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Ar e more complicated tumour control probability models better?

JIAFEN GONG, MAIRON M. DOS SANTOS, CHRIS FINLAY AND THOMAS HILLEN∗

Centre for Mathematical Biology, Department of Mathematical & Statistical Sciences,
University of Alberta, Edmonton, AB T6G 2G1, Canada

∗Correspondingauthor: thillen@ualberta.ca

[Received on 2 December 2010; revised on 29 June 2011; accepted on 12 August 2011]

Mathematicalmodels for the tumour control probability (TCP) are used to estimate the expected suc-
cess of radiation treatment protocols of cancer. There are several TCP models in the literature, from the
simplest (Poissonian TCP) to the well-advanced stochastic birth–death processes. Simple and complex
models often make the same predictions. Hence, here, we present a systematic study where we compare
six of these TCP models: the Poisson TCP, the Zaider–Minerbo TCP, a Monte Carlo TCP and their cor-
responding cell cycle (two-compartment) models. Several clinical non-uniform treatment protocols for
prostate cancer are employed to evaluate these models. These include fractionated external beam radio-
therapies, and high and low dose rate brachytherapies. We find that in realistic treatment scenarios, all
one-compartment models and all two-compartment models give basically the same results. A difference
occurs between one-compartment and two-compartment models due to reduced radiosensitivity of quies-
cent cells. We find that care must be taken for the right choice of parameters, such as the radiosensitivities
α andβ and the hazard functionh. Typically, different hazard functions are used for fractionated treat-
ment (fractionated survival fraction) and for brachytherapies (Lea−Catcheside protraction factor). We
were able to combine these two approaches into one ‘effective’ hazard function. Based on our results,
we can recommend the use of the Poissonian TCP for everyday treatment planning. More complicated
models should only be used when absolutely necessary.

Keywords: tumour control probability; radiation treatment of cancer; mathematical modelling of cancer
treatment.

1. Background

A standard treatment for the control of tumour growth is radiation. Many mathematical models have
been developed to help predict the outcome of a given radiation treatment schedule. One such mathe-
matical tool is the tumour control probability (TCP). The TCP is a measure for the probability of tumour
cell eradication and it can be used to compare the expected success of different treatment protocols. The
very nature of tumour control, i.e. the eradication of clonogenic cells, requires a stochastic approach
for the TCP. There are several TCP models in the literature, which are based on Poisson statistics, on
general birth–death processes, on branching processes, and on individual-based models. Several of these
models have been validated using clinical data (Stavrevaet al.,2003;Horaset al.,2010); hence, we are
confident about the significance of these models. While the first models are based on a single clono-
genic population (Zaider & Minerbo, 2000;Hanin,2001), extensions have been presented which aim to
include cell cycle or quiescent states (Dawson & Hillen, 2006;Hillen et al., 2010;Maler & Lutscher,
2010). Some of these models are fairly simple (e.g. the Poissonian TCP), while others are very complex
(e.g. a TCP model from a cell cycle birth–death process). In practice, it is hard to judge which of these
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modelsshould be used. What do we loose if we still use the simple model and not the more complicated
alternatives?

The purpose of this paper is to show that, in realistic treatment scenarios for prostate cancer, all
models give very similar results. Discrepancies can be observed, although they are small compared to
other uncertainties that are intrinsic in these models. Our conclusion is that the Poissonian TCP model is
good enough for everyday treatment planning, in particular when it comes to the comparison of different
treatment protocols. More complicated models should only be used if there is a striking reason to do so.
This confirms the theoretical results obtained byHanin (2004), who showed that in the limit for large
tumours and not too fast growing tumours, the distribution of surviving tumour cells approximates a
Poisson (or generalized Poissonian) distribution.

Some work has been done on the comparison of different TCP models:Tuckeret al. (1990) first
questioned the efficacy of the Poissonian TCP by numerical simulation and found that the Poissonian
TCP might underestimate the correct TCP. In an example of a very fast growing tumour, the discrep-
ancy was about 15%.Yakovlev(1993) confirmed these findings theoretically, and Hanin and his group
(Hanin, 2001,2004;Hanin et al., 2001) proved, mathematically, that the TCP based on the iterative
birth–death process converges to a Poissonian TCP for uniform fractionated treatment.

The six TCP models compared in this paper are as follows:

(1-P): The Poissonian TCP.The Poissonian TCP is the standard formula for TCP computations
for uniform fractionated treatments. There are several extensions of this model which include
regrowth or lesion repair mechanisms, and we will discuss those later in Section2.

(1-ZM): The TCP of Zaider & Minerbo (2000).The TCP of Zaider and Minerbo is based on a birth–
death process for tumour growth and decay. It is the first model which allows for arbitrary
temporal form of radiation treatment and the approach of Zaider and Minerbo has revolution-
ized the field.

(1-MC): Monte Carlo TCP. Here we explicitly simulate a large number of cells and use Monte Carlo
simulations to estimate tumour survival.

(2-P): Two-compartment Poissonian TCP.Here we aim to include cell cycle mechanisms. We split
the cell populations into two compartments which represent an active phase (G1, S, G2, M)
and a quiescent phase (G0). If the clonogenic cells do not enter a G0 phase, then the model
equally applies for a splitting into S, G2, M and G1 phases. The major assumption is that active
cells are more radiosensitive compared to cells in the quiescent compartment.

(2-DH): Two-compartment TCP of Dawson & Hillen (2006).The Dawson and Hillen TCP is based
on a birth–death process and generalizes the ZM TCP, aiming to include cell cycle effects
according to the splitting mentioned in item (2-P).

(2-MC): Two-compartment Monte Carlo TCP. Here we extend the Monte Carlo simulations to the
two-compartment scenario.

These models depend on a number of parameters, e.g. the initial number of tumour cellsn0, the
radiation sensitivitiesα andβ, or the so-called ‘hazard function’h(t). We will test several combinations
of the parameter values and we give details about the models and parameters in Sections2 and3. In
Section4, we present our results and we conclude the paper with a discussion in Section5.
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1.1 Prostate cancer

Prostate cancer is the most common malignant tumour afflicting men in the world (World Health
Organization, 2008). Fortunately, early detection tests—such as digital rectal examination or determin-
ing the amount of prostate-specific antigen (PSA) in the blood—increase the chance of early diagnosis
and hence successful treatment (American Cancer Society). One very important treatment method for
prostate cancer is radiotherapy, where ionizing particles (such as X-rays and gamma-rays) transfer en-
ergy and kill cancer cells in the treated area. Over half of all cancer patients receive radiotherapy at some
stage of their disease, either alone or in combination with other types of treatment (such as surgery or
chemotherapy) (Kaanderset al.,2002;O’Rourkeet al.,2009). Two types of radiotherapy methods are
available: brachytherapy, whereby a radiation probe is inserted into the tumour; and external beam ra-
diotherapy, in which the tumour is irradiated from outside the patient. Generally speaking, in external
beam radiotherapy, the total dose (energy per unit mass in unit of gray (Gy)) is split into several fractions
to allow the patient’s normal tissues to recover between fractions.

Brachytherapy is more efficient for early stage, localized prostate cancer. There are two brachyther-
apy methods for prostate cancer: high dose rate and permanent seeds (also called low dose rate)
brachytherapy (Prostate Cancer Canada). High dose rate brachytherapy involves inserting several frac-
tions of seeds, over a span of a few days, through very tiny plastic catheters placed into the prostate
gland. In low dose rate brachytherapy, seeds are injected into the glands. These seeds will irradiate off
at a low dose rate and remain in the gland for a long time. If we denote the initial dose asR0 andthe
seed decay rate asλ, then the total doseD(t) absorbed up to timet is given by

D(t) =
R0

λ
(1 − e−λt ). (1.1)

2. TCP models

Before we introduce the TCP models, we briefly discuss the linear quadratic (LQ) model for cell survival
and the hazard function.

2.1 Survival fraction

If D denotes the radiation dose, then we denote the survival fraction of cells asS(D). A widely accepted
survival fraction model is the LQ model:

S(D) = exp(−αD − βD2), (2.1)

whereα (Gy−1) and β (Gy−2) are radiosensitivity parameters depending on the tissue types. The
parametersα and β are empirically estimated parameter values and they include radiosensitivity as
well as repair mechanisms. The ratioα/β is a rough characterization of the sensitivity of tissues to
radiation and it can be used to differentiate tissues into early responding tissue (α/β ≈ 10, typical for
clonogenic tissue) or late responding tissue (the ratio is about 3, typical for healthy tissue) (Wheldon,
1988;Fowler, 1989).

When the treatment doseD is split into n fractions of dosed, D = nd and the survival for each
fraction is independent, (2.1) changes into

S(D(n, d)) = exp(−αd − βd2) ∙ ∙ ∙ exp(−αd − βd2)
︸ ︷︷ ︸

n

= exp(−αD − βd D) = exp(−(α + βd)D).

(2.2)
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Equations(2.1) and (2.2) assume that there is no regrowth during treatment. However, proliferation
plays an important role when the treatment time is long compared to the tumour doubling time.Travis
& Tucker (1987) were the first to include a time factor in the LQ model. By fitting mouse lung cancer
data ofMahet al.(1987), they found that the regrowth is exponential with parameterb and the isoeffect
curvesE (= − ln S(D)) are constant,

E = βD(α/β + D/n) − bT, (2.3)

wheren is the number of fractions andT is the total treatment time. Some other scholars (Maciejewski
et al.,1989;Thameset al.,1990;Witherset al.,1988;Yaes,1989) also studied regrowth and regrowth
delay in the LQ models. Therefore, by using this exponent in the LQ model, we have an LQ model as a
function of dose and time,

S(D, t) = e−αD−βD2/n e(l n(2)/Td)(t−tk), (2.4)

whereTd = ln(2)/b is the tumour doubling time andtk is a time delay between the beginning of treat-
ment and measurable regrowth of the tumour.

In brachytherapy (continuous radiation over time), the model is modified by using the Lea–Catcheside
factorG(t) (Kellerer & Rossi,1972)

S(D) = e−αD−βG(t)D2
. (2.5)

The Lea−Catcheside factor describes the interaction of past radiation damage with current damage,
where the interaction probability decays exponentially with rateγ . The Lea−Catcheside factor is usually
written for t > T as

G(t) =
2

D(t)2

∫ ∞

−∞
Ḋ(τ )

∫ τ

−∞
e−γ (τ−s) Ḋ(s) dsdτ

or

G(T) =
2

D(T)2

∫ T

−∞
Ḋ(τ )

∫ τ

−∞
e−γ (τ−s) Ḋ(s) dsdτ,

whereḊ(τ ) andḊ(s) are the dose rate,D(t) is the cumulative dose andT denotes the end of treatment.
The Lea−Catcheside factor for endpointst > T has originally been derived from a lethal–potentially
lethal model (LPL model) (Curtis,1986). We can, however, use the same LPL model to derive a time-
dependent Lea−Catcheside factor, which applies to all timest > 0. This formulation leads to our choice
of deff(t) in (c) described subsequently. In that case, the Lea−Catcheside factor becomes:

G(t) =
2

D(t)2

∫ t

−∞
Ḋ(τ )

∫ τ

−∞
e−γ (τ−s) Ḋ(s) dsdτ. (2.6)

Another approach, which is also based on clear physical principles, is the assumption of an effective
interaction window for lesions (Dawson & Hillen,2006). If two single hit events occur close in time,
then there is a chance of an interaction. In this case, the survival fraction reads

S(D) = exp

(
−
∫ t

0
[α + 2β(D(s) − D(s − ω))] Ḋ(s)ds

)
,

whereω denotes the size of the effective interaction window.
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2.2 Hazard function

We can use the concept of a hazard function to unify the above models into one formalism. The hazard
functionh(t) describes the decay of survival fraction as

dS(D(t))

dt
= −h(t)S(D(t)). (2.7)

Zaider and Minerbo advertise the following hazard function for any form of treatment

h1(t) := (α + 2βD(t))Ḋ(t) (2.8)

If we solve (2.7) for the surviving fraction with hazard functionh1(t) and initial conditionS(0) = 1, we
obtain

S(D(t)) = exp

(
−
∫ t

0
h1(s)ds

)
= exp(−αD(t) − βD2(t)). (2.9)

Case1: If we only give one treatment of dosed and evaluate the above formula at the end of treatment
T , then we get

S(D(T)) = e−αd−βd2
,

which is the LQ model (2.1).
Case2: If, however, we given fractions of dosed, then at the end of treatment we obtain

S(D(T)) = exp(−αnd − β(nd)2) (2.10)

which does not correspond to the fractionated LQ formula (2.2). In (2.10), theβ-term is overamplified
by an additional factor ofn, which, as we argue, leads to over-optimistic estimates for the TCP.

Based on (2.8) we rather propose the following form of hazard function for fractionated treatment:

h2(t) := (α + βd)Ḋ(t). (2.11)

ThetermβdḊ(t) describes the interaction of previous lesions with current radiation, which is on a small
timescale compared to the treatment timeT . If we solve (2.7) usingh2(t), we obtain

S(D(t)) = exp(−(α + βd)D(t)) ,

which is exactly the LQ model (2.2).
More generality, we propose an effective interaction dosedeff , which includes the Lea−Catcheside

factor, the fractionated schemes from above and the interaction window approach into one framework:

h3(t) := (α + βdeff(t))Ḋ(t), (2.12)

where

(a) deff = d for fractionated treatments,

(b) deff(t) = 2D(t) asin Zaider–Minerbo’s formula (2.9) ,

(c) deff(t) = 2
∫ t
−∞ e−γ (t−s) Ḋ(s)ds for the Lea−Catcheside factor and

(d) deff(t) = 2(D(t) − D(t − ω)) for the finite interaction window.
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Thecorresponding survival fractions are

S(D(t)) = exp

(
−αD(t) − β

∫ t

0
deff(s)Ḋ(s)ds

)

Especially,

(a)

Sa(D(t)) = exp(−(α + βd)D(t)) (2.13)

(b)

Sb(D(t)) = exp(−αD(t) − βD2(t)) (2.14)

(c)

Sc(D(t)) = exp(−αD(t) − βG(t)D(t)2), with G(t) from (2.6) (2.15)

(d)

Sd(D(t)) = exp

(
−αD(t) − β

∫ t

0
2(D(s) − D(s − ω))Ḋ(s)ds

)
. (2.16)

There are several interesting special cases:
Case1: If we consider fractionated treatment, and the intervalω includes one fractionation, then we can
compute the integral in case (d) and findSd(t) = Sa(t) which is in agreement with the LQ model.
Case2: If γ → 0 in (c), thendeff(t) = 2D(t) andwe obtain the Zaider–Minerbo formula (b). This shows
that the approach (b) is useful if early lesions are not repaired and are always able to interact.
Case3: If the interaction window in (d) is large (ω → ∞), we use the fact thatD(−∞) = 0 to see that
(d) corresponds to (b). Hence, we get the same picture as in Case 2 above; model (b) implicitly assumes
that interactions of radiation-induced lesions are on a long timescale.
Case4: If the interaction window is small (ω → 0), then we redefine:̃β = 2βω and we obtain

h3(t) i n (d) → (α + β̃ Ḋ(t))Ḋ(t).

In this scenario, interactions would be strictly local in time.

In what follows, we will compare these different forms of hazard functions for the six models men-
tioned above. We find that the results for (c) Lea−Catcheside and (d) finite interaction window are
virtually identical, while case (b) gives over-optimistic results.

2.3 Poissonian TCP

The simplest TCP models are based on the Poisson or the binomial distribution and the LQ survival
fraction model. They both assume that the initial number of tumour cellsN0 is large. LetX denote a
random variable for the amount of surviving cells. If the death of tumour cells is stochastically inde-
pendent of each other, and cell survival is a rare event, then we can assumeX is given by the Poisson
distribution. The probability ofk tumour cells surviving is then,

p(X = k) =
λk e−λ

k!
. (2.17)
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Since the expectation of this distribution isE(X) = λ, we use the number of surviving cellsN0S(D) as
anestimator forλ. Therefore, we have the Poisson TCP as

TCPP = p(X = 0) = e−λ = e−N0S(D). (2.18)

Similarly, the binomial TCP has the form

TCPB = (1 − S(D))N0 (2.19)

if the number of surviving cellsX satisfies a binomial distribution. The Poisson approximation tells us
that the binomial distribution approaches the Poisson distribution whenN0 → ∞, S(D) → 0 and the
product ofN0S(D) approachesthe constantλ (i.e. N0S(D) → λ).

Thesurvival fraction (2.4) includes linear regrowth. The corresponding ordinary differential equation
(ODE) for linear regrowth is given by

dN

dt
= (b − d)N(t) − h(t)N(t), (2.20)

whereb denotesthe mitosis rate andd the natural death rate. We estimate the parameterλ in the Poisson
distribution (2.18) as the expected number of surviving tumour cells and obtain the one-compartment
Poissonian TCP

TCPP1(t) = e−N(t). (2.21)

In Gonget al. (2011), we also derived an explicit formula for non-linear regrowth. In order to compare
with ZM TCP, where linear regrowth is used, we focus here on linear regrowth.

The two-compartment Poisson TCP can be calculated by the following system of ODEs for active
(a) and quiescent cells (q) (Hillen et al.,2010),

da

dt
= −μa + νq − (da + ha(t))a, (2.22)

dq

dt
= 2μa − νq − (dq + hq(t))q. (2.23)

Here,ha andhq arethe hazard functions for active and quiescent cells andda anddq arethe natural
death rates, respectively. The termμ gives the regrowth rate of active cells, andν gives the switch rate
of quiescent cells to active cells. We solve it numerically, and then evaluate

TCPP2(t) = e−(a(t)+q(t)). (2.24)

Thetwo-compartment model in (2.22) and (2.23) is based on a more general two-compartment model
in Hillen et al. (2010). The model inHillen et al. (2010) allows cells after mitosis to become quiescent,
or to continue in the cell cycle. Two special cases lead to the one-compartment model (2.20) on the
one hand and the two-compartment model (2.22and2.23) on the other hand. In this paper, we focus on
these two extreme cases. For a full discussion of the two-compartment models we refer to the literature
(Dawson & Hillen, 2006;Hillen et al.,2010).
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2.4 TCPbased on birth–death processes

When the number of tumour cells are small, stochastic effects dominate. In this case, deterministic
models seem to be inappropriate for predicting the number of surviving cells. To accommodate the
stochastic effects,Zaider & Minerbo(2000) employed a stochastic birth–death process. That is, the
probability Pi of i tumourcells surviving at timet is given by the master equation

dPi (t)

dt
= (i −1)bPi −1(t)− i (b+d+h(t))Pi (t)+(i +1)(d+h(t))Pi +1(t), i = 0,1,2,3, . . . (2.25)

with the convention thatP−1 = 0. The expected number of tumour cellsN(t) =
∑

i Pi (t) satisfiesthe
mean-field equation (2.20).

The mean-field description (2.20) of tumour cell proliferation and its death due to radiation is a rea-
sonable approach when the number of cells is large. However, for a relatively small cell population (e.g.
at the end of the treatment), the average behaviour is no longer adequate as probabilistic or stochastic
noise becomes dominant.

By introducing a generating function, Zaider & Minerbo solved the master equation (2.25) and
obtained an explicit expression for the TCP,

TCPZM(t) = P0(t) =





1 −

Sh(t) ebt

1 + bSh(t)ebt

∫ t

0

dr

Sh(t)ebt







N0

. (2.26)

Here

Sh(t) = exp

(
−
∫ t

0
d + h(r ) dr

)
(2.27)

is the probability of cell survival for a given hazard functionh(t) and natural death rated. Dawson &
Hillen (2006) simplified the Zaider–Minerbo TCP into

TCPZM(t) =





1 −

N(t)

N0 + bN0N(t)
∫ t

0

dr

N(r )







N0

, (2.28)

whereN solves the mean-field equation (2.20). Note that whenb = 0, the Zaider–Minerbo TCP reduces
to the binomial TCP.

In the previous section, we discussed the use of a two-compartment model to describe cell cycle
effects. This extension can also be done for the birth–death process of Zaider and Minerbo (seeDawson
& Hillen, 2006;Hillen et al., 2010;O’Rourkeet al., 2009). The basic idea is the same as above, i.e. a
detailed master equation for two compartments is used as a starting point. The mean-field equations are
given by (2.22) and (2.23) and the TCP can again be expressed by the corresponding solutions of the
mean-field equations. The resulting TCPDH formulais very complex and we refer to the original papers
for reference (Dawson & Hillen,2006;Hillen et al.,2010).

2.5 Monte Carlo method

Another class of models for tumour growth are individual-based models (e.g.Hatzikirou & Deutsch,
2009; Kempf et al., 2010). Here we use the Monte Carlo method as representative for this class of
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models. The Monte Carlo method allows us to explicitly model the stochastic nature of cell–radiation
interaction, cell proliferation and cell death. For the Monte Carlo simulations, we use the same birth and
death probabilities as used in the master equation approach (2.25). The probability distributions for the
random sampling in each time intervalΔt is given by:

• bΔt for the probability of regrowth in a time interval of lengthΔt , whereb is the cell growth rate;

• (d+h(t))Δt for probability of death in a time interval of lengthΔt , whereh(t) is the hazard function
(2.12);

• 1 − (d + b + h(t))Δt is the probability the cell remains unchanged in a time interval of lengthΔt .

For each simulation run and for each time-step, we define the treatment success indicator (TS(t)) as:

TS(t) =

{
1, if N(t) = 0,

0, else,

whereN(t) is the number of tumour cells at timet . TCP is therefore defined as the average ofM such
independent simulations and is given by

TCP(t) =
1

M

M∑

i =1

TSi (t). (2.29)

Accordingto the law of large numbers, the error afterM samplings is the order of 1/
√

M . In order
to keep this error at an acceptable level, we simulate each case 300 times and the outcome is averaged.
The output of the TCP curve as a function of time is relatively smooth, with a small standard deviation
(≈ 0.05).

For the two-compartment models, we have two subpopulations governed by their own probability
distributions according to Table2:

• μΔt for the probability of regrowth in a time interval of lengthΔt , whereμ is the cell growth rate;

• (da + ha(t))Δt and(dq + hq(t))Δt for probability of death in a time interval of lengthΔt for the
active and the quiescent cells, respectively, andha(t), hq(t) aretheir hazard functions;

• νΔt for the transition probability from quiescent into active cells in a time interval of lengthΔt ;

• 1 − (μ + da + ha(t))Δt and1 − (ν + dq + hq(t))Δt are the probabilities that the cells remain
unchanged in a time interval of lengthΔt for the active and the quiescent cells, respectively.

The main drawback of the Monte Carlo method lies in its random nature: all the results are affected
by statistical uncertainties which can be reduced at the expense of increasing the sample population
and, hence, the computation time. This method is very convenient when the system has several degrees
of freedom such as fluids (Prausnitz & Tavares, 2004) and cellular structures (Frankset al., 2001),
or when inputs are very uncertain, such as risk in business (Mathews, 2009). More broadly, Monte
Carlo simulations have been applied to species dynamics in ecology, spatial sciences and oil exploration
(Gonzalez-Parraet al.,2010;Popov & Prokhorov, 2007) .

3. Treatment protocols and parameter values

In this section, we use seven treatment protocols for prostate cancer from the literature to compare the
six models described in the previous section. Among them, three are standard treatments (labeled as
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TABLE 1 Seven treatment schedules for prostate cancer. A, C and D are standard treatments and e and
f are two hyperfractionated treatments, where f is a high-dose brachytherapy.103Pd and125I are two
permanent seeds brachytherapy treatments. Note that the brachytherapy treatments have no end time,
since the radioactive seeds remain in the body. The column ‘Total days’ indicates the time when the total
treatment dose is reached

Dose/fraction Days/ Total Times/ Total
Protocol (dGy) week days day dose Reference
A 2 5 53 once 78 Reutheret al. (2002)
C 3 5 26 once 60 Liveseyet al. (2003)
D 4.3 5 16 once 51.6 Liao et al. (2010)
e 1.2 5 44 twice 76.8 Parsonset al. (1988)
f 6 5 4.5 twice 54 Yoshiokaet al. (2006)

Protocol Initial dose Decay rateλ Total days Half times Total doseReference

103Pd 5.71 0.0408 47.63 16.99 120 Naget al. (1999)
125I 1.86 0.0117 207.8 59.4 145 Naget al. (1999)

A, C, D). These are given once per day on weekdays with weekends off. The others are one hyperfrac-
tionated treatment (labeled ase), one high dose rate brachytherapy (labeled asf ) and two permanent
seeds brachytherapies (103Pd, 125I ) (see Table1).

For computational simplicity, we assume that all radiation protocols start on a Monday. Fractionated
treatmentsA, C, D, e and f are given on weekdays with weekends off. We assume it takes 10 min to
deliver each fraction of the dose at a constant dose rate. If the protocols prescribe one fraction per day
(called standard treatments), treatments are delivered at 12:00 pm (noon); in the case of two fractions
per day (called hyperfractionated treatments), treatments are delivered at 12:00 and 6:00 pm.

To compare parameter values between one- and two-compartment models, we use weighted aver-
ages. In the two-compartment model (2.22) and (2.23), the transition rate from active to quiescent is
μ and the transition rate for quiescent to active isν. Hence, assuming Poisson process for the transi-
tion events, the average time spent in the active phase is 1/μ and in the quiescent phase 1/ν (Thieme,
2003). The parameter values will be different for active and quiescent compartments, e.g. theβ value
of the radiosensitivities. In general, letpone bea parameter in the one-compartment model andpa, pq

parametersfor active and quiescent cells, respectively. Then the parameters are related by the following
equation

pone = pa
1/μ

1/μ + 1/ν
+ pq

1/ν

1/μ + 1/ν
. (3.1)

Theparameters used in the two-compartment model are listed in the TCPDH columnin Table2, and
the parameters for the one-compartment model are in column TCPZM. In most publications on cancer
growth, the effective net growth rate is reported. We use these values to estimate the net growth rateb−d.
The parameters of the one-compartment models are related to the parameters of the two-compartment
model via the weighted averaging described above (3.1). We will see later that this is indeed a good
choice as the models behave quite similarly.

The permanent seeds have dose rateḊ(t) = R0 e−λt , which is a continuous function of timet . In
the case of fractionated treatments (protocolsA, C, D, e and f from Table1), Ḋ(t) are jump functions.
Because of the differences in the dose rates of these treatments, we report their results separately.
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TABLE 2 Table of parameters and references. ColumnTCPDH refers to the two-compartment model,μ
is the birth rate of its active tumour cells andν is the transition rate from quiescent into active cells.
αa, βa, αq andβq are radiosensitive parameters of the LQ model for active and quiescent cells, respec-
tively. ColumnTCPZM refers to the parameters for one-compartment models, which are calculated by
(3.1) based on the values in columnTCPDH. Besides the initial tumour size106, we also simulate for
N(0) = 102, 104, 105, 1010, which give similar results; hence, we choose to only present the results for
106

TCPZM TCPDH Unit Reference

Initial cell N(0) = 106 a(0) + q(0) = 106 cells Strigariet al. (2008)
Net growth rate b − d = 0.0273 μ − da = 0.0655 1/day Swansonet al. (2001)

ν − dq = 0.0476 1/day Basseet al. (2002)
α α = 0.1531 αa = 0.145 Gy−1 Carlsonet al. (2004)

αq = 0.159 Gy−1 Carlsonet al. (2004)
β 2β = 2 × 0.0149 2βa = 0.070646 Gy−2 Carlsonet al. (2004)

2βq = 0 Assumption

FIG. 1. TCP for treatmentA, C, D ande, f as function of time, with survival fraction (2.14) (and corresponding
hazard function (2.8)) and survival fraction (2.13) (or equivalently (2.16)). Each subplot shows two groups of three
curves. The left groups correspond to (2.14) while the right group corresponds to (2.13). The vertical line on each
subplot is the treatment ending time. Blue lines are for Poissonian TCP (1-P), cyan lines for Zaider–Minerbo (ZM)
TCP (1-ZM) and red for Monte Carlo TCP (1-MC). All the parameter values are from Table2.

4. Results

4.1 Fractionated treatments

In Fig. 1 we show the time course of the TCP for the three one-compartment models (1-P), (1-ZM)
and (1-MC). The five subplots refer to the five fractionated treatmentsA, C, D, e and f , where the
vertical line indicates the end time of these treatments. Within each figure we show two groups of
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12 of 19 J. GONGET AL.

three curves. The left group of three curves corresponds to the survival fraction described by (2.14),
whereas the right group of curves corresponds to the survival fraction for fractionated treatments (2.13).
Instead of using (2.13) directly, we use (2.16), which is equivalent to (2.13) for fractionated treatment,
as mentioned earlier. This choice allows us later to use the same formulation for brachytherapy as well
as for any other time-dependent treatment method. InLi et al. (2003), the best estimate of the average
tumour DNA repair time is 16 min. That is to say, one DNA damage can only interact with another to
create a double-strand break, if they occur within 16 min.. Hence, we choose an interaction window of
ω = 16 min, such that any dose delivered to a patient within this window will count towards the hazard
function, asDawson & Hillen(2006) proposed.

The simulations clearly show that the three models make the same predictions. The hazard function
(2.8) shows clearly over-optimistic results, while the results using the effective interaction dosedeff are
more plausible. The computation of absolute TCP values is not the point of this paper. The point is to
show that these three very different methods show virtually identical TCP predictions. Hence, they are
equally useful for treatment outcome predictions.

In Fig. 2 we plot the TCPs as a function of dose. Again, we see that the curves that correspond to the
same choice ofh(t) are very close. The numbers in each subplot are theD50 value for the Poissonian
TCP. We do not show theD50 values for the other models, since they are very close as we can see from
the graph. We compared ourD50 values with those reported byLevegrunet al. (2002) from clinical
data for prostate cancer. Our values forC, D and f are all in the 95% confidence intervals of theirD50
values. OurD50 values forA, e are a bit higher than the values reported byLevegrunet al. (2002).

We also compare the three one-compartment models with their two-compartment models by using
the parameters from Table2. The results for protocolsC andeare reported in Fig.3. We find that the dif-
ference between the one-compartment and two-compartment models are negligible for hyperfractionated

FIG. 2. TCP for treatmentA, C, D ande, f as function of dose, with survival fraction (2.14) (and corresponding
hazard function (2.8)) and survival fraction (2.13) (or equivalently (2.16)). Each subplot is the result for one treat-
ment shown on the top. The lines gathering on the left part of each subplot are results by using hazard function
(2.8), whereas ones on the right part are results calculated with (2.11). Horizontal line denotes theD50 position
where TCP= 0.5. Blue lines are for Poissonian TCP, cyan lines for ZM TCP and red for Monte Carlo TCP. All the
parameter values are from Table2.
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ARE MORE COMPLICATED TCP MODELS BETTER? 13 of 19

FIG. 3. TCP as a function of time, using protocolsC ande, for both the one- and two-compartment models. The left panel is for
the Poisson TCPs ((1-P) and (2-P)), the middle panel is for the ZM and Dawson–Hillen TCPs ((1-ZM) and (2-DH), respectively)
and the right panel is for the Monte Carlo TCPs ((1-MC) and (2-MC)). All parameters are taken from Table2 and the effective
dose hazard function (2.12)(d) is used.

treatmente, while for standard treatment schedulesC two-compartment TCPs are shifted to the right
by at most 5 days. We have similar results for the other treatment protocols. Hence, the existence of a
quiescent compartment allows clonogenic cells to be sequestered from radiation and to repopulate the
tumour between treatments.

4.2 Brachytherapy treatments

A standard model for brachytherapy treatments is the hazard function with the Lea−Catcheside pro-
traction factor (2.12)(c) and survival fraction (2.15). We will show that this choice of hazard function
can be approximated by the effective interaction window hazard function (2.12)(d) and survival fraction
(2.16). The Lea−Catcheside protraction factor is simple enough to program directly. However, by using
the time-window approach, we will be able to find a hazard function which is equally applicable to
fractionated therapies and to brachytherapy.

Choosing the total dose as for a radioactive seed as in (1.1), the Lea–Catcheside factor (2.6) can be
explicitly computed as

G(t) =
2R2

0

D(t)2(γ − λ)

[
1 − e−2λt

2λ
+

e−(λ+γ )t − 1

λ + γ

]

. (4.1)

Once again,R0 is the initial dose rate,D(t) is the total dose absorbed,λ is the average half-life for the
permanent seed andω = ln(2)/γ is the lifetime of the DNA double-strand breaks, which was chosen to
be the same as in the effective dose, 16 min. In what follows, we show mathematically that the effective
dose hazard function and Lea–Catcheside hazard function are almost the same, when both have the same
parameters.

From (2.7) we can compute the Lea–Catcheside hazard function as

hLC(t) =
dSLC(t)/dt

−SLC(t)
= α ˙D(t) + β

d(G(t)D(t)2)

dt
= αR0 e−λt + β

2R2
0

γ − λ
(e−2λt − e−(λ+γ )t ), (4.2)

where we use (4.1) in the last equality.
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By using the formula (1.1) in (2.12)(d), we have an effective dose hazard function as follows:

heff(t) = αR0 e−λt + 2β
R2

0

λ
(e−2λt+λω − e−2λt ). (4.3)

Thedifference betweenheff(t) andhLC(t) is

heff(t) − hLC(t)

2βR2
0

=
e−2λt+λω − e−2λt

λ
−

e−2λt − e−(γ+λ)t

γ − λ

=
e−2λt+λω(γ − λ) − e−2λt (γ − λ) − λe−2λt + λe−(γ+λ)t

λ(γ − λ)

=
e−2λt+λω(γ − λ) − γ e−2λt

λ(γ − λ)
+

e−(γ+λ)t

γ − λ

= e−2λt
[

eλω

λ
−

γ

λ(γ − λ)

]
+

e−(γ+λ)t

γ − λ
.

Becauseγ = l n(2)/ω = 62.38 � λ, we have the following estimate

|heff − hLC| 6 2βR2
0

∣
∣
∣
∣
∣
e−2λt

(
eλω

λ
−

1

λ

)
+

e−(γ+λ)t

γ − λ

∣
∣
∣
∣
∣
6 2βR2

0

∣
∣
∣
∣
eλω

λ
−

1

λ
+

1

γ − λ

∣
∣
∣
∣ . (4.4)

Thelast expression equals 0.0626 for103Pd and 0.0066 for125I , when using the parameters in Table2.
Hence, the difference between these two approaches is very small. We show numerical simulations of
our three one-compartment models for these two types of hazard functions in Fig.4 and we find them
to be indistinguishable. Also, if we compare the TCP for the three models (1-P), (1-ZM) and (1-MC),
they are also virtually identical, hence, they give the same predictions.

Note that the103Pd curves for the Poissonian model do start to decay after about 110 days. The
Poisson TCP formula is based on the mean-field differential equations and, consequently, the number
of tumour cells can never be identical to zero. Hence after radiation subsides, the tumour will always
regrow. The other two models (1-ZM) and (1-MC) have the advantage that the tumour can be eradi-
cated in finite time and it does not recur. Hence, the decline in TCP after treatment is an artifact of the
Poissonian model.

4.3 Dependence of growth rate b and survival fraction S(d)

In order to investigate how the models depend on the tumour growth rate and the radiosensitivity of
the tumour, we compute the TCP for different effective growth ratesb and survival fractionsS(d). For
matters of space, we show only protocolC. The behaviour is very similar for the other protocols.

We study the TCP dependence on the growth rate in Fig.5: In (a) we plot the pairwise distance
of the TCP curves between the three one-compartment models as a function of the growth rate in a
semilogarithmic plot. We measure the distance in theL2-norm,which corresponds to the squared error
sum. We see that the distance between Zaider–Minerbo TCP and Poissonian TCP is always smaller
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FIG. 4.TCP as a function of time for permanent seed treatment with103Pd and125I , with the effective dose hazard
function (4.3) and the Lea–Catcheside hazard function (4.2). The left panel is for the Poissonian TCP, the middle
panel is for the ZM TCP and the right panel is for the Monte Carlo TCP. Parameter values are from Table2.

FIG. 5. (a) Semilogarithmic plot of the pairwiseL2-distance between the TCP curves as a function of the birth rate
b, for treatment protocolC. (b) Time at which the TCP curve reaches 95% as a function of the birth rateb. We use
effective dose hazard function (2.12)(d) here and all parameters except the birth rate are taken from Table2.

than e−2 = 0.14 when the regrowth rates are in the interval of [0, 0.07], but the distance increases
with increasingb; however, it is still very small over all (<e−1). The Monte Carlo TCP shows a bigger
distance to the other two, but still smaller than e1 even for the highest growth rate.

In Fig.5(b) we record the time when the TCP values reach 95% success. Again the model predictions
are very close, with a slight increased difference for large birth rate values.

Now changing the survival fraction by varying the radiosensitivity parameterβ, we plot the graphs
in Fig. 6. We show the log-L2 distance in Fig.6(a) as a function of survival fractionS(d). Figure6(b)
shows the time at which TCP = 95% as a function ofS(d). We see from (b) that the time reaching 95%
TCP sensitively depends onS(d) but the three models behave the same.
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16 of 19 J. GONGET AL.

FIG. 6. (a) Semilogarithmic plot of the pairwiseL2-distance between the TCP curves for treatment protocolC as function of the
survival fractionS(d). (b) Time at which the TCP curve reaches 95% as a function of the survival fractionS(d). S(d) is varied by
changingβ and all other parameters are taken from Table2; effective dose hazard function (2.12)(d) is used.

5. Conclusions

We initiated this line of research since we expected, based on experience, that the more complicated
models indeed make the same predictions as the simplest model, the Poissonian TCP. Through our sys-
tematic study we can confirm this observation. We simulated many more parameter values as presented
here and the discrepancy between Poisson models, birth–death models and Monte Carlo simulations is
always small. During our studies we found in the literature that the relation between survival fraction
and hazard function is often unclear and not well presented. Hence, we tried to summarize and com-
pare the different forms ofh andS(D) which are discussed in the literature. Different hazard functions
are used for fractionated therapies as opposed to brachytherapies. As a side result, we found that using
the effective interaction window in (2.12)(d), we were able to unify these two approaches into one frame-
work. We showed that (2.12)(d) can equally be applied to fractionated therapies as well as brachythera-
pies. As for fractionated treatments, it corresponds to the standard fractionated survival fraction and for
brachytherapy it corresponds to the Lea−Catcheside factor.

The Poisson TCP is simple and computationally efficient. We simulated the three models on the
same computer: Intel Core 2 Duo, 2.0GHz and 2GB DDR2. For one typical simulation the Poisson TCP
takes 3.34 s, the Zaider–Minerbo TCP uses 65.4 s and the Monte Carlo TCP uses up to 2.3 h. Therefore,
for slow-proliferating tumours, we suggest that the Poisson TCP be used for calculations. However,
when birth rate increases, the difference between Poisson TCP and Zaider–Minerbo TCP increases. For
example in Fig.5, the difference between Poisson and Zaider–Minerbo TCP enlarges to 2 days when
the growth rate is 0.2. This confirms the results ofTuckeret al. (1990), who showed that the Poisson
TCP can underestimate the tumour cure up to 15% when the tumour doubling time is 2.06 days (or
growth rate 0.34), which is a very fast growing tumour. Furthermore, the change of the survival fraction
parameterβ will also slightly magnify the difference between the three TCP models.

As for the low dose rate brachytherapy, the Poisson TCP is much more sensitive to the number of
tumour cells. After the end of treatment, the growth of tumour cells (therefore the increase of tumour cell
numbers) causes the Poisson TCP to decrease. On the other hand, the Zaider–Minerbo and Monte Carlo
TCP remain constant. This is a clear advantage of the stochastic models of Zaider–Minerbo and Monte
Carlo. As soon as all cells are eradicated the tumour is gone forever. The Poissonian TCP, however, is
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based on an ODE formulation. Here solutions only converge to zero but will never reach zero in finite
time. Hence, in the Poissonian formulation a tumour will always recur.

We also compare Poisson, Zaider–Minerbo and Monte Carlo TCP with their corresponding two-
compartment TCP models, where the cell cycle effect is included through a quiescent compartment.
While the result between the two-compartment models are the same, there is a significant difference
between one- and two-compartment models. The two-compartment models give less optimistic predic-
tions and they suggest longer treatment periods. This is related to the fact that quiescent cells are less
sensitive to radiation and they can be reactivated by the death of the surrounding active cells. Nutrients
become available to the quiescent cells and they enter the cell cycle and repopulate the tumour. Hence,
it is critical to control the most radioresistant cells.

In this paper, we use prostate cancer treatments as test cases for our simulations. We expect, however,
that similar conclusions hold true for other localized tumours such as those in pancreas, colon, liver, etc.

Overall, the differences in all the models which we study are small. We have to evaluate this within
the treatment of a real tumour. There are many important aspects which we do not include in our models,
such as immune response, spatial structure of the tumour, vascularization, metastasis, genetic instabil-
ities and relevant biochemical pathways. Compared to all these details, which are still missing from
the models, the TCP models considered here are basically identical. Our study confirms the usefulness
of the Poissonian formulation and we feel that more complicated models should only be used when
absolutely necessary.
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