
Linear Quadratic and Tumour Control Probability Modelling in
External Beam Radiotherapy

SFC O’Rourke a,b,∗
aSchool of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, U.K.

bCentre for Cancer Research and Cell Biology, School of Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7AB,
U.K.

H McAneney
School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, U.K.

T Hillen
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada

Abstract

The standard Linear-Quadratic (LQ) survival model for external beam radiotherapy is reviewed with particular
emphasis on studying how different schedules of radiation treatment planning may be affected by different tumour
repopulation kinetics. The LQ model is further examined in the context of tumour control probability (TCP) models.
The application of the Zaider and Minerbo non-Poissonian TCP model incorporating the effect of cellular repopulation
is reviewed. In particular the recent development of a cell cycle model within the original Zaider and Minerbo TCP
formalism is highlighted. Application of this TCP cell-cycle model in clinical treatment plans is explored and analyzed.
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1. Introduction and Historical Background

The purpose of this article is to review recent con-
tributions in radiobiological modelling applied to
external beam radiotherapy which concentrate on
the role of cellular repopulation between treatments
and cell-cycle effects which influence the outcome
of treatment. Owing to the enormous body of the-
oretical and clinical publications devoted to radio-
biological modelling, no such review could be com-
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prehensive. Thus we will concentrate only on two of
the most commonly used formalisms in radiother-
apy. These are the Linear Quadratic (LQ) and Tu-
mour Control Probability (TCP) models.

The plan of the article is as follows. Section 1.1 re-
views the historical development of clinical applica-
tions of radiobiological modelling using the LQ and
TCP formulae. Section 1.2 and 1.3 focuses on the
theoretical development of the LQ and TCP models
in cancer radiotherapy. Section 2 presents the radio-
biological theory of the LQ and TCP models. Sec-
tion 3 addresses the issue of repopulation within the
LQ model and discusses recent developments within
this particular formalism of the LQ model. Section 4
examines the important role of the cell-cycle within
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the TCP model and analyses how the recent models
of Dawson and Hillen [1] enable the TCP to be cal-
culated for general time-dependent treatment pro-
tocols. In Section 5 we discuss future directions yet
to be explored within the context of LQ and TCP
radiobiological modelling and present some conclud-
ing remarks.

1.1. Clinical Applications of Radiobiological
Modelling in External Beam Radiotherapy

Major advances during the last fifty-five years
have been made by radiobiologists in understanding
the mechanisms of how radiation causes DNA dam-
age. A notably robust mathematical model that has
been adopted widely in radiation oncology is the LQ
formalism [2–10]. This model predicts dose-time re-
lationships and has been a commonly used model for
studying cell survival analysis. The LQ model takes
account of the two basic mechanisms of cell death
or sterilization: repairable lesion exchange and non-
repairable lesion [11]. In addition, the LQ model in-
corporates one of the fundamental aims of radiation
treatment, that of separating the responses of the
tumour, early responding healthy tissue and late re-
sponding healthy tissue.

The LQ model has the practical advantage that
it results in a simple analytical form for the survival
fraction and can also be employed in the predic-
tion of disease free survival probability TCP models.
As such, it is applicable clinically to a wide range
of external beam radiotherapy treatment schedules.
Widely implemented clinical treatment schedules in
electron beam radiation oncology include (see Ta-
ble 1 for details): (i) Standard fractionation, [12–14]
(ii) Hyper-fractionation (smaller dose per fraction,
same total dose and overall treatment time) e.g. for
oropharyngeal cancer, [15,14,16], (iii) Accelerated
fractionation (shorter overall treatment time with
the same total dose) e.g. for head and neck cancer
[17,18] (iv) CHART (Continuous Hyperfractionated
Accelerated Radiotherapy) for head and neck can-
cer [19,20], glioblastomas [21] and non-small lung
carcinoma [19,22]. Other alternative schedules in-
clude: ARCON (Accelerated Hyperfractionated Ra-
diation therapy with Carbogen and Nicotinamide)
employed in laryngeal cancer [14,13,23]; SMART
boost (Simultaneous Modulated Accelerated Radia-
tion Therapy) used with success in the treatment of
head and neck cancer, [14,13,23]; hypo-fractionation
(a smaller number of larger-dose fractions) applied

Dose/frac. No. of Days/week Times/day Total dose

(Gy) fractions (# of weeks) (interval)

i 2 30-35 5 (6-7) 1 60-70

ii 1.15 70 5 (7) 2 (4-6 hrs) 80.5

iii 1.6 45 5 (5∗) 3 72

iv 1.4-1.5 36 7 (1.7) 3 (6 hrs) 50-54

∗ 2 week period of rest in middle
Table 1
Typical implementation of various radiation treatment pro-
tocols. Roman numerals correspond to those protocols listed
in text.

in the treatment of prostate cancer [24–26]; split
course (intentional gaps in radiation therapy) [14,13]
and six days per week treatment protocols [27].

Mathematical and statistical modelling have
played a crucial role in developing many of the
above treatment schedules. They can give vital
insight into whether a particular schedule maybe
suitable or not to be used in a clinical setting. In the
next section we review the different variants of the
LQ model that have been developed with the aim of
improving treatment outcome for cancer patients.

1.2. Theoretical developments of the LQ model in
electron beam radiotherapy

The most commonly used model for studying
the survival response to radiotherapy is the LQ
model [28,29]. This model considers the effect of
both irreparable damage and repairable damage
susceptible to misrepair which ultimately leads to
mitotic cell death. The LQ model comes in various
degrees of complexity depending on the number of
the well established “5R’s” of radiobiology that are
incorporated into the model (that is, the 4 “R’s”
by Withers - Repair, Repopulation, Re-distribution
and Re-oxygenation [30] and more recently intrin-
istic radioresistance [31]). Studies which extended
the LQ model to account for exponential repop-
ulation include Wheldon et al.[32], Usher [33],
Travis and Tucker [34] and Fowler [29]. The ef-
fects of hypoxia have been addressed by Woulters
and Brown [35] using a one-compartment model
based on the assumption that oxygen is purely dose
dependent. Brenner et al.[36] have considered a
one-compartment model of the LQ model to take
into account the effects of re-oxygenation and re-
distribution assuming a Gaussian distribution for
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the radiosensitivity parameters along with expo-
nential repopulation. Two-compartment models
(hypoxic and oxic), where re-oxygenation is repre-
sented by the flux of cells between the two compart-
ments have been developed by Buffa et al.[37] and
then extended by Horas et al.[38].

Optimisation of radiotherapy treatment within
LQ modelling incorporating exponential repop-
ulation has been studied by Wheldon et al.[32]
and Wein et al.[39]. More recently, McAneney and
O’Rourke integrated logistic and Gompertzian
growth laws into the LQ model [40]. The LQ model
has also been incorporated into 4D simulation mod-
els for tumour response to radiotherapy in vivo by
Antipas et al.[41], Dionysiou et al.[42], Dionysiou
and Stamatakos [21]. Another variant of the LQ
model captures the process of the mitotic cycle [43–
46]. Other advances in fractionated radiotherapy
include the effect of the delay on tumour repopula-
tion during treatment [47]. However, of the 5 R’s of
radiotherapy that exist, it has emerged from clinical
studies that repopulation is one of the most signifi-
cant factors that can provide insight into the lack of
efficacy of radiation treatment. Indeed, Kirkpatrick
and Marks [48] stated that simple radiobiologic
models that fail to incorporate the heterogeneity
of radiosensitivity and/or tumor cell repopulation
will not adequately describe clinical outcomes. In
addition, the recent of Kim and Tannock[49] on re-
population of cancer cells during chemotherapy or
radiation treatment also provides evidence to indi-
cate that repopulation often has a dominant effect
on treatment outcome. The kinetics of repopula-
tion offer insight into the underlying mechanisms
of tumour cell death and re-growth, and as such,
these models may be clinically useful in predicting
response to therapy [50].

These LQ models may also be used to design op-
timum treatment protocols in which the aim is to
maximize tumour control for the minimum normal-
tissue complications. Optimum fractionation sched-
ules depend critically on the proliferative nature of
the tumour cells. Three clinical examples that il-
lustrate this are, (i) head and neck cancer [19,20],
(ii) non-small cell lung cancer [19,22,51] and (iii)
prostate cancer [52].

In head and neck cancer and non-small cell lung
cancer, the tumours proliferate so fast that shorter
schedules such as CHART are required. Clearly,
modelling a schedule for treatment based on the LQ
model will be more accurate if repopulation effects
are included based on the biological proliferation

rate of the tumour. In prostate cancer, the tumours
proliferate slowly which allows so much repair time
between fractions that larger doses are required.
Again, it is clear that including the repopulation
kinetics here would enable clinicians to exploit
optimization schedules to enhance treatment out-
come for prostate cancer. It has been shown by
Dionysiou et al.[42] that in a hyper-fractionation
scheme for glioblatomas there is a marked decrease
in repopulation compared to the standard frac-
tionation normally used. This agrees with clinical
studies which indicate that hyper-fractionation
generally improves tumour control rates for aggres-
sively proliferating tumours [29]. The debate about
the importance of repopulation effects has led to
other models with more specific growth laws being
proposed to describe tumour proliferation and re-
growth. These include the work of O’Donoghue[53],
Wheldon et al. [54], Lindsay et al.[55], Mao et al.[56]
and McAneney and O’Rourke[40]. These models are
reviewed in section 3 were in particular we focus on
examining the role that various non-linear growth
laws have on the outcome of cancer radiotherapy
treatment schedules.

1.3. Theoretical development of TCP models within
the LQ formalism

The LQ model has also been integrated with a
time independent tumour control probability by
Munro and Gilbert[57]. In their model they pos-
tulated that the distribution of clonogens after
radiation treatment is represented by a Poisson dis-
tribution and obtained a simple statistical formula
for disease free probability incorporating the sur-
vival fraction formula from the basic LQ model of
cell damage and cell recovery. This model has been
widely analyzed for application in clinical radiation
treatment protocols [58–60]. Maciejewski et al.[18]
have used this model to improve TCP outcome us-
ing accelerated schedules in head and neck cancer
to minimize tumour repopulation during therapy.
Horiot et al.[15] have used the TCP model aimed at
improving outcome by increasing the overall dose
delivered in hyperfractionation protocols in oropha-
ryngeal cancer. But the limitations of this early
model are widely acknowledged [61–63]. Indeed the
binomial/Poisson formula always underestimates
the TCP and this is one of its main flaws. Another
flaw of Poisson model is that it neglects tumour
clonogenic repopulation during therapy. Tucker
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and Taylor[64] obtained improvements upon the
conventional Poisson TCP model by adopting a nu-
merically based geometric stochastic approach to
account for tumour cell repopulation. Kendal [63]
has obtained an analogous closed analytic form of
the numerical models proposed by Tucker and Tay-
lor[64]. Later in 1999, Tucker improved the 1996
model to account for cell cycle effects, rate of cell
differentiation and the cell rate loss.

Clonogen repopulation in Poissonian TCP calcu-
lations within the LQ model has also been accounted
for by introducing a time-dependent term into the
formalism [65,66,29,67–69]. Other Poissonian TCP
model which extend the early TCP models to in-
clude radiobiological cellular responses (other than
repopulation) have been considered in the litera-
ture. For example, a closed form expression for ra-
diation control probability of hetergeneous tumours
has been obtained by Fenwick[70]. TCP models have
been developed by Nahum and Tait[71], Webb and
Nahum[72], Brenner[60] and Webb[73] which incor-
porate the effect of distributions in the dose to the
tumour and clonogenic cell density. Mohan et al.[74]
have considered a TCP model for prediction of the
cost function to be optimized in 3D treatment plan-
ning. Buffa et al.[37] have investigated the TCP
model within a two compartment model for oxic and
hypoxic tumour cells using a LQ formulation and an
oxygen diffusion model.

The models discussed so far are Poissonian. This
issue has been rectified by Zaider and Minerbo[75]
who have developed a non-Poissonian dose-time de-
pendent exact tumour control probability formula
based on birth and death stochastic processes to
include cellular repopulation. This important con-
tribution corrects one of the flaws of the original
time-independent TCP model based on the bino-
mial/Poisson formula which results in underestimat-
ing the TCP. Based on the Zaider and Minerbo TCP
formula which is valid for any temporal protocol of
dose delivery Stravreva et al.[76] have derived a TCP
formula specifically for external fractionated radio-
therapy and shown this was applicable to the case
of variable probability of cell kill per dose fraction.
Dawson and HIllen[1] have extended the Zaider and
Minerbo [75] TCP formulation to include the effects
of the cell cycle. The TCP models of Zaider and
Minerbo are reviewed in section 4.

Since the aim of radiotherapy is to maximize dam-
age to the tumour but at the same time minimize
damage to normal healthy tissue then it should be
noted that TCP models are maximized subject to

some upper limit on the allowed normal tissue com-
plication probability (NTCP). Traditionally both
TCP models and their corresponding NTCP model
are used by clinicians to establish guidelines for ra-
diotherapists to predict dose and best clinical prac-
tice for future patients. We do not intend to discuss
NTCP models in depth in this review due to the
scope of the article but refer the reader to well es-
tablished and clinically accepted NTCP models in
the literature [77,78].

2. Basics and radiobiological background of
LQ modelling

The LQ model was originally developed from bio-
physical considerations rather than empirical clini-
cal observations and as such it is closely associated
with parameters more likely to influence biological
response. The mechanistic basis for the LQ model
has been extensively reviewed in the literature by
Sachs et al.[79], Brenner et al.[80] and Guerrero et
al.[81]. Derivation of the LQ model is not unique
and has been obtained by many authors from differ-
ent viewpoints [82–89]. The expression for the LQ
model may be simply stated as

ln σ = −αD − βGD2. (1)

This expresses the surviving fraction of clonogenic
cells σ in terms of two parameters, α and β. The
parameter α represents lethal lesions made by one
track action and β accounts for lethal lesions made
by two-track action. D is the radiation doses and G
is the Lea-Catcheside dose-protraction factor and is
given by [82,8,83]

G = 2

T∫

0

R(t)
D

dt

t∫

0

R(t′)
D

eλ(t′−t)dt′, (2)

where D = D(T ) is the total dose in the interval,
R(t) the time varying dose rate and λ the repair
time constant. This dose rate function, G, encom-
passes the temporal behaviour of radiation delivery
in its entirety. Hence, Eq. 2 can be used to estimate
the protraction effects in the following cases: (i) sin-
gle fractionation delivered at a constant rate, (ii)
split dose and multi-fraction irradiation protocols
and (iii) continuous low dose rates encountered in
brachytherapy. The protraction factor G biophysi-
cally represents that a potentially lethal lesion (i.e. a
double strand break) is created at time t′ and if not
repaired, may interact in a pairwise manner with a
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second lethal lesion produced at time t [5]. In the
case of a constant dose rate, as one has in the situ-
ation for external beam radiotherapy, the dose rate
R(t) is defined by the following function,

R(t) =





D

T
t ∈ [0, T ] T > 0

0 else
(3)

from which we can then calculate G using Eq. 2.
Thus we obtain

G =
2

T 2

T∫

0

t∫

0

eλ(t′−t)dt′ dt (4)

=
2

(λT )2
(λT + e−λT − 1). (5)

T is the irradiation duration time. If the irradia-
tion time is short enough, the term λT in the above
equation tends to zero. The exponential term can be
expanded using a Taylor’s series and by neglecting
terms of order (λT )3 in the Taylor series approxima-
tion it is found that G → 1. However, if irradiation
treatment is prolonged, such as in the case of con-
tinuous low radiation schedules that are typically
used in brachytherapy, then G < 1, since the kernel
exp[(t′ − t)] ≤ 1 for t′ ≤ t [8].

For the remainder of this article we are only
concerned with normal external beam radiother-
apy where the duration of delivering a fraction is
measured in seconds and the repair time constant
is typically an hour. In this case G(t) is effectively
equal to unity as shown above and the dose referred
to as an ‘acute’ dose. In the case of fractionated
schedules where the dose is given daily and there
is no interaction between the schedules, then it fol-
lows that after n fractions each of dose d, the final
survival fraction arising from each of the individual
fractions is

σ = e−αnd−βnd2
= e−(α+βd)D, (6)

where the total dose D = nd. This formalism pre-
sumes complete cellular repair between treatments
and can be extended to incorporate cellular repopu-
lation using the logistic or Gompertz laws. This will
be discussed in section 3 and compared with existing
repopulation models using a time-dependent factor.

2.1. Fractionation sensitivities: α/β ratios

In the LQ model the ratio (α/β) is an inverse mea-
sure of a tissue’s sensitivity to fractionation, that is,
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Fig. 1. Cell survival curves illustrating the surviving frac-
tion of cells after a single dose of radiation. The cases shown
are for prostate cancer (α/β = 1.5 Gy), non-small cell can-
cer (α/β = 10 Gy) and advanced head and neck cancer
(α/β = 20 Gy).

the size of dose given on each treatment. For exam-
ple, a typical value for α/β range between 3−10 Gy
[6,4,90]. In fact, in the case of prostate cancer which
is a very slowly proliferating, late responding tissue
α/β can be as low as 1 Gy [91,92]. At the other end
of the spectrum α/β may be as high as 20 Gy in the
case of advanced head and neck cancer which is an
early responding tissue with an extremely aggressive
rate of cell proliferation [13,90]. Recent advances in
treatment protocols have resulted from taking ac-
count of the particular radiobiological cell survival
parameters (α/β) involved. The cell survival curves
shown in Fig. 1 are plotted for values of α/β = 1.5,
10 and 20 for prostate cancer, non-small cell lung
cancer and advanced head and neck cancer respec-
tively. This range in values corresponds respectively
from late responding tissue, which has a high re-
pair capacity, to acute responding tissue which has
a low repair capacity. Acute responding tissues have
fast cellular turn over and therefore show signs of
radiation induced damage to normal tissue days to
weeks after exposure. This can be explained due to
the short lifespan of their mature cells. By compar-
ison late responding tissues show effects months to
years later because they have a low level of cellular
turnover and the interval between cell divisions is
long giving the cells an opportunity to repair radio-
biological damage [14]. Fraction size is a dominant
feature in determining late effects with overall treat-
ment time having little influence. In contrast, the
response by acute responding tissue is influenced by
(i) fractionation, but to a lesser degree, and (ii) the
overall treatment time [14].
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2.2. Biological Effective Dose (BED)

One of the main clinical applications of the LQ
model is to calculate the total dose on a treatment
regimen which would have the same effect on a given
tissue as some other regimen. This concept is known
as the biologically effective dose (BED) and was
first introduced by Barendsen[93]. It was originally
known as the extrapolated response dose (ERD)
and later re-named to the present day terminology
(BED) by Fowler[29]. In this section we only con-
sider an application of the BED for well-spaced high
dose fractions in Eq. 6 where the protraction fac-
tor G is unity. The BED formula employed for clin-
ical applications in external beam fractionated ra-
diotherapy is given by

BED = − ln(σ)
α

= D

(
1 +

d

α/β

)
(7)

where n is the number of fractions, d is the dose
per fraction and D is the total dose delivered over
the course of treatment. The term in brackets in the
equation above is the relative effectiveness so that
BED is total dose × relative effectiveness. The BED
model represents the dose required for a given effect
when delivered by infinitely small doses per fraction.
To achieve isoeffectiveness between two fractiona-
tion schedules of total doses D1 = nd1 and D2 =
nd2 where d1 and d2 represent the doses per fraction
respectively we obtain

D1

(
1 +

d1

α/β

)
= D2

(
1 +

d2

α/β

)
(8)

and α/β ratios can be estimated if the parameters
n, d1 and d2 are known. For any normal or tumour
tissue, an increased BED indicates an increased bio-
logical effect. That is, a reduced surviving fraction,
σ, for both normal and tumour cells. The goal of ra-
diotherapy is to minimize damage to normal tissue
and maximize damage to tumour tissue. In mathe-
matical terms this means that for healthy tissue sur-
rounding the tumour the aim is to maximize σ in
the case of normal tissue while simultaneously min-
imizing the value σ for the tumour tissue. As larger
values of β imply an increased likelihood of poten-
tially repairable ionizing events, it follows that tis-
sues with smaller α/β ratios exhibit a greater dose-
sparing effect than do those with larger values of
α/β. That is, tissues with smaller α/β ratios have a
larger surviving fraction σ after treatment than tis-
sues with a larger α/β ratio. Another factor to bear

Total Fraction BED

Dose D Dose d n Gy3 Gy20

∗ 66.0 2.0 33 110 79.2

∗ 59.4 1.8 33 95 70.1

† 54.0 1.8 30 86 58.9

‡ 60.0 2.0 30 100 72

Table 2
Schedules for advanced head and neck cancer. ∗ Accelerated
schedule [52]; † Accelerated schedule [94]; ‡ Standard con-
ventional schedule.

in mind is that acute responding tissues respond
to radiotherapy by accelerated repopulation, which
contributes to tissue sparing during fractionated ra-
diotherapy. Thus, it is the late tissue response that
is the dose limiting factor.

A clinical example which illustrates the BED con-
cept is shown in Table 2 for advanced head and
neck cancer. Three clinical accelerated fractionation
schemes are outlined from O’Sullivan et al.[52] and
Wratten et al.[94] as well as the standard treatment
schedule. Within Table 2 we take α/β = 20 Gy for
advanced head and neck cancer and α/β = 3 Gy for
normal tissue.

Note, it is not feasible to compare Gy3 with Gy20

values, since the log cell kill obtained from Eq. 7 has
been divided by α. However, it is possible to compare
toxicity to Gy3 values for normal tissue in different
treatments and similarly evaluate the effectiveness
of tumour cell kill in the different treatment strate-
gies for Gy20 values. By comparing the overall dose
of 60 Gy against the regimen for 54.9 Gy, it can be
seen that in the latter there is reduced toxicity to
normal tissue.

One phase of the clinical trial by Wratten et al.
had an overall dose of 54 Gy, but again comparing
this against the other schedules in Table 2, shows
that the impact of radiation treatment on the tu-
mour is also greatly reduced. Accelerated radiother-
apy for head and neck cancer has been assessed in
randomized studies and it has been suggested that
with this technique there is an increase in the sever-
ity of acute toxicity compared with that of conven-
tional radiotherapy, (last row Table 2). In particular,
O’Sullivan et al. noted that a schedule of total dose,
D = 66 Gy, 2 Gy per fraction for 33 fractions, was
too severe for patients to tolerate and suggested to
reduce the dose per fraction to 1.8 Gy. More gener-
ally, it may be seen from the following example how
knowledge of late-normal tissue and tumour α/β ra-
tios is of major importance, in so far as the BED is a
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measure of how to design radiation treatment proto-
cols, which might then lead to a better therapeutic
ratio.

Example: Consider a treatment of head and neck
cancer which delivers a total dose D, and let d be the
dose per fraction and n = D/d the number of frac-
tions. In the treatment schedule, a value of α/β =
3 Gy is assumed for the healthy head and neck tis-
sue and a value of α/β = 20 Gy is assumed for the
head and neck tumour tissue and both tissues are
exposed to the same overall dose D. In both cases,
the biologically effective dose for the healthy tissue
and tumour tissue are respectively

BED3 = D
(
1 +

d

3

)
(9)

and BED20 = D
(
1 +

d

20

)
(10)

which are increasing functions of d. The smaller the
dose per fraction, the better for the healthy head and
neck tissue. An optimum treatment requires maxi-
mizing BED20 and minimizing BED3 and so it is
necessary to consider max(BED20 −BED3). That
is, to examine the behaviour of

BED20 −BED3 = D
( d

20
− d

3

)
= − 17

60
Dd, (11)

which is decreasing in d. Thus, for smaller d the
difference between the healthy head and neck tissue
and corresponding tumour tissue is increased which
is the aim of a successful treatment protocol. The
BED formula considered here do not take account
of repopulation rates. This is considered in the next
section.

3. Repopulation and the LQ model

In radiotherapy, treatment schedules are fraction-
ated to allow the normal tissue to repair and recover
from the irradiation. During these periods of recov-
ery and resting, surviving clonogenic cells of the tu-
mour also repair and repopulate. Saunders et al. re-
ported that tumour cell repopulation occurring dur-
ing a course of conventional radiotherapy may be
the case of treatment failure [19]. Indeed, the nature
of the re-growth of the particular tumour concerned
is expected to influence the outcome of a specific
treatment schedule [32,66,29]. Clinical radiation on-
cology treatment schedules also indicate how the ef-
fects of repopulation may be exploited to achieve
improved tumour control [19,95,18,22,42,21,9].

Frequently, repopulation within the LQ model
has been included in the very simple form based
on the assumption of a time-dependent exponential
term factored into the predicted clonogenic survival
[32,34,29]. Such a model is in popular use and may
be written in the form,

ln σ = −n(αd + βd2)− λT (12)

where T is the overall exposure time (i.e. the com-
plete timescale of the treatment protocol) and λ the
exponential repopulation constant. An expression
for λ can be obtained by relating it to the clonogenic
doubling time Tp. This allows Eq. 12 to be written
as

ln σ = −n(αd + βd2)− T ln 2
Tp

. (13)

The model given by Eq. 13 was implemented by
Wheldon et al. in 1977 to consider optimal uni-
form treatment schedules for cancer radiotherapy
[32]. This was achieved by considering uniform treat-
ment schedules and incorporation of radiation toler-
ance through the CRE (cumulative radiation effect)
system. The CRE was developed by Kirk et al.[96]
as a variation of the NSD (nominal standard dose)
model. Equation 13 was also modified by Fowler to
reflect the more realistic clinical setting in which
there is a time delay, Tk, before repopulation is de-
tectable [29]. As such Eq. 13 becomes

ln σ = −n(αd + βd2)− (T − Tk) ln 2
Tp

. (14)

It is typically assumed that repopulation starts at
the onset time Tk days and continues until the end
of the radiotherapy schedule at T days. Thus, the
time available for cell repopulation is T − Tk days.
A constant doubling time of Tp after Tk days is as-
sumed. Other similar repopulation models were con-
sidered in 1988 and 1989 by Wheldon and Amin[65]
and Dale[67], and in 1995 Jones and Dale [12] stud-
ied the use of a time varying loss factor. This was
represented by a mathematical function which de-
clined exponentially either from the start of therapy
or after some delay period.

These types of repopulation models, as given in
Eq. 12-14, inherently assumes a constant tumour
sensitivity and rate of growth of the tumour, i.e. ex-
ponential growth kinetics. However, it has been sug-
gested by Ribba et al.[97] (and references therein)
that cell cycle regulation and anti-growth signals
such as hypoxia (Gray et al.[98]) can play an impor-
tant role in the reduction in response to radiation.
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Growth mechanism

Tp Exponential Logistic Gompertz

30 1.059x10−10 1.151x10−10 3.517x10−9

60 7.129x10−11 7.432x10−11 4.688x10−10

90 6.248x10−11 6.424x10−11 2.263x10−10

Table 3
Survival fraction at end of accelerated treatment schedule.
n = 33, d = 2 Gy, α/β = 10 Gy.

That is, for those cells within the S-phase of the cell
cycle, or given low levels of oxygenation, a higher
level of radio-resistance occurs. During the course
of treatment, re-distribution and re-oxygenation oc-
curs which increases the net repopulation rate of the
tumour [99,100,39]. Therefore the doubling time, Tp,
is not constant, but dependent on the size of the
tumour and it has been shown that larger tumours
have longer volume doubling times than smaller ones
[101,102]. One example of this may be found in some
human lung cancers which have been shown by Steel
to follow a Gompertzian pattern of growth [101,13].
Hence, the models presented so far may not be ap-
propriate for all tumours.

In 1997 O’Donoghue considered a Gomp-ex
model within an LQ formalism which assumed that
a tumour follows a growth/re-growth curve which
slows down as its size increases. Mathematically
this model consisted of two equations, one which de-
scribed the tumour to follow Gompertzian growth
when the tumour was greater than a certain criti-
cal threshold size and the other that describes the
tumour by an exponential equation when the tu-
mour was less than the threshold size. O’Donoghue
applied this to examine fractionated radiotherapy
treatment [53]. Wheldon et al. have investigated the
dose-response relationship for cancer incidence in a
two stage radiation carcinogenesis model incorpo-
rating Gomp-ex cellular repopulation [54]. Lindsay
et al. have applied the Gomp-ex model to study ra-
diation carcinogenesis for risk of treatment-related
second tumours following radiotherapy [55].

The authors of this article have also documented
how the nature of repopulation can influence the
outcome for a particular treatment schedule [40].
Table 3 illustrates our findings of the variation in
outcome at the end of a treatment schedule result-
ing from the particular nature of the mechanism of
repopulation. Indeed, the conclusions drawn were
those that tumour following a repopulation mech-
anism of exponential or logistic growth resulted in
similar outcomes, whilst those that followed a Gom-

pertzian nature of repopulation resulted in a poorer
prognosis for the patient. This was due to at least
one order of magnitude more tumour cells surviv-
ing the treatment protocol which have then the po-
tential to repopulate the tumour. Indeed, this ef-
fect is heightened by gaps in the treatment proto-
col, whether these are planned or not. This leads to
clinical implications depending on the different re-
growth laws that may be acting during the course to
radiation treatment and therefore should be consid-
ered during the clinical planning of radiation treat-
ment of cancer.

Although repopulation is a significant factor to be
considered within the LQ model, it still leaves redis-
tribution and re-oxygenation to be dealt with. Bren-
ner et al. considered this issue in 1995, and extended
the LQ to that of the LQR model [36]. The LQR
model includes the 4 R’s of radiotherapy detailed by
Withers[30], and deals with redistribution and re-
oxygenation through the concept of re-sensization,
as detailed by Hlatky et al.[103]. The allowance of
intra-tumour heterogeneity is essentially handled by
considering a Gaussian distribution for α and β and
obtaining the mean SF. The LQR model is denoted
by

ln σ = −αd−
(

β − 1
2
ς2
α

)
d2. (15)

The form of the LQ model is preserved by the aver-
aging and so the first term still denotes cell kill by
one-track action, the second cell kill by two-track
action (also incorporates repair), but now a term re-
ferring to cellular diversity is included, given by the
dispersion about the mean radiosensitivity α. Horas
et al. have incorporated the LQR model into a 2-
compartment system for a tumour representing oxic
and hypoxic zones [38]. These types of models are
indeed the future direction of the LQ equation and
its development, i.e. the inclusion of heterogeneity
and diversity of the cellular structure of a tumour,
as well as the nature of the type of repopulation.

4. Tumour control probability models

In this section we outline the development of more
and more detailed models for the TCP. The Poisso-
nian TCP model and the binomial TCP model are
both based on the LQ model. In fact, any of the
modifications that include repopulation and hetero-
geneity can also be used, e.g. Eq. 12-15.
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Let n denote the number of tumor cells after treat-
ment and n0 the initial number of tumor cells. We
assume that the cell number n is a random variable
with distribution P (n). Then the TCP is the prob-
ability to have no tumor cells left, hence

TCP = P (0).

We now assume that the surviving fraction σ is a
good estimator for n/n0. If n is Poisson distributed,
then we get

TCP = e−n0σ (16)

and if n is binomial distributed we obtain

TCP = (1− σ)n0 , (17)

where σ is given by one of Eq. 12–15. Note that
these TCP formulas coincide for large n0 and small σ
(law of large numbers). Since these TCP formalisms
are based on the LQ model, they show the same
advantages and shortcomings. A strong advantage
is its simplicity. The TCP and LQ models are based
on the two parameters, α, β, which are known for
many tissues and cancer types. A disadvantage of
these models is the fact that the time course of the
treatment and the repopulation dynamics are not
included, or are included artificially.

In a ground-breaking paper in 2000, Zaider and
Minerbo developed a time dependent TCP model
based on a stochastic birth-death process. In the
end, the Zaider-Minerbo TCP formula (ZM) is based
on the following differential equation model for the
tumor cell number

d

dt
N(t) = (b− d− h(t))N(t)

N(0) = n0,
(18)

where b is the birth rate, d the natural death rate
and h(t) the radiation induced death rate (hazard
function). The treatment schedule is then explicitly
included in the time dependence of h(t). Based on
Eq. 18 the TCP formula of ZM can be written as

TCP (t) =


1− N(t)

n0 + bn0

∫ t

0
N(t)
N(τ)dτ




n0

. (19)

Note that in the case of no repopulation, b = 0, we
obtain the binomial TCP model from above Eq. 17.

The ZM-TCP formula explicitly uses exponen-
tial regrowth between treatments. This is, as shown
by McAneney and O’Rourke [40] a good model for

small tumor sizes. However, it would be interesting
to study non-linear growth laws of the form

d

dt
N(t) = f(N)− dN − h(t)N,

although it is very difficult to formulate and solve the
corresponding nonlinear birth-death process. This
might prevent the computation of an explicit TCP
formula.

An extension of the ZM-model that includes cell
cycle dynamics was developed by Dawson and Hillen
[1]. It is known that quiescent cells (in the G0-phase)
are less radiosensitive than proliferating cells (in the
G1, S, G2,M -phases). Dawson and Hillen split the
tumor cell population into two compartments, ac-
tive cells A(t) and quiescent cells Q(t) (if needed,
more compartments could be considered). For the
cell cycle dynamics we use a simple linear differen-
tial equation model that was proposed by Swierniak
[104]. Combined with treatment we have

d

dt
A(t) = −bA− dA + γQ− ha(t)A

d

dt
Q(t) = 2bA− γQ− dQ− hq(t)Q

A(0) = A0,

Q(0) = Q0,

(20)

where the new parameter γ > 0 describes the tran-
sition from resting compartment into the cell cycle.
Since quiescent cells are less radiosensitive, we as-
sume ha(t) > hq(t). Also for Eq. 20 the correspond-
ing nonlinear birth-death process can be formulated
and solved. This gives a quite complex TCP formula
which we will not write down here, but we refer to
Dawson and Hillen [1] for details.

In evaluating this new TCP formula we made the
following observations:
– The DH-model should be used if a significant qui-

escent compartment is present. This is relevant
for tumor spheroids with hypoxic interior.

– In general, the ZM-model overestimates the TCP,
since it does not account for less radiosensitive
cells.

– If the TCP models are used to compare different
treatment schedules (as summarized in Table 1),
then the ZM model and the DH model give very
similar ranking. In general, a higher dose per frac-
tion schedule seems to increase the TCP.

– A ranking based on the BED gives different rank-
ing of schedules. As an example, the BED cannot
distinguish between Schedule A: 2 Gy per day,
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5 days per week, 7 weeks, and Schedule B: 2 Gy
twice a day, 5 days per week, 3.5 weeks. Whereas
ZM and DH find that schedule B has a larger
TCP which compares to the Schedule C: 4 Gy
per day, 5 days per week, 3.5 weeks.

5. Conclusions

In this review we have examined the role of tu-
mour repopulation kinetics in external beam radio-
therapy within the LQ formalism and its influence
on treatment outcome. An important feature of
the tumour repopulation models considered here,
are that they allow the effects of temporally non-
uniform treatments to be described. Our work
suggests that there may be untapped potential for
the use of fractionation schemes that incorporate
repopulation kinetics more closely aligned with the
observed re-growth pattern of the particular tu-
mour concerned. Our hope is that these types of
models will provide a systematic method of refin-
ing existing approaches to improve the therapeutic
index of cancer radiotherapy. Future work in this
area will extend the repopulation models consid-
ered here to include the effects of re-oxygenation
and re-distribution within the LQ formalism with a
view to enhancing treatment outcome.

We have further considered the effects of the cell
cycle within the context of the time-dependent TCP
formalism of Zaider and Minerbo which incorpo-
rates a repopulation law based on a stochastic birth
death process and shown that this can be used to
analyze a variety of treatment plans of varying dose
rates, number of fractions and overall treatment
time. Inclusion of the cell-cycle is an important
improvement on existing current TCP models in
the literature and show it may be possible to ma-
nipulate the temporal structures of fractionation
schedules to improve TCP outcome in cancer radio-
therapy. Future work on the cell-cycle TCP model
will include information about both hypoxia and
re-oxygenation. In addition more complex patterns
of repopulation will be taken into account. It is
expected that inclusion of these extra factors will
yield a more complete picture of tumour response
to therapy.
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