account an impact from the complex tissue
structure on invasion. For example, Swanson et al. (2000) consid-
ered a spatially heterogeneous diffusion coefficient, setting DC to be
significantly higher in white over grey matter to describe the faster
invasion observed in these regions. Critically, modelling was
matched to clinical data to optimise parameter selection and
extensions have included exploring radiation and chemotherapy
treatments, glioma classification, glioma evolution and tumour–
host interactions (e.g. Swanson et al., 2003; Hatzikirou et al., 2005).

Other models have expanded further on the form of the
invasion term in (1). A mathematical–mechanical model for glioma
invasion has been developed in Clatz et al. (2005), Bondiau et al.
(2008), and Konukoglu et al. (2010), dividing the tumour extent
into two parts. One portion describes the main tumour mass,
including the solid tumour core, and is modelled as a viscoelastic
tissue which grows and pushes on the surrounding medium,
leading to its deformation. The second component includes the
invasive region, along with the invisible outer tumour extent, and is
modelled by a reaction–diffusion equation of the form (1). The
diffusion coefficient DCðx,tÞ is taken here to be an anisotropic
diffusion tensor informed by DTI, with the anisotropy in DCðx,tÞ at
x modelling the preferred invasion of cells along the white matter
tracts. In these studies DC is simply taken to be directly proportional
to the measured water diffusion tensor obtained by DTI, yet it is
acknowledged that there is no sound biological justification for
such a relationship, stating on p.1339 of Clatz et al. (2005) that ‘‘the

comparison of the influence of anisotropy on the diffusion of water

molecules versus tumour cells has not been studied yet’’. The above
authors use brain atlas and real patient data to show the usefulness
of their model. In particular, new treatment margins are suggested
based on their mathematical model (Konukoglu et al., 2010).

Jbabdi et al. (2005) have also utilised DTI data within anisotropic
diffusion models to predict glioma spread. The authors do not
include mass effects, as in Clatz et al. (2005), however, do propose a
more elaborate geometric argument to connect the water diffusion
tensor measured by DTI, DTI, with the tumour cell diffusion tensor
in a model of the form (1). By measuring the shape and degree of
anisotropy in DTI the authors suggest a tumour diffusion tensor
with its same orientation but parametrised by a tuning parameter
which enhances or reduces the anisotropy of DTI. Matching to
clinical data indicated that enhancement was required, yet key
questions remain: How can this be more formally connected via an
individual tumour cell’s response to anisotropy and what form
should the corresponding macroscopic model take?

Cobzas et al. (2009) and Mosayebi et al. (2011) propose using
the DTI tensor to define a new metric on the brain domain, based on
geometrical constructions of Lenglet et al. (2004) and O’Dennell
et al. (2002) for connective white matter tissue. In normal treat-
ment practice a 2 cm margin surrounding the visible lesion defines
the treatment volume, mathematically corresponding to a 2 cm
margin in the Euclidean metric. Cobzas et al. (2009) and Mosayebi
et al. (2011) suggest a new metric G based on DTI data and compute
the corresponding ‘‘2 cm’’ margin according to this new metric,
which will extend or shorten the Euclidean distance according to
the local DTI data. Aided by mathematical modelling, early explora-
tions indicate that the new volume could potentially outperform
the normal practice, although further analysis is undoubtedly
required. For example, ‘‘More robust methods for TDT extraction are

required’’ (where TDT is our DC), see p. 371 of Mosayebi et al. (2011).

1.2. Outline

In each of the above studies a clear need for realistic and
transparent connections between water diffusion, brain geometry
and tumour cell invasion is indicated. Our aim is to present a
systematic approach for these connections, based on transport
equations for cell movement, scaling limits and the von Mises–
Fisher distribution. In recent work (Hillen, 2006; Painter, 2009;
Hillen and Painter, 2013) we developed transport equations as
models for cell movement in aligned tissues. The transport equation
formalism allows a detailed, microscopic description for the inter-
actions of cells with the tissue fibres, as well as changes in their
arrangement. The model was first developed in the context of
mesenchymal cell migration in collagen networks however has
been developed further in both mathematical theories (e.g. Hillen
et al., 2010) and various applications (e.g. Kettemann, 2010; Hillen
and Painter, 2013). To obtain macroscopic models in the form of
reaction–advection–diffusion equations, scaling limits can be
applied (Hillen and Painter, 2013). A key feature is that the
microscopic properties of the cell–tissue interaction can be
instantly translated into macroscopic parameters; in the present
case we can connect a proposed model for cell invasion along the
fibre tracts into an anisotropic diffusion tensor for the macroscopic
cell density. Fig. 1 illustrates the modelling workflow.

In the next section we briefly review some salient mathema-
tical facts concerning anisotropic diffusion, diffusion tensors and
DTI. Section 3 reviews essential details concerning the transport
model of Hillen (2006) and their scaling limits. In Section 4 we
propose some specific algorithms that connect the data derived
from DTI to the inputs for the invasion model. We directly apply
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Fig. 1. Schematic for the translation between DTI data and a macroscopic model of glioma invasion; more information provided in the indicated sections. (a) DTI provides a

spatial map for the anisotropic diffusion of water molecules (Section 2). Anisotropy plotted in terms of fractional anisotropy, from isotropic (white) to highly anisotropic

(black). (b) Local anisotropy in a water diffusion tensor, DTI, is represented by its anisotropy ellipsoid, examples shown corresponding to almost isotropic and anisotropic

tensors (Section 2). (c) Local fibre tract architecture implied by these diffusion tensors. (d) We specify the cell turning function, q, for an individual-level model according to

DTI measures (e.g. fractional anisotropy, eigenvectors), see Sections 3 and 4. Note that the model directly translates DTI into q, rather than explicitly defining a fibre

structure. (e) Scaling the individual-model generates a macroscopic model of invasion, with the spatially varying cell diffusion tensor DC depending on q (and hence DTI),

see Sections 3 and 4. (f) Simulations of the model predict anisotropic invasion (Section 5).

Anisotropy Ellipse Anisotropy Peanut t = 0.2 t = 0.5 t = 1.0

In
cr

ea
si

ng
 a

ni
so

tro
py

Fig. 2. Representations of anisotropic diffusion tensors and solutions of (2). In each row we plot (from left to right) the anisotropy ellipse, the anisotropy peanut and solutions to

(2) at the times indicated. Top row: isotropic case, D¼ diagð0:5,0:5Þ. Ellipses and peanuts both form circles and solutions to Eq. (2) reveal isotropic diffusion. Middle and bottom

rows: anisotropic cases, D¼ diagð0:75,0:25Þ and diagð0:9,0:1Þ, respectively. With increasing anisotropy the ellipses/peanuts become increasingly elongated/pinched. Solutions to

(2) now show anisotropic spread, with equal density contours proportional to the anisotropy ellipse. Simulations of (2) are performed on the 2D domain of dimensions 10�10,

with fðx,tÞ represented through the colour-coded density map (f¼ 0, black; fZ0:1, white) and augmented by contours at f¼ 0:001 (dashed line) and f¼ 0:01 (solid).

Numerical method described in Appendix B. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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these ideas in Section 5 to glioma invasion, using both artificial
and real DTI datasets to illustrate the potential role of anisotropy
on the invasive spread of tumours. We conclude with a brief
discussion and description of future extensions.
2. Diffusion tensor imaging

2.1. Anisotropic diffusion and diffusion tensors

Anisotropic diffusion is typically expressed through the aniso-
tropic diffusion equation:

ctðx,tÞ ¼r � ðDrcðx,tÞÞ, ð2Þ

where DARn�n is a given symmetric and positive definite matrix,
or diffusion tensor. Example numerical solutions to (2) under
various D are plotted in Fig. 2. The fundamental solution of (2)
in n dimensions is given by

cðx,tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detDð4ptÞn
p exp �

1

4t
xT D�1x

� �
:

The density cðx,tÞ describes the probability density for finding a
random walker (starting at location 0, time 0) at location x, time t and
forms an n-dimensional normal distribution with mean zero and
variance–covariance matrix ¼ 2tD. The mean squared displacement in

a given direction yAS
n�1 (where S

n�1 is the ðn�1Þ-dimensional unit
sphere) is s2

y ¼ 2t yT Dy and the apparent diffusion coefficient in

direction y is defined as (see Basser, 2008):

ADCy :¼
s2
y

2t
¼ yT Dy:
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These formulae suggest two ways of visualising a diffusion
tensor. First, the level sets of the probability density function
fðx,tÞ are given by

xT D�1x¼ const:, ð3Þ

which define n-dimensional ellipsoids, i.e. the areas of equal
probability for finding the random walker are ellipsoids. For
example, taking the diagonal matrix D¼ diagðl1, . . . ,lnÞ with
eigenvalues l1Z . . .ZlnZ0, Eq. (3) yields

x2
1

l1
þ � � � þ

x2
n

ln
¼ const:,

which is an n-dimensional ellipsoid with semi-axes aligned along
the coordinate directions and with their lengths proportional toffiffiffiffiffi
l1

p
, � � � ,

ffiffiffiffiffi
ln

p
. In Fig. 2 we plot examples of anisotropy ellipsoids

(in 2D).
Second, the apparent diffusion coefficient ADCy in the specific

direction y defines a map

S
n�1

-R, y/yT Dy,

and the graph of this map over S
n�1 resembles a peanut. The

peanut is aligned with directions of high diffusivity and pinched
in directions of small diffusivity. Example peanuts are shown in
Fig. 2.

These examples illustrate how distinct diffusion tensors gen-
erate ellipsoids and peanuts of varying shape, with their eigen-
values and eigenvectors determining their elongation and
directionality, respectively. A variety of formulae based on the
eigenvalues have been proposed to measure the anisotropy, two
common ones being the ratio of anisotropy (RA) and fractional
anisotropy (FA). Table 1 gives these measures for two and three
dimensions. Fractional anisotropy is normalised to attain values
in ½0,1�, with FAðDÞ ¼ 0 corresponding to the isotropic case (e.g.
D¼ diagð1,1,1Þ) and FAðDÞ ¼ 1 denoting a completely anisotropic
case (e.g. a degenerate scenario, D¼ diagð1,0,0Þ, with diffusion
occurring in only one dimension). The anisotropy ratio can have
values between 1 and 1, where RAðDÞ ¼ 1 corresponds to the
isotropic case and RAðDÞ ¼1 is a degenerate case with at least
one zero eigenvalue.

More detailed information about the shape of the diffusion
tensor/ellipsoid can be obtained by computing the linear (al),
planar (ap) and spherical (as) indices (e.g. see Jbabdi et al., 2005).
Assuming a (3D) diffusion tensor D with eigenvalues l1Zl2Zl3,
these are defined as

al ¼
l1�l2

tr
, ap ¼

2ðl2�l3Þ

tr
, as ¼

3l3

tr
,

where tr denotes the trace of D. These indices satisfy
alþapþas ¼ 1 and provide information on the shape of the
corresponding diffusion ellipsoid: if al � 1 then the ellipsoid is
‘‘linear’’ shaped (like a long, thin cigar), if ap � 1 it is disk shaped
and if as � 1 it is spherical.
Table 1

Anisotropy measures in two and three dimensions. li denote the eigenvalues of a

diffusion tensor D in which l1 40 and (2D) l1 Zl2 Z0, (3D) l1 Zl2 Zl3 Z0.

Measure 2D 3D

Ratio of anisotropy (RA) l1

l2
sup

l1

l2
,
l1

l3

� �
Fractional anisotropy (FA) 9l1�l29ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2
1þl

2
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1�l2Þ

2
þðl2�l3Þ

2
þðl1�l3Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2

1þl
2
2þl

2
3

q
Þ

2.2. DTI

Magnetic resonance (MR) and DTI measurements are based on
the magnetisation of water molecule dipoles in tissue. In MR
measurements a strong external magnetic field aligns the spins in
a plane perpendicular to the magnetic field and the relaxation to
the original state is measured by a reduction in the overall
magnetic moment (attenuation). Through applying specific exci-
tation–relaxation sequences under spatial gradients of the mag-
netic fields it is possible to measure the diffusion tensor for the
water molecules (see Basser, 2008; Rohmer and Gullberg, 2006).
This water diffusion tensor, which from here on we denote by DTI,
is a symmetric 3�3 matrix with six independent parameters,
thus requiring at least six independent measurements. Typically,
measurements in more than six directions are obtained, to reduce
the measurement error.

The capacity of DTI to determine the anisotropic diffusion
tensors of water molecules provides the means to identify and
visualise aligned structures, for example the white matter neural
tracts of the CNS. Enhanced diffusion in a specific direction
indicates greater freedom of movement and the local alignment
of structures. Scanning the full CNS provides a set of values for
DTIðxÞ, where x represents the spatial coordinates for locations at
which the diffusion tensor is measured, and connecting the
anisotropy at one point with that at its neighbours provides a
basic algorithm for computing the arrangement and alignment of
fibres, a method known as tractography (Basser, 2008). We do not
specifically consider tractography here, rather we will directly
utilise the raw diffusion tensor data generated from DTI to inform
our modelling.
3. Cell movement in anisotropic environments

The capacity of glioma cells to align with the neural fibre tracts
suggests a transport equation approach in which a cell population
is parametrised by time, space and velocity. An advantage is that
logical rules can be proposed for the direction/velocity of cell
movement according to the local environment, with a clear path
for connecting measurable data (environment structure, cell
speeds and turning distributions) to model inputs.

While this model operates at the mesoscopic scale of individual
cell movement, our eventual scale of interest (glioma spread) is
macroscopic and we will use parabolic scaling methods to gen-
erate a form of anisotropic diffusion equation, similar but distinct
to that in (1). We note that the basic model was first derived in
Hillen (2006) in the context of contact guided migration along
collagen fibres and further analysed in Painter (2009), Hillen et al.
(2010), and Hillen and Painter (2013).

We assume that the cells are represented by their density
pðt,x,vÞ, where t denotes time, x is the position in space and v is
the cell velocity. Generally we can expect the domain in which
cells move to be a three-dimensional bounded domain—the CNS
in the context of glioma invasion—however, here we simply state
xARn for nr3. We assume a closed set of cell velocities
vAV ¼ ½s1,s2� �S

n�1, where the minimum (s1) and maximum
(s2) cell speeds obey 0rs1rs2o1.

The time evolution for pðt,x,vÞ is then described by the
transport equation:

ptðt,x,vÞþv � rpðt,x,vÞ ¼Lpðt,x,vÞ, ð4Þ

where L is the turning operator that describes the velocity changes
of the individual cells. The above states that migration can be
described as a sequence of ‘‘running’’ and ‘‘turning’’ events, with
the operator L determining the frequency of a turn and the new
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velocity choice. More precisely, we set

Lpðt,x,vÞ ¼�mpðt,x,vÞþm
Z

V
qðt,x,v,v0Þpðt,x,v0Þ dv0, ð5Þ

where the two right hand side terms, respectively, describe
turning away and into velocity v. The parameter m denotes the
turning rate (1=m is the mean run time). The function qðt,x,v,v0Þ
describes the cell turning distribution: the distribution for the
probability of a cell choosing new velocity v given previous
velocity v0. Note that mass conservation requiresZ

V
qðt,x,v,v0Þ dv0 ¼ 1: ð6Þ

The relevant model parameters of (4) and (5) are the turning
rate m and the integral kernel q for the turning angle distribution.
For the turning rate we assume that it is constant (m¼ const.) and
hence we assume a mean turning time of 1=m. To link DTI data into
our model we will (Section 4) take a direct route by assuming the
turning distribution depends on the anisotropy indicated by the
diffusion tensors from DTI: effectively, the links between a given
diffusion tensor and the local orientation of fibre tracts and the cell
response to that architecture will be compressed into a single
statement. Setting the model requires assumptions for the cell
turning response to their surrounding environment and, in the
absence of precise data, we make a number of simplifying assump-
tions that present the model in a clear manner and facilitate its
mathematical treatment. Additional data will allow us to revise
these assumptions at a later stage. Note that in the following we
will specifically use ‘‘fibres’’ to describe the aligned underlying
structure, although we acknowledge that other aligned structures,
such as blood capillaries, can also contribute to guided movement.

We assume that the new velocity v is independent of the prior
velocity v0 : qðt,x,v,v0Þ ¼ qðt,x,vÞ. Thus, no persistence of migration
is built explicitly into the cell turning distribution, inertia is
neglected and directional guidance from the underlying fibre
structure is assumed to be the dominating effect on cell turning.
This convenient assumption allows us to immediately rewrite
Eqs. (4) and (5) in the simpler form:

ptðt,x,vÞþv � rpðt,x,vÞ ¼ �mpðt,x,vÞþmqðt,x,vÞcðt,xÞ, ð7Þ

where we have defined the macroscopic cell density

cðt,xÞ ¼

Z
V

pðt,x,vÞ dv:

We further assume that the speed of the cells is constant and
independent of the underlying structure, i.e. we choose for
simplicity V ¼ s�S

n�1 where s is the average cell speed. It is
straightforward to generalise this model for varying speed (e.g.
see Hillen, 2006) but we see no necessity to include this aspect at
this stage. The constant speed assumption is certainly a simpli-
fication and ignores the hypothesis that cells can switch between
a stationary, proliferative and migratory, nonproliferative pheno-
type (‘‘go-or-grow’’, e.g. see Pham et al., 2012 and references
therein): speed here would therefore most appropriately refer to a
population-averaged rate, also including nonmigratory cells. An
expansion of the framework to explicitly model the impact of a
dichotomy between proliferation and migration will be consid-
ered in future extensions.

With cell velocity parametrised for vAV , we can write

qðt,x,vÞ ¼
q̂ðt,x,yÞ

sn�1
: ð8Þ

The new cell turning distribution q̂ now describes the probability
of turning into a direction y, with the propertyZ
S

n�1
q̂ðt,x,yÞ dy¼ 1:
Assuming that cells tend to migrate along the orientated neural
fibre tracts, for example, Giese et al. (1996, 2003); Clatz et al.
(2005); Bondiau et al. (2008); Konukoglu et al. (2010); and Jbabdi
et al. (2005), and that the alignment of the latter is reflected
through DTI derived datasets, we will later use the measured DTI
tensors to define this turning kernel q̂ðt,x,yÞ. We will also assume
that the geometry of the brain is unchanged on the time-scale of
the model, i.e. q̂ ¼ q̂ðx,yÞ. Again, while it is straightforward to
consider evolving geometries and hence time-dependent q̂ (e.g.
see Hillen, 2006) we currently omit this.

We finally note that the symmetric properties of DTI diffusion
tensors imply that the kernel q̂ must also be symmetric as well, i.e.

q̂ðx,�yÞ ¼ q̂ðx,yÞ for all yAS
n�1: ð9Þ

The above symmetry essentially imposes that cells do not choose a
specific direction: an ‘‘up’’ or ‘‘down’’ direction will be chosen with
equal probability. The exact form of q̂ requires some further
insights into the movement of cells and their statistics and will
be discussed in Section 4.

One further observation is that rather than taking the direct
route of stating q̂ from the DTI data, we could first model the
tissue architecture implied by DTI and then specify the cell
turning distribution according to the tissue network. For example,
by defining a fibre distribution mðt,x,yÞ which gives the distribu-
tion of fibre directions at time t and location x, then a simple and
logical model for contact guidance would be q̂ðt,x,yÞ ¼mðt,x,yÞ,
i.e. a cell directly chooses its direction according to the local fibre
distribution. In fact, this approach was originally taken in Hillen
(2006) and Painter (2009). For the current purposes, however, this
is overly ornate and rather we directly postulate the cell turning
distribution q̂ according to information encoded in the DTI data,
and only implicitly assume a fibre structure of the brain.

Summarising Eq. (7) describes a process of oriented cell
migration in which cells move with a constant average speed s

and turn at a rate m. The cell turning distribution q̂ will translate
alignment of the fibres as measured through DTI to contact
guided movement of cells. While simple in nature, we note that
the framework can be extended, for example providing an explicit
description of an evolving CNS architecture.
3.1. Parabolic scaling to a macroscopic model

The transport model (7) is a mesoscopic scale description of
migration: although continuous, it is an individual-level descrip-
tion of movement and parametrised accordingly. Thus, within the
transport model, length scales will be of the order of microns,
with time scales on the order of minutes. Glioma growth, on the
other hand, where tumours grow over months to years and
extend over centimetres, is a macroscopic process and we now
summarise the bridging of these scales.

Scalings can be motivated in a variety of ways, for example by
considering quick turning and fast cell speed relative to the time
frame of observation, or scaling space and time from the micro-
scopic to the macroscopic: see Hillen and Painter (2013) for a
detailed discussion. As an example, even though a cell may turn
infrequently (on a timescale of minutes), over the course of
glioma growth a large number of reorientations are likely to take
place. Working within this much longer timescale allows the
introduction of small parameters which can be exploited through
formal expansions. Specifically, under the symmetry constraint
(9), we can apply the parabolic scaling (see Hillen and Painter,
2013 for the details) and derive the following leading order
approximation for the macroscopic cell density cðt,xÞ:

ctðt,xÞ ¼rrðDCðxÞcðt,xÞÞ, ð10Þ
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with macroscopic diffusion tensor

DCðxÞ ¼
s2

m

Z
S

n�1
yyT q̂ðx,yÞ dy: ð11Þ

We use the index C on DC as an indication of the cell-diffusion
tensor, which is our primary application at this point. Super-
ficially similar to the standard anisotropic diffusion equation (2),
we note the distinct positioning of the diffusion tensor in (10).
This difference can have far-reaching consequences, as Eq. (10)
does not satisfy a maximum principle and it can lead to aggrega-
tions and even blow-up, as shown in Hillen et al. (2013). We
further remark that DC is positive-definite when q̂ðx,�Þ is a regular
probability distribution and, in this case, Eq. (10) will be uni-
formly parabolic with all the existence and uniqueness theorems
of parabolic equations applying (e.g. Evans, 1998).
4. Connecting DTI and cell diffusion tensors

Above we have explained the capacity for DTI to encode
information on the anisotropy of white matter in the CNS and
derived both mesoscopic and macroscopic models for cell migra-
tion/invasion in response to this anisotropy. In this section, we
propose the mapping of the DTI dataset to the cell turning
distribution q̂ and, via (11), to a cell diffusion tensor DC(x) for
the macroscopic model (10).

First we consider some trivial scaling arguments to aid our
intuition. We neglect the physical mechanisms that attach and
orient migrating glioma cells along the myelinated fibre tracts
and simply reflect on the restricted diffusion of molecule and cell
sized objects amongst them. Water molecules are comparatively
tiny and we would still expect a degree of diffusion into directions
orthogonal to the fibre tract orientation. A cell-sized object, on the
other hand, would find itself in a tightly restricted space with
limited freedom of movement. Consequently, we expect it would
experience greater anisotropy than a molecule and the straight
identification DC �DTI would be rather naive, stating cells move
exactly as water molecules.

To develop a more realistic relation between DTI and DC we use
the above transport equation framework. We infer the geometry
on the neural fibres from the DTI measurements, stating a
suitable turning distribution q̂ from which we compute the cell
diffusion tensor DC as given in (11).

4.1. Using the peanut of DTI

Earlier we noted that the apparent diffusion coefficient in a
given direction, ADCy ¼ yT DTIy, is an important indicator of
anisotropy: a very simple assumption is to assume cell turning
is directly correlated. While we later find that this is an inap-
propriate choice, we quickly discuss this case as an illustration of
the need for due consideration of q̂. Thus we take the cell turning
into angle y to be

q̂ðx,yÞ :¼
n

9Sn�19tr DTIðxÞ
yT DTIðxÞy: ð12Þ

In the above, tr DTI denotes the trace of DTI and the term in front of
ADCy is the normalisation coefficient. Substituting (12) into (11)
we compute (see Lemma 1 in Appendix A) the following macro-
scopic cell diffusion tensor:

DCðxÞ ¼
s2

mð2þnÞ
Iþ

2

tr DTIðxÞ
DTIðxÞ

� �
, ð13Þ

where I denotes the identity matrix. The above reveals a direct
relationship between the DTI diffusion tensor DTI and the macro-
scopic diffusion tensor DC, the latter consisting of an isotropic
component (the I-term) and a term proportional to DTI. We
observe that DTI and DC have equivalent eigenvectors, indicating
that their corresponding ellipsoids are parallel and cell diffusion is
enhanced in the same direction as the DTI dataset.

We further note that the isotropic component of DC is
completely independent of DTI, indicating that there will always
be an element of isotropic cell diffusion, even when DTI itself is
completely anisotropic. Computing the anisotropies of DTI and DC

using the measures FA and RA from Table 1, we find (see Lemma 2
in Appendix A) that the anisotropy of the cell tensor is bounded
and always lower than that of DTI. In Lemma 2 of Appendix A we
also compute the linear, planar, and spherical indices of DC and
find that DC given by (13) is more spherical than DTI. This
counteracts both our intuitive expectations and the findings (by
clinical matching) of Jbabdi et al. (2005), suggesting our first
choice is inappropriate.

4.2. Using the eigenvectors and fractional anisotropy of DTI

Our next approach is to follow a natural path in which cell
turning takes the form of a normal distribution on the unit sphere,
called a von Mises or Fisher distribution (Mardia and Jupp, 2000).
We briefly note that DTIðxÞ (assumed positive definite and sym-
metric) can be represented as

DTIðxÞ ¼
Xn

i ¼ 1

liðxÞjiðxÞjiðxÞ
T , ð14Þ

for eigenvalues l1Z . . .ZlnZ0 and their corresponding (ortho-
gonal and normalised) eigenvectors j1ðxÞ . . .jnðxÞ. j1ðxÞ indi-
cates the axis of dominating anisotropy and the sizes of the
eigenvalues determines the degree of anisotropy. We exploit this
information to determine q̂, aiming for a transparent connection
that incorporates the main idea.

4.2.1. Two-dimensional case

To facilitate the presentation our main attention is focused on
a two-dimensional slice of tissue, although we note that the
results can be extended to three dimensions (see below). In two
dimensions, the water diffusion tensor is given by (14) with
eigenvalues l1ðxÞZl2ðxÞZ0 and eigenvectors j1ðxÞ, j2ðxÞ.

We begin by introducing the von Mises distribution:

PðyÞ ¼N2ðkÞe
kg�y, ð15Þ

where, in 2D, y¼ ðcos a, sin aÞ for aA ½0,2pÞ. In the above, gAS1

and kAR, respectively, define the dominating direction and para-

meter of concentration. The coefficient

N2ðkÞ ¼
1

2pI0ðkÞ

acts as a normalisation coefficient, where we use Ij to denote the
modified Bessel function of first kind of order j. The distribution
(15) generates a single peak in direction g, increasingly concen-
trated with k, and defines a normal distribution on a circle.
Extended to bimodal form,

PBðyÞ ¼N2ðkÞ
ekg�yþe�kg�y

2
,

we obtain two equal maxima in the directions g and �g,
respectively.

Our proposition is to specify q̂ according to the above, using
the measures of DTI to determine k and g, respectively. A natural
choice is to assume that turning is concentrated in the direction of
the dominating DTI anisotropy and we take

q̂ðx,yÞ ¼
d

2p þð1�dÞN2ðkðxÞÞ
ekðxÞj1ðxÞ�yþe�kðxÞj1ðxÞ�y

2
, ð16Þ
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Fig. 3. Converting DTI to DC through (16)–(18). (a) We set DTI ¼ diagð0:75,0:25Þ and plot the anisotropy ellipse. (b) Calculation of q̂ from (16) and (17) with d¼ 0 and k¼ 0

(dotted line), k¼ 1 (dot-dash), k¼ 10 (dashed) and k¼ 100 (solid). For k¼ 0, anisotropy is ignored and the corresponding q̂ is uniform. For positive k cells become more

likely to turn into directions corresponding to the anisotropy of DTI, with turning becoming increasingly restricted as k increases. Here we plot q̂ as a function of

y¼ ðcos a, sin aÞ for aA ½0,2pÞ. (c) Corresponding anisotropy in DC is highly tunable. In all calculations, we set s2=m¼ 2.
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where the constant parameter dA ½0,1� specifies an inherent
degree of randomised turning. The function kðxÞ describes the
level of concentration around the dominant direction: intuitively,
cells should become increasingly aligned with greater anisotropy
of the environment (i.e. of DTI) and hence it is chosen to be
proportional to the fractional anisotropy (Table 1):

kðxÞ :¼ k FAðDTIðxÞÞ, ð17Þ

where kZ0 is a proportionality constant which denotes the
sensitivity of the cells to the directional information in the
environment. In the isotropic case, FAðDÞ ¼ kðxÞ ¼ 0 and the von
Mises distribution becomes a uniform distribution. For the max-
imum anisotropy of FA¼ 1 we have kðxÞ ¼ k.

Computing the diffusion tensor DC from (11) using (16)
involves computing the second moment of a bimodal von Mises
distribution. This was done in Hillen and Painter (2013) and here
we simply cite the result:

DCðxÞ ¼
s2

2m dþð1�dÞ 1�
I2ðkðxÞÞ

I0ðkðxÞÞ

� �� �
I

�

þ2ð1�dÞ
I2ðkðxÞÞ

I0ðkðxÞÞ
j1ðxÞj1ðxÞ

T

�
: ð18Þ

Once again, DC is split into isotropic (the I term) and anisotropic
components, with the anisotropy pointing in the directions
7j1ðxÞ. The relative sizes of these terms are determined by d
and the function kðxÞ.

To evaluate the utility of (18), we note that I2ðkÞ=I0ðkÞ ¼ 0 when
k¼0 and I2ðkÞ=I0ðkÞ-1 as k-1. Hence, for either an isotropic DTI

(l1 ¼ l2) or a cell population that does not respond to environ-
mental anisotropy (k¼0), we have k¼0 in (17) and DC is
correspondingly isotropic. As we move towards a degenerate DTI

(l140, l2-0) we have k-k. Thus, choosing cell turning accord-
ing to (16) and (17) permits enhanced anisotropy, which is only
bounded by the choices of d, k (see Lemma 3 in Appendix A).
In Fig. 3(a)–(c) we illustrate the translation between DTI and DC as
described above, demonstrating how the parameter k tightens or
loosens the range of cell turning in response to the anisotropy in
DTI, with a corresponding increase or decrease in the anisotropy
of DC.
4.2.2. Three-dimensional case

We do not consider in detail the three-dimensional situation,
however, we do briefly present a natural extension of the above
and the corresponding translation to a 3D tumour diffusion
tensor. We employ the 3D version of the von Mises–Fisher
distribution (Mardia and Jupp, 2000) and again combine it with
a uniform distribution, with parameter dA ½0,1� reflecting the
predominance of random over oriented turning. The distribution
for turning into direction yAS
2 is proposed as

q̂ðx,yÞ ¼
d

4p þð1�dÞ
kðxÞ

4p sinhðkðxÞÞ
coshðkðxÞj1ðxÞ � yÞ: ð19Þ

Once again, j1ðxÞAS2 denotes the dominating direction of
anisotropy in DTI at a given point and the concentration parameter
kðxÞ can be taken proportional to the fractional anisotropy.

In this case the tumour diffusion tensor of q̂ðx,yÞ is given as
(see Mardia and Jupp, 2000; Hillen and Painter, 2013)

DCðxÞ ¼
s2

3m
dþð1�dÞ

coth k

k
�

1

k2

� �� �
I

�

þð1�dÞ 1�
3 coth k

k
þ

3

k2

� �
j1j

T
1

�
: ð20Þ

Note that we have omitted the x dependence in the RHS functions
k and j1. The derivation of this formula is quite technical and
exceeds the intentions of the present paper and will be presented
in Hillen and Painter (2013).
5. Simulating glioma invasion

We directly apply the above analysis in a simple two-
dimensional model for glioma growth. We stress that the results
are currently illustrative and the model remains intentionally
simple to focus on how imaging data can be mapped to investi-
gate invasive spread. Specifically, we assume that the tumour to
be dominated by a homogeneous cell type, defining cðx,tÞ to be
the density of cancerous cells at position xAO. O defines a
bounded region that marks the extent of the central nervous
system (CNS). We neglect all tumour–host interactions beyond
the directional spread of cells along the alignment inferred from
DTI data and simply augment the macroscopic model (10) with a
proliferation term, f(c):

ct ¼rrðDCðxÞcÞþ f ðcÞ, ð21Þ

where DCðxÞ defines the macroscopic glioma cell diffusion tensor.
For f(c) we employ the standard logistic form f ðcÞ ¼ rcð1�c=cmÞ,
where r defines the cell proliferation rate and cm describes a tissue
‘‘carrying capacity’’. While undoubtedly naive, this facilitates
comparison with standard results for the classical Fisher equa-
tion: in 1D with DCðxÞ ¼D (constant) we expect travelling waves
with wavespeed 2

ffiffiffiffiffiffi
rD
p

.
While three-dimensional studies are certainly feasible (at

increased computational expense), a two-dimensional analysis,
representing a slice of tissue, suffices for the present purposes.
We therefore set x¼ ðx,yÞAO�R2, assume zero flux (no gain/
loss) conditions on the boundary @O and a given set of initial
conditions cðx,y,0Þ ¼ c0ðx,yÞ. The numerical method is described in
Appendix B.
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Fig. 4. (a) Schematic showing the initial set-up for a quasi-1D scenario. (b) Comparison of fractional anisotropies for DTI (thick solid line) and DC under k¼ 0 (dotted),
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dash lines indicate the centres of the aligned regions. Left to right figures show the results for k¼ 0,1,10 and 100. For k¼ 0 the interface is a straight line, corresponding to

a constant invasion rate. For k40 the interface becomes jagged, indicating a variable rate of invasion with position. (d) Profiles showing cell densities at t¼25 (dotted),

50 (dot-dash), 75 (dashed) and 100 (solid). Top to bottom panels plot the cell density profiles for k¼ 0, 1, 10, 100. Note the nonuniform cell density profiles when k40.

(e) Relative progression of the wavefront. For each simulation we track the position xnðtÞ such that cðxn ,tÞ ¼ cm=2. Simulations solve Eq. (21) with DC obtained from DTI

(defined in the text) through (16)–(18) for d¼ 0, s2=m¼ 2 and varying k. Other parameters are set at r ¼ cm ¼ 1, Lx¼200 and Ly¼5. Numerical method as described in

Appendix B, with Dx ¼Dy ¼ 0:1 and Dt¼ 10�4.
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At this point we also note the phenomenological model
previously proposed by Jbabdi et al. (2005), a natural point for
comparison with (21):

ctðt,xÞ ¼rðDCðxÞrcðt,xÞÞþ f ðcÞ, ð22Þ

where DCðxÞ also represents a diffusion tensor determined accord-
ing to DTI data. While similar in nature, we remark on two key
differences: (1) the model here, Eq. (21), has been derived from an
explicit description of cell movement, with the macroscopic
parameters (i.e. the macroscopic diffusion tensor) directly derived
from the microscopic inputs such as cell speeds and cell turning
distributions; (2) the distinct position of the diffusion tensor in
(21) gives rise to additional advective-type terms, the impact of
which will be demonstrated below.
5.1. Artificial datasets

5.1.1. Case (i): Quasi-one-dimensional scenario

We first consider a quasi-one-dimensional scenario in which
initial cell densities and DTI data only vary along the x-axis of a
rectangular strip of tissue O¼ ½0,Lx� � ½0,Ly� with zero-flux bound-
ary conditions. Initially we place the tumour front at the edge of
the strip, setting c0ðx,yÞ ¼ 0:1e�x2

, and refer to Fig. 4(a) for a
schematic of the initial configuration. We propose that the
synthetic dataset DTI varies along the x-axis according to

DTIðxÞ ¼
0:5�dðxÞ 0

0 0:5þdðxÞ

 !
, ð23Þ



Medium: MediumHigh: Low Low: High

Fig. 5. Heterogeneity of the wave profile for invasion in anisotropic environments under a varying relative strength of motility:proliferation terms. (a) Space–time maps

plotting the cell density: black, cðx,tÞ ¼ 0; white, cðx,tÞZ1. From left to right we consider a high:low-, medium:medium- and low:high-proliferative:motility ratio.

(b) Corresponding plots showing the variation in cell density profiles. In each panel we plot the wave profile for the same three tumour classes at t¼ 25,50,75 and 100.

Moving from high:low to low:high proliferation:motility generates an increasingly diffuse and (spatially) heterogeneous tumour. (c) For comparison, we show the

corresponding simulations for model (22) using the same parameters as in (b). We clearly see the homogeneous distribution in the wake of the invasion front. In all

simulations we choose DC calculated from (16) to (18) with d¼ 0:1, k¼ 100 and DTI as for Fig. 4. The different phenotypes were modelled by setting: s2=m¼ 0:1, r¼5

(high:low); s2=m¼ 0:5, r¼1 (medium:medium); s2=m¼ 2:5, r¼0.2 (low:high). Other parameters and numerical details as in Fig. 4.

K.J. Painter, T. Hillen / Journal of Theoretical Biology 323 (2013) 25–39 33
where dðxÞA ½�0:5,0:5� for all x. The above defines a dataset in which
the dominating anisotropy of the fibre tracts is either orthogonal
(for dðxÞ40) or parallel (for dðxÞo0) to the x-axis: dðxÞ40 and
dðxÞo0 therefore corresponds to either decreased or increased rates
of diffusion along the x-axis (reversed along the y-axis). Here
we explicitly set dðxÞ ¼ 0:25ðe�0:025ðx�50Þ2�e�0:005ðx�120Þ2 Þ, defining
a tissue with regions of orthogonal and parallel tracts centered
about x¼50 and x¼120, respectively, in an otherwise isotropic
field. Taking advantage of the quasi-one-dimensional set-up, we
ignore the (uniform) data in the y-direction and plot the variation
with the x-axis only in Fig. 4.

We first illustrate the translation between DTI and DC through
comparing their fractional anisotropies, exploiting (16)–(18) to con-
nect DTI data to cell turning. As expected we observe that anisotropy
of DC is highly tunable, Fig. 4(b), lower or above that of DTI according
to the size of k. Note that for k¼ 0, the fractional anisotropy is 0.

We proceed to explore the impact of an anisotropic environ-
ment on the invasive spread of a cancer population in which cells
have differing capability to align through simulating (21) under
varying k. In the ‘‘control’’ scenario (k¼ 0), any environmental
anisotropy is ignored by cells: the model (21) effectively reduces
to a Fisher equation and invasion occurs in the form of a travelling
wave with a constant rate of invasion, given by 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs2=2m

p
.

Increasing k from zero introduces the impact from environmental
anisotropy on cell turning, with consequent repercussions on the
rate and form of invasion (Fig. 4(c)–(d)). As the invasive front
moves into the region of orthogonally aligned fibre tracts, turning
into this orientation acts to retard progression of the wave. On the
other hand, a region of parallel fibre tracts acts as a cellular
highway and accelerates the wavefront. Increases in k enhances
the impact of anisotropy on cell turning, with correspondingly
greater slowing or acceleration of the wavefront in anisotropic
regions. To illustrate this we track the position of the wavefront
(relative to the control case) as a function of time (Fig. 4(e)):
invasion becomes increasingly delayed with the size of k as the
front enters the orthogonal tract region, but recovers ground on
reaching the parallel tracts.
The environment is therefore a significant factor in altering the
rate of invasion. Further, it can also impact on the spatial cell
density that emerges behind the wavefront, specifically at the
interfaces between regions of varying anisotropy. Cell density
profiles in Fig. 4(d) reveal an emerging pattern of troughs and
peaks in cell density, enhanced under increasing k. To investigate
this phenomenon further, we explore the extent to which the cell
density varies for three hypothetical tumour classes: high prolifera-
tion/low motility-, medium/medium- and low/high-phenotypes.
Specifically, we compare the tumour profile as the relative ratio
of diffusive to proliferative terms is altered. Note that these terms
are varied such that invasion would occur at the same rate (i.e. with
the same travelling wavespeed) in an isotropic environment.

Simulation results are plotted in Fig. 5. For a high proliferation/
low motility phenotype, we observe a compact tumour front with
the invasive rate varying according to the local anisotropy. Little
spatial variation can be observed in the tumour cell density
emerging behind the wave. As we progress towards a low
proliferation/high motility phenotype, however, we observe
increasing variation in the cell density profile. We note that this
pattern arises due to the specific form of (21). Local maxima arise
near the transition regions from random to aligned tissue and, in
the extreme case of sudden transitions, sharp peaks and even
singularities might form, as analysed in Hillen et al. (2013). In
contrast, the phenomenological model of (22) predicts a similar
rate of invasion at the cell front but a uniform cell density
distribution following passage of the wave under the same form
of f(c) (Fig. 5(c)). For the model derived from the transport
equation it is the additional advective-type terms in (21) that
act to direct cell movement in regions of spatially varying
anisotropy, aggregating cell populations accordingly.
5.1.2. Case (ii): Anisotropy in two-dimensional invasion

In the above we focused on a quasi-one-dimensional scenario,
providing detailed insight on the capacity for environmental
alignment to alter the rate and profile of an invading tumour.
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We next turn our attention to a similar two dimensional study.
A schematic of the set-up employed in this section is illustrated in
Fig. 6(a). Specifically, we consider a square slice ðx,yÞAO¼ ½0,100� �
½0,100� with zero-flux boundary conditions and populated with an
initially circular cancer population centred on the point (35, 35):

c0ðx,yÞ ¼ 0:1e�ðx�35Þ2 e�ðy�35Þ2 :

We begin by imposing a synthetic DTI dataset, considering a
generally isotropic environment that contains a pair of orthogonal
fibre tracts (of distinct widths) that run vertically and horizontally
and cross at the centre, see Fig. 6(a). We therefore set our
synthetic DTI as

DTIðx,yÞ ¼
0:5�dðx,yÞ 0

0 0:5þdðx,yÞ

 !
, ð24Þ

where dðx,yÞA ½�0:5,0:5� is given as

dðx,yÞ ¼ 0:25e�0:05ðx�50Þ2�0:25e�0:5ðy�50Þ2 :

To illustrate the anisotropy in DTI we plot the Fractional Anisotropy
in Fig. 6(b), using a colour-coded map to illustrate the distinct
directions of the anisotropy. Filtering DTI to DC in (21) via (16)–(18)
under varying k once again allows us to simulate populations with
distinct capacities to align with the environment.
Simulations of (21) for k¼ 0 are shown in Fig. 6(c): DTI/
environmental anisotropy is ignored by the cells, growth is
uniform and the tumour remains circular. Increasing k, however,
introduces an impact due to environmental anisotropy on the
preferential spread of cells and the invasion becomes increasingly
nonuniform: alignment of cells enhances invasion in the direction
of the fibre tracts while retarding invasion in orthogonal direc-
tions, see Fig. 6(c) middle and bottom rows for examples with
k¼ 10 and 100. Consistent with the one-dimensional case,
increasing k magnifies this and we also observe an increasingly
heterogeneous form for the cell density distribution in the wake
of the wave, with ridges and valleys of cell density emerging in
regions of highly variable anisotropy.

5.2. Genuine DTI datasets

Finally we address genuine imaging data, utilising software
(DTIstudio, Jiang et al., 2006) and anonymous data available at
http://www.mristudio.org/ to generate a DTI diffusion matrix DTI.
Fig. 7(a) demonstrates output from a typical dataset, plotting the
spatially varying DTI anisotropy.

In line with previous sections our current focus is purely
illustrative and we will restrict attention to a two-dimensional
scenario: a fully predictive model would certainly require a three-
dimensional analysis due to the potentially critical projection of

http://www.mristudio.org/
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Fig. 7. Simulations of glioma growth using genuine DTI data. (a) 3D Anisotropy plot. (b) We use the 2D transverse slice shown for our simulations: its fractional anisotropy

(black¼ low, isotropic; white¼high, anisotropic) is shown for the DTI dataset and the computed cell diffusion tensor DC at the values of k shown. (c) Evolution of glioma

growth. Numerical solutions showing the solution of (21) at the times indicated (in months) for distinct values of k. As we increase the strength with which cells align with

the DTI anisotropy, we observe a more heterogeneous form of growth. Dashed light blue contour indicates cðx,yÞ ¼ 0:0001. Parameters are set at d¼ 0:05,
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fibre tracts into the ignored dimension. Here we consider the
transverse (or horizontal) plane illustrated in Fig. 7(b) and discard
diffusion tensor data in the vertical projection: in other words, we
employ the 2�2 submatrix DTIðx,yÞ formed from the relevant
rows and columns of the imaging data tensor matrix, with (x,y)
denoting position in the plane.

From DTIðx,yÞ we extract the eigenvalues l1,2ðx,yÞ and corre-
sponding (orthogonal and normalised) eigenvectors j1,2ðx,yÞ.
Note that anomalies in the data or noise introduced during
processing can generate negative eigenvalues in the diffusion
tensor matrix: these are removed through setting to zero. The
imaging data stored in DTI is then translated to a cell diffusion
tensor matrix using Eqs. (16)–(18): see Fig. 7(b) for a comparison
of the fractional anisotropy in DTI and DC for varying values of k.
Eq. (21) is solved on a domain O describing a transverse slice
of the CNS for an initially symmetric (circular) tumour:

c0ðx,yÞ ¼ 0:1e�ðx�x0Þ
2

e�ðy�y0Þ
2

,

where ðx0,y0Þ defines its initial centre. We note that while the
numerical simulations are performed on a rectangular grid we
have imposed internal zero-flux boundaries to provide a (crude)
description of a realistic brain geometry.

Fig. 7(c) plots the tumour evolution under varying values of
k : k¼ 0 (i.e. the isotropic case), k¼ 5,10 and 20. In the isotropic
case, tumour growth is uniform in all directions and only
bounded by the finite extent of the simulated domain. Consistent
with our analyses using synthetic datasets, for k40 we observe
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Fig. 8. Contour comparison showing impact of anisotropy on invasion. We compare anisotropic (k40) simulations from Fig. 7 with the isotropic case (k¼ 0) for (top row)

k¼ 5 and (bottom row) k¼ 20. Contours mark the equal density lines for cðx,yÞ ¼ 0:001 (i.e. 0.1% of the maximum density) for the isotropic (dashed blue line) and

anisotropic (solid red line) simulations at the times (months) indicated above the top panel. Underlying grid lines mark 1 cm. Numerical details as for Fig. 7. (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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anisotropic spread of the tumour, with increasingly nonuniform
growth as k is increased. In particular, we observe a much more
variable spread in regions of higher anisotropy, such as the corpus
callosum. The variation between the isotropic and anisotropic
cases is revealed more clearly in Fig. 8 through comparing
contours at distinct times.
6. Discussion

An accurate prediction of glioma extent and a confident sugges-
tion for the treatment volume are of huge importance in their
eradication, yet providing answers is greatly complicated by their
phenotypic diversity and physical/chemical interactions with the
surrounding environment. While a model that integrates all impor-
tant factors presents a formidable mathematical and computational
challenge, it is now possible to employ modelling to explore in depth
the impact of specific interactions. In this paper we have focused on
the role of the white matter fibre tracts on facilitating invasive
spread. From previous research (Clatz et al., 2005; Bondiau et al.,
2008; Konukoglu et al., 2010; Jbabdi et al., 2005; Cobzas et al., 2009;
Mosayebi et al., 2011) we have identified a need for a model that
translates measured DTI information into the inputs for a predictive
and macroscopic model for tumour growth. Our modelling workflow
is to parametrise the turning characteristics of an individual-level
model according to standard anisotropy measurements (eigenvec-
tors, fractional anisotropy) and employ scaling methods to derive the
corresponding continuum model. We have demonstrated the utility
of the approach through simulations on both artificial and genuine
DTI datasets, echoing the findings of others by revealing how the
environmental anisotropy inferred from DTI datasets can signifi-
cantly impact on the invasive profile of the tumour.

Phenomenological reaction–diffusion based models, para-
metrised by clinical data, have proved highly accurate at predicting
the form and rate glioma growth/invasion (for example, see the
review of Harpold et al., 2007, and references therein). While the
model here, derived from an explicit individual-level model,
appears close in form to previously proposed anisotropic-diffusion
based models (e.g. Clatz et al., 2005; Jbabdi et al., 2005; Cobzas
et al., 2009; Mosayebi et al., 2011), we remark on some key
distinctions. First, the framework here bridges local and global
scales: we first proposed a mesoscopic scale model based on the
individual-level migration response of a cell within some complex
tissue architecture, and then employed scaling techniques to derive
the corresponding macroscopic model for invasion of the tumour.
Thus, the inputs for the macroscopic model parameters can be
directly linked to explicit parameters, such as cell speeds and
turning angle distributions. Second, the form of the macroscopic
anisotropic-diffusion model is augmented by additional advective-
type terms which can generate spatially varying cell density
distributions as anisotropy in the environment varies. More gen-
erally, it is firmly established that the precise local (microscopic)
rules imposed for how a cell chooses directions can have a huge
bearing on the form of the macroscopic model (e.g. Othmer and
Stevens, 1997). The current framework offers a pathway for deriv-
ing and comparing distinct forms of macroscopic models for glioma
growth, according to distinct hypotheses for how a cell responds to
the local information or structure of the environment.

The work here strips the fundamental equations down to their
bare bones: we have aimed for the most transparent demonstra-
tion of the key ideas, rather than obscuring these details within a
more sophisticated model. However, the framework is signifi-
cantly more flexible and a number of important extensions can be
considered in future iterations. For example, employing ideas
from tractography may allow a connection from the DTI (and
other imaging) datasets to an imposed tissue structure, with the
cell movement directed according to features of this network (e.g.
density and orientation of fibre tracts). Further, given the distor-
tion to the CNS tissue network as the tumour expands, a time-
evolving tissue architecture can also be imposed. Further areas for
exploration include the switching of the behaviour of cells
between a migratory/nonproliferative and stationary/prolifera-
tive, e.g. (Pham et al., 2012), the growing genetic instability of
the tumour, or incorporating the impact of cell interactions/
volume considerations on the movement dynamics of cells
(Chauviere et al., 2007; Treloar et al., 2011).

The modelling framework itself is independent of the spatial
dimension, however, we have generally concentrated on two
dimensions for clarity. The numerical extension to three dimen-
sions is algorithmically straightforward, however the additional
numerical cost is high and the implementation of more efficient
numerical algorithms would be advantageous for larger scale
numerical studies. We briefly considered a trivial extension of the
cell turning function for the three dimensional case, however
closer scrutiny is demanded. In three dimensions, anisotropy of a
diffusion tensor is represented by an ellipsoid, with its shape
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determined by the lengths of its principal axes. Utilising only the
eigenvector corresponding to the principal direction of anisotropy
omits possibly crucial information on the projection into other
directions. Solutions would be to consider the superposition of
multiple von Mises–Fisher distributions, with their dominating
directions aligned according to the three principal axes of the
ellipsoid and weighted by their lengths, or more complicated
distributions such as a Kent (1982) distribution.

Our principal aim at this stage has been to suggest a modelling
framework which can subsequently be tailored and adapted as
required. Consequently, the results presented should be taken to
be illustrative of the methodology, rather than predictive. The
next level of modelling, where more precise predictions are
formulated, will necessarily demand a more robust and careful
validation of the model through dedicated application and match-
ing to clinical data.
Acknowledgements

T.H. is grateful to detailed discussions with A. Swan. T.H. and
K.J.P. both thank J.C. Chimal Eguia for discussions and contribu-
tions to an earlier version of this manuscript. K.J.P. acknowledges
support from the Leverhulme Trust (Research Fellowship RF-
2011-045). T.H. is supported by NSERC.
Appendix A. Proofs

Case1: Peanut

Lemma 1. Assume q̂ is given by (12). Then the macroscopic diffusion

tensor (11) is given by (13).

Proof. To compute the macroscopic diffusion tensor DT(x), we use
index notation and summation convention. We also omit space
dependence for clarity.

DC ¼
s2

m

Z
Sn�1

yyT q̂ðyÞ dy,

¼
ns2

m9Sn�19tr DTI

Z
S

n�1
yyTyT DTIy dy:

Hence in coordinates we have

Dkl
C ¼

ns2

m9Sn�19tr DTI

DTI,ij

Z
Sn�1

ykylyiyj dy:

In an earlier paper (Hillen, 2005) an explicit general formula for
arbitrary velocity moments has been calculated. From Lemma
2.2 in Hillen (2005) we have thatZ
S

n�1
ykylyiyj dy¼

9Sn�19
nð2þnÞ

ðdkldij
þdkidlj

þdkjdil
Þ:

Hence we find

Dkl
C ¼

ns29Sn�19

nð2þnÞm9Sn�19tr DTI

DTI,ijðd
kldij
þdkidlj

þdkjdil
Þ,

¼
s2

mð2þnÞtr DTI
ðdkl tr DTIþDkl

TIþDlk
TIÞ:

Since DTI is symmetric, we obtain

DC ¼
s2

mð2þnÞ
Iþ

2DTI

tr DTI

� �
, ðA:1Þ

where I denotes the identity matrix. &
Lemma 2. Consider spatial dimensions n¼2 and n¼3. Assume DTI is

a given DTI measurement and DC is given by (13). Then

ðaÞ RAðDCÞo3;

ðbÞ RAðDCÞrRAðDTIÞ and FAðDCÞrFAðDTIÞ: ðA:2Þ

If al,ap,as denote the linear, planar and spherical indices of DTI,

respectively, and ~al, ~ap, ~as are those of DC, then

~al ¼
2
3 al, ~ap ¼

2
3 ap, ~as ¼ 1þ2

3as:

Hence the resulting ellipsoid is less anisotropic and more spherical

shaped.

Proof. We prove the above statements for spatial dimension
n¼3; the results for n¼2 are very similar. Let l1Zl2Zl3 denote
the eigenvalues of DTI and we abbreviate tr :¼ l1þl2þl3 with
tr40. Then the eigenvalues of DC are given by

~lj ¼
s2

mð2þnÞ
1þ

2lj

tr

� �
, j¼ 1,2,3:

To prove statement (a) we write for ja1

~l1

~lj

¼

1þ
2l1

tr

1þ
2lj

tr

¼
trþ2 tr�2

Pn
i ¼ 2 li

trþ2lj
,

¼ 3
tr

trþ2lj
�2

Pn
i ¼ 2 li

trþ2lj
,

o3,

if all lj40. The anisotropy can only equal 3, if lj ¼ 0 for all j41:
To show the first statement of (b), we reformulate the above
formula slightly:

~l1

~lj

¼
tr=ljþ2l1=lj

tr=ljþ2
,

which is less than l1=lj for l14lj. For the second formula of item
(b), we compute the fractional anisotropy of DC as

FAðDCÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1�l2Þ

2
þðl1�l3Þ

2
þðl2�l3Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðtr=2þl1Þ

2
þðtr=2þl2Þ

2
þðtr=2þl3Þ

2
�

q oFAðDTIÞ:

To compute the shape indices ~al, ~ap, ~as, we need the trace of DC:

~tr :¼
3s2

mðnþ2Þ
:

Then the above formulae follow directly from the definition of the
indices:

~al ¼
~l1�

~l2

~tr
, ~ap ¼

2ð ~l2�
~l3Þ

~tr
, ~as ¼

3l3

~tr
: &

Case2: Bimodal von Mises distribution

Lemma 3. Assume DTI denotes a measured water diffusion tensor in

two dimensions and DC is defined by (18). Let l1,l2 denote the

eigenvalues of DTI and ~l1, ~l2 those of DC. Then

ðAÞ ~l1 ¼
s2

2m 1þð1�dÞ
I2ðkÞ

I0ðkÞ

� �
,

~l2 ¼
s2

2m 1�ð1�dÞ
I2ðkÞ

I0ðkÞ

� �
,

ðBÞ RAðDCÞ ¼

1þð1�dÞ
I2ðkÞ

I0ðkÞ

1�ð1�dÞ
I2ðkÞ

I0ðkÞ

,
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ðCÞ FAðDCÞ ¼

2ð1�dÞ
I2ðkÞ

I0ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ2ð1�dÞ2

I2ðkÞ

I0ðkÞ

� �2
s :

ðDÞ ~al ¼ ð1�dÞ
I2ðkÞ

I0ðkÞ
, ~ap ¼ 1� ~al:

Proof. It should be noted that eigenvectors j1,j2 of DTI are also
eigenvectors of DC. Since they are orthogonal the above formulae
follow through straightforward computations from (18). &

Remarks.
1.
 The ratio of modified Bessel functions I2ðkÞ=I0ðkÞ is a mono-
tonically increasing function with I2ð0Þ=I0ð0Þ ¼ 0 and
limk-1I2ðkÞ=I0ðkÞ ¼ 1.
2.
 The anisotropy of DC depends on the choices of d and k and in
the limit of d-0 and k-1 we obtain

~l1-s2=m, ~l2-0,

and

RAðDCÞ-þ1, FAðDCÞ-1:

Hence there is no limit in the anisotropy of DC.

Appendix B. Numerical method

Simulations have been performed for 2D domains, however,
the scheme trivially extends to 3D (albeit at increased computa-
tional expense). To solve Eq. (21) we employ a Method of Lines
approach, discretising in space with a suitable finite-difference
approximation (below) to obtain a system of time-dependent
ODEs. We consider the 2D regular domain ðx,yÞAO¼ ½0,Lx� � ½0,Ly�

and discretise it into a regular lattice with grid coordinates at
x1 ¼Dx=2, x2 ¼ 3Dx=2 . . . xM ¼ Lx�Dx=2, y1 ¼Dy=2, y2 ¼ 3Dy=2 . . .
yN ¼ Ly�Dy=2 for Dx ¼ Lx=M, Dy ¼ Ly=N. In 2D, assuming the
(positive definite and symmetric) tensor matrix takes the form:

DCðx,yÞ ¼
aðx,yÞ bðx,yÞ

bðx,yÞ gðx,yÞ

 !
,

we observe that spatial terms on the right-hand side of (21) can
be expanded as follows:

rrðDCcðx,yÞÞ ¼ ðaðx,yÞcxÞxþðbðx,yÞcxÞyþðbðx,yÞcyÞxþðgðx,yÞcyÞy

þðaðx,yÞxcÞxþðbðx,yÞycÞxþðbðx,yÞxcÞyþðgðx,yÞycÞy:

This reveals a combination of diffusive (first line) and advective
(second line) type-terms, with the diffusive terms in the first line
identical to those generated for standard anisotropic diffusion (2).

It is important to note that the choice for the finite-difference
discretisation of the diffusive terms is crucial: naive discretisa-
tions can potentially generate numerical instability through
negative b, see Mosayebi et al. (2010). To account for this, we
employ the finite discretisation method of Weickert (1998),
where approximations of the derivatives are calculated not only
in the ‘‘standard’’ directions, but combined with those calculated
in an appropriately chosen new direction. For the advective terms
we discretise in conservative form, employing a first-order
upwinding scheme.

We implement zero-flux boundary conditions: for the simula-
tions using genuine DTI data, these are imposed on the internal
boundaries that approximate the brain geometry. All numerical
simulations presented employ a simple forward Euler method for
the time discretisation of the ODE system with a suitably small
time-step Dt, although more sophisticated algorithms (e.g. impli-
cit, variable time-stepping) have also been employed with equiva-
lent behaviour observed. To verify the numerical method,
simulations have been performed for varying time-step and
mesh-discretisations.
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