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Abstract. In this paper we use a mathematical model to study the effect of
an M -phase specific drug on the development of cancer, including the resting
phase G0 and the immune response. The cell cycle of cancer cells is split into
the mitotic phase (M-phase), the quiescent phase (G0-phase) and the inter-
phase (G1, S, G2 phases). We include a time delay for the passage through the
interphase, and we assume that the immune cells interact with all cancer cells.
We study analytically and numerically the stability of the cancer-free equilib-
rium and its dependence on the model parameters. We find that quiescent
cells can escape the M -phase drug. The dynamics of the G0 phase dictates
the dynamics of cancer as a whole. Moreover, we find oscillations through a
Hopf bifurcation. Finally, we use the model to discuss the efficiency of cell
synchronization before treatment (synchronization method).

1. Introduction. Chemotherapy treatment has demonstrated a definite capacity
for controlling disseminated metastatic cancer and is widely used. Unfortunately,
drugs in cancer chemotherapy kill normal as well as cancerous cells. Naturally it is
desirable to kill as many cancerous cells as possible while sparing as many normal
cells as possible. One way of accomplishing this goal is by taking advantage of the
fact that many chemotherapeutic drugs are cycle-specific: they destroy cells only in
specific phases of the cells’ cycle. In the cell synchronization method, the cancerous
cells are first synchronized by one drug. When nearly all the cancerous cells reach
the desirable phase, they are treated with a second, cycle-specific drug. This kills
the maximum number of cancer cells while sparing large numbers of normal cells.
Some examples of such drugs are Cytosine Arabinoside (Ara-C), 5-fluorouracil and
Prednisone, which work in the G1 and S phases of the cell-cycle, and Vincristine,
Paclitaxel and Bleomycin which work in the M phase of the cell-cycle [9, 15]. The
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cell is blocked from continuing in the cell cycle, and thus the drugs stop the cell
proliferation and allow the immune system to attack and kill cancerous cells in a
natural way [27].

A classical cell cycle model, the G0-model, has been developed by Mackey [18].
Examples of the more recent work done with mathematical models of cycle-specific
chemotherapy are by Webb [28] and Kheifetz et al. [12]. They develop linear and
nonlinear age-structured models of cycle-specific chemotherapy. The advantage of
shorter dosage periods are investigated in the case of the linear model. Another
work of interest is by Birkhead et al. [1], in which a four-compartment linear sys-
tem is developed to model the cycling, resistant and resting cells. Their results are
limited to a few numerical calculations on four specific types of treatments. Swan
[25] also examines cycle-specific chemotherapy in his review article. Particularly, he
concentrates on age-structured models that take into account the age of the cells in
each compartment of the cell cycle. He also studies an age-structured chemother-
apeutic model of acute myeloid leukemia. The fact is that in the above articles
only chemotherapy, not immunoresponse, is considered. Kirschner and Panetta
[14] include the immune system in a mathematical model to study immunotherapy
as an alternative to chemotherapy. In [27] Villasana and Radunskaya model the
cycle-specific chemotherapy that includes the immune system but excludes the rest-
ing stage. In their paper, they study the interaction of tumor cells and drug with
the immune system and show that the stability of fixed points may depend on the
delay. De Boer at al. [7] represent a more specific model to study the macrophage
T lymphocyte interactions that generate an antitumor immune response. With
respect to cancer interaction with immune cells, the main difference between our
work and theirs is that in their case they study a very specific type of lymphocyte
which interacts with tumor cells, while in our case we consider a more general type
of immune cells with main focus on the cycle-specificity of M-phase chemotherapy.

With respect to cancer interaction with immune cells, DeLisi and Resoigno [8]
employ a simple deterministic predator-prey model to simulate immune surveillance
in which immune cells and molecules are stimulated by a transplanted tumor. A
specific model for T lymphocyte response to the growth of an immunogenic tumor
is given by Kuznetsov et al. [17]. The model is used to describe the kinetics of
B-lymphoma BCL1 in the spleen of mice. Moreover, the model is applied to the
analysis of immuno-stimulation of tumor growth, formation of a tumor dormancy
and sneaking through of the tumor. With respect to growth kinetics of immune
cells we use a model similar to that of Kuznetsov et al. [17]. With respect to
cancer interaction with cycle-specific drugs, Kozusko et al. [16] develop a mathe-
matical model to study the in-vitro cancer cell growth and response to treatment
with the experimental antimitotic agent curacin A. They predict that curacin A
will be quickly absorbed into cell phases and will express an effective control of
cancer growth; that is, the cells will response with an increase in the rate of DNA
synthesis, a decrease in the rate of mitosis and possibly an increase in the rate
of apoptosis. In [4] Cojocaru and Agur provide a formal method for predicting
the effect on treatment efficacy of cell-cycle-specific drugs, such as the cancer drug
cytosine arabinoside (Ara-C). A comprehensive review of recent relevant results in
mathematical modeling and control of the cell cycle and of the mechanisms of gene
amplification (related to drug resistance), and estimation of the constructed models
is given by Kimmel and Swierniak [13].
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Table 1. Variables in model system

variable meaning unit
x number of cancer cells in the interphase cells
y number of cancer cells in the mitotic phase cells
z number of cancer cells in the resting phase cells
I number of lymphocytes cells
u biomass of chemotherapy drugs mg

The model we propose is an extension of the models above, in particular with re-
spect to the quiescent G0-phase. Our analysis shows that the G0-phase is a critical
factor for cancer treatment. Our model is based on a model the model developed
by Villasana and Radunskaya [27]. However, we find that the model in [27] is ques-
tionable in the development of one of the model’s delay terms, which will make
solutions of the system negative in positive time. Therefore, we modify their model
and include the immune system and the quiescent stage into the model. The main
conclusion from our analysis is that a resting phase of tumor cells is the most im-
portant compartment for cancer treatment with an M -phase specific drug. This
confirms the general understanding that cancer cells can avoid the chemotherapeu-
tic agent in the resting compartment (see, for example, www.cancerhelp.org.uk).
The surviving quiescent cells can contribute to further tumor growth when the
chemotherapeutic effect has failed. For the analysis, here we study a single drug
dose at time t = 0 only. However, in the numerical simulations, we also study mul-
tiple dosage protocols and find that multiple dosage protocols do not change the
qualitative result. Thus the resting cells are the limiting factor for chemotherapy
(according to our model). Additionally, we find that a time delay for the interphase
can lead to stability switches. One implication is a scenario, where cancer cells can
be controlled by arresting cells in the interphase. In these cases the arrested cells
are subsequently killed by the immune response. In any case, the M -phase specific
drug certainly reduces the overall tumor load of a patient, even though it might
not cure cancer alone.

We present and develop the new model in section 1.1, whereas in section 1.2 we
carry out a nondimensionalization to reduce the number of parameters.

The active cell compartment includes a time delay related to the transition of
cells through the G1, S and G2 phases. We split our analysis according to this delay,
studying the no-delay case in section 2 and the delay case in section 3. In both cases
we investigate the stability of the cancer-free equilibrium in the cases of (i) no drug
and no immune response, (ii) immune suppression without drug, and (iii) immune
suppression with drug. In all cases we show that adminstration of an M-phase
specific drug does not change the stability of the cancer-free equilibrium. However,
cancer growth is significantly reduced by the drug, and in the case of a delay the
drug can initiate or destroy oscillations. We prove a corresponding result on Hopf
bifurcation in section 3.4. Moreover, in the delay case we prove the existence of
a stability switch if the delay parameter is beyond a certain value. Furthermore,
adminstration of an M-phase specific drug can lead to partial cell synchronization
(expressed through oscillating solutions). In section 4, we illustrate our results with
numerical simulations. The paper closes with a discussion in section 5.
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Figure 1. Arrow diagram of the cell cycle model (1) indicating
immune response, I, and M-phase -specific drug, u.

1.1. The model. We take as our model of cancer treatment by chemotherapy a
system of delayed differential equations, which takes the form

ẋ(t) = α3z(t)︸ ︷︷ ︸
from resting phases

− α1x(t)︸ ︷︷ ︸
flowing into mitosis phases

− δ1x(t)︸ ︷︷ ︸
natural death

− k1I(t)x(t)︸ ︷︷ ︸
destroyed by lymphocytes

ẏ(t) = α1x(t− τ)︸ ︷︷ ︸
from interphases

− α2y(t)︸ ︷︷ ︸
to resting phases

− δ2y(t)︸ ︷︷ ︸
natural death

− k2I(t)y(t)︸ ︷︷ ︸
destroyed by lymphocytes

− k4(1− e−k5u(t))y(t)︸ ︷︷ ︸
destroyed by drugs

ż(t) = 2α2y(t)︸ ︷︷ ︸
from mitosis

− α3z(t)︸ ︷︷ ︸
to reproduce

− δ3z(t)︸ ︷︷ ︸
natural death

− k3I(t)z(t)︸ ︷︷ ︸
destroyed by lymphocytes

İ(t) = k︸︷︷︸
constant growth source

+
ρI(t)(x + y + z)n

a + (x + y + z)n

︸ ︷︷ ︸
growth due to stimulus

− δ4I(t)︸ ︷︷ ︸
natural death

− (c1x(t) + c2y(t) + c3z(t))I(t)︸ ︷︷ ︸
combined with cancer cells

− k6(1− e−k7u(t))I(t)︸ ︷︷ ︸
destroyed by drugs

u̇(t) = −γu(t)︸ ︷︷ ︸
exponential decay

,

with initial conditions

x(t) = φ1(t), t ∈ [−τ, 0] , y(0) = y0, z(0) = z0, I(0) = I0, u(0) = u0.

A schematic of this model is given in Figure 1, the meaning of each variable is listed
in Table 1, and the interpretation of parameters is given in Table 2.
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Table 2. Parameters in the model system

parameter meaning value ref.

α1 rate at which cells flow into the mi-
tosis phase

0− 1/day [18, 27]

α2 rate at which cells flow into the rest-
ing phase

0− 1/day [18]

α3 rate at which cells leave from the
resting phase to enter the cycle to
reproduce

0− 1/day [18]

ci(i = 1, 2, 3) losses due to the encounters with
immune cells

0.01× 10−6 − 1×
10−6/cell day

[17, 27]

δi(i = 1, 2, 3) proportions of natural death of x, y,
and I

0− 1/day [17, 27]

δ3 rate at which cells leave from the
resting state to enter the blood

0− 0.056/day [18, 24]

ρ proportion of the growth of lympho-
cytes due to stimulus by cancer cells

0.2/day [14, 27]

a speed at which the lymphocytes
reach saturation level without stim-
ulation

0.5 × (0.1 ×
106cell)3

[14, 27]

k growth rate of the lymphocytes in
the absence of cancer cells

0.15×106cell/day [17, 27]

ki(i = 1, 2, 3) rates at which lymphocytes destroy
cells in different phases

0.1 × 10−8 − 1 ×
10−8/cell day

[17, 27]

ki (i = 4, 6) proportions of drugs which elimi-
nate cancer cells and lymphocytes

0− 1/day [22, 27]

ki (i = 5, 7) proportions of drugs which elimi-
nate cancer cells and lymphocytes

0.01× 10−2 − 1×
10−2/mg

[[27]

γ proportion of decay of the drugs 0.1 × 10−2 − 1 ×
10−2/day

[27]

τ resident time of cells in the inter-
phase

0− 2 days [18, 27]

All constants are positive. By and large, cancer cells cannot differentiate into
maturer forms of precursors. Consequently, we assume here that the cancer cells
behave as a proliferative pool only. The cancer cells are self-renewing and consist of
a resting compartment and an active compartment that is split into four phases due
to cycle-specificity consideration here. In the resting state, the cancer cells leave at
random to enter either the active compartment or the blood at fractional rates α3

and δ3. Cells in the blood are largely nonproliferative, and they are for the most
part destined to die [23]. For the cancer population we consider here, stem cell
influx is assumed to be negligible. The cancer cells reside in the cycle for a certain
period of time τ before entering into the mitotic stage. Thus we have the term
x(t− τ) in the system. The corresponding model in [27] has a negative delay term
−αx(t− τ) in the x-equation. This is problematic, because solutions might become
negative and unphysiological oscillations occur. Besides the modified term −αx(t),
our model includes the resting phase explicitly (z-equation), which was not studied
in [27]. The terms δ1x(t), δ2y(t), δ3z(t), δ4I(t) in the model equations represent
proportions of natural cell death or apoptosis, α1, α2 and α3 represent the different
rates at which cells flow between different phases or reproduce, the terms ki and
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ci (i = 1, 2, 3) represent losses from encounters of cancer cells with lymphocytes.
We model the interaction of immune cells with cancer by the law of mass action.
With respect to immune response function, the term ρI(t)(x(t)+y(t)+z(t))n

a+(x(t)+y(t)+z(t))n represents
the nonlinear growth of the immune population due to stimulus by the cancer cells.
Here we have chosen a Michaelis-Menten form for this term, following the literature
(see, for example, [14, 17, 27]). We think it is reasonable, because proliferation of
cancer-specific effector cells is stimulated by the presence of cancer cells but reaches
a saturation level at cancer population. The saturation level depends on the health
of the immune system, specifically on its ability to produce certain cytokines. In
the absence of cancer cells (x = y = z = 0), the immune cells grow at a constant
source rate k. Therefore, the recruitment function should be zero when there are
no cancer cells and should increase monotonically toward a horizontal asymptote;
this rational form reflects these characteristics in a simple, smooth function. The
parameters ρ, a and n depend on the type of cancer being considered. With respect
to high densities of drugs, we know that the drug interferes with cancer cells in
mitosis, causing them to die naturally when they fail to complete the cycle [27].
Therefore we assume that once the drug encounters the cancer cell, the cancer cell
is taken out of the cycle and can no longer proliferate. This is modeled by the term
−k4(1 − e−k5u)y [4, 27], but there are other curves that describe a similar feature
(see [22]). The drug decay is assumed to be exponential , and the coefficient γ
incorporates both the elimination and absorption effects [27]. In [26] the effect of
multiple applications of the drug is considered. Here we focus on a single drug dose
treatment only. Multiple dosage protocols and other treatment options are beyond
the scope of this paper. We also assume that the drug is harmful to the immune
system and we leave a similar term in the I(t) equation. Biologically, this treatment
term means that when no drugs are applied (k5 = 0), there are no effects on the
cancer cell population, since 1− e−k5u = 0. Further, k4 represents the intensity of
the treatment. In this new model, we assume that the resting cells are not affected
by the drugs but immune cells will attack them. This assumption derives from the
fact that faster proliferating cells are more sensitive to the drugs, while the cells in
the resting phase escape the action of cycle-specific cytotoxic agents [27]. For other
assumptions for the model, the reader is referred to [27].

1.2. Nondimensionalization. As in [27], we nondimensionalize the system and
write

t̄ =
t

day
, x̄ =

x

x(0)
, ȳ =

y

x(0)
, z̄ =

z

z(0)
, Ī =

I

I(0)
, ū =

u

u(0)
, s =

z(0)
x(0)

,

k̄1 = k1I(0), k̄2 = k2I(0), k̄3 = k3I(0), k̄5 = k5u(0), k̄7 = k7u(0),

ā = a/xn(0), c̄1 = c1x(0), c̄2 = c2x(0), c̄3 = c3z(0), k̄ = k/I(0),

where x(0) = y(0) are initial values. By renaming the variables t̄, x̄, ȳ, z̄, Ī , ū to
t, x, y, z, I, u respectively and the parameter values k̄, ā, k̄i, c̄j to k, a, ki, cj respec-
tively, i = 1 − 7; j = 1 − 3. Then, none of the new parameters and variables have
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dimensions. From this point on we will work with the nondimensionalized model:

ẋ(t) = sα3z(t)− α1x(t)− (δ1 + k1I(t))x(t)
ẏ(t) = α1x(t− τ)− (α2 + δ2 + k2I(t))y(t)− k4(1− e−k5u(t))y(t)
ż(t) = 2s−1α2y(t)− (α3 + δ3 + k3I(t))z(t)
İ(t) = k + ρI(t)(x+y+sz)n

a+(x+y+sz)n − (δ4 + c1x(t) + c2y(t) + c3z(t))I(t)
−k6(1− e−k7u(t))I(t)

u̇(t) = −γu(t),

(1)

with initial conditions

x(t) = φ1(t), t ∈ [−τ, 0] , y(0) = y0 , z(0) = z0 , I(0) = I0 , u(0) = u0.

2. Stability results for the nondelay case. We first determine the type of
dynamics that can arise in the system without the presence of the delay and then
study the case with delay in section 3. A summary of the stability results appears
in the discussion section, table 3. We begin by analyzing the simplest case: a
drug-free model in a nondelay situation in the absence of an immune response.

2.1. Drug-free model in the absence of an immune response. In this sub-
section, we shall study the drug-free model in a nondelay case without an immune
response. Necessary and sufficient conditions that guarantee the stability of the
cancer-free equilibrium are obtained. Also, a necessary condition for cancer growth
is obtained. In this case the equations are a simple set of ordinary differential
equations:

ẋ(t) = −(α1 + δ1)x(t) + sα3z(t)
ẏ(t) = α1x(t)− (α2 + δ2)y(t)
ż(t) = 2s−1α2y(t)− (α3 + δ3)z(t),

(2)

with initial values
x(0) = x0, y(0) = y0, z(0) = z0.

This is a linear system with the only equilibrium being E0(0, 0, 0). The Jacobian
matrix about this equilibrium is



−(α1 + δ1) 0 sα3

α1 −(α2 + δ2) 0
0 2s−1α2 −(α3 + δ3)


 ,

and the characteristic equation is

λ3 + a2λ
2 + a1λ + a0 = 0,

where
a2 = α1 + δ1 + α2 + δ2 + α3 + δ3

a1 = (α1 + δ1)(α2 + δ2) + (α2 + δ2)(α3 + δ3) + (α3 + δ3)(α1 + δ1)
a0 = (α1 + δ1)(α2 + δ2)(α3 + δ3)− 2α1α2α3

= α1α2(δ3 − α3) + (α3 + δ3)(α1δ2 + α2δ1 + δ1δ2).

(3)

Clearly, a2, a1 are positive and a2a1 > a0. By the Routh-Hurwitz criteria [6],
necessary and sufficient conditions for λ to have negative real parts become a0 > 0.

As a result, we have the following lemma.

Lemma 2.1. The cancer-free equilibrium E0 of system (2) is locally asymptotically
stable if and only if a0 > 0.
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Biomedical interpretation
Note that G0 acts as a control center to determine the rate of proliferation. α3

represents the release rate at which cells in the resting phase at random enter into
their cell cycles to reproduce cells, and δ3 is the fractional rate at which cells are
released randomly into the blood from the resting phase.

Assume a0 > 0 such that a cancer is growing. To control the cancer growth and
give a biomedical interpretation of this first result, we consider parameters that are
beneficial for cancer eradication. In Lemma 1 the only condition for cancer decay
is a0 > 0. Hence for cancer to grow, a necessary condition is α3 > δ3, which means
that the rate, δ3, of leaving the resting state G0 must be smaller than the transition
rate α3 from the resting compartment to the active compartment. If δ3 > α3 cancer
will not grow (according to this model). It is interesting that already in this simple
model the quiescent compartment G0 controls the cancer dynamics. This fact will
be confirmed by the more complex models later and has also been identified for
radiation treatment in Dawson and Hillen [10].

2.2. Drug-free model in the presence of immune suppression. In this sub-
section, we will add the effect of immune suppression to study how lymphocytes
will change the dynamical behavior of cancer cells when τ = 0. New conditions for
cancer growth or extinction that involve the immune suppression parameter terms
will be obtained. When adding immune suppression, the system becomes

ẋ(t) = −(α1 + δ1)x(t) + sα3z(t)− k1x(t)I(t)
ẏ(t) = α1x(t)− (α2 + δ2)y(t)− k2y(t)I(t)
ż(t) = 2s−1α2y(t)− (α3 + δ3)z(t)− k3z(t)I(t)
İ(t) = k + ρI(t)(x+y+sz)n

a+(x+y+sz)n − (c1x(t) + c2y(t) + c3z(t) + δ4)I(t).

(4)

Note that E1(0, 0, 0, k/δ4) is an equilibrium of this system with zero cancer level and
a positive immune level. In general, there will be other fixed points, but this fixed
point is of particular interest since it represents a cancer-free state. The Jacobian
matrix about E1 is



−(α1 + δ1 + k1k
δ4

) 0 sα3 0
α1 −(α2 + δ2 + k2k

δ4
) 0 0

0 2s−1α2 −(α3 + δ3 + k3k
δ4

) 0
− c1k

δ4
− c2k

δ4
− c3k

δ4
−δ4


 .

Clearly, λ = −δ4 is an eigenvalue, and the remaining eigenvalues are given by the
solutions to the characteristic equation

λ3 + b2λ
2 + b1λ + b0 = 0, (5)

where
b2 = α1 + δ1 + α2 + δ2 + α3 + δ3 + k

δ4
(k1 + k2 + k3)

b1 = (α1 + δ1 + k1k
δ4

)(α2 + δ2 + k2k
δ4

) + (α2 + δ2 + k2k
δ4

)(α3 + δ3 + k3k
δ4

)
+ (α3 + δ3 + k3k

δ4
)(α1 + δ1 + k1k

δ4
)

b0 = (α1 + δ1 + k1k
δ4

)(α2 + δ2 + k2k
δ4

)(α3 + δ3 + k3k
δ4

)− 2α1α2α3

= α1α2(δ3 + k3k
δ4
− α3) + (α3 + δ3 + k3k

δ4
)(α1α2

+ α1(δ2 + k2k
δ4

) + α2(δ1 + k1k
δ4

) + (δ1 + k1k
δ4

)(δ2 + k2k
δ4

)).

(6)

Obviously, b2, b1 are positive and b2b1 > b0. By the Routh-Hurwitz criteria [6],
necessary and sufficient conditions for λ to have negative real parts become b0 > 0.
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As a result, we have the following.

Lemma 2.2. For system (4), the equilibrium E1 is locally asymptotically stable if
and only if b0 > 0.

Biomedical interpretation
Note that b0 ≥ a0. Hence even if without immune response a cancer grows

(a0 < 0), an immune response can be able to control cancer growth. In our model
this occurs for example if α3 > δ3 and k3k

δ4
> α3−δ3. The parameter k represents the

growth rate of lymphocytes, k3 represents the rate at which lymphocytes destroy the
cancer cells in the resting phase, and δ4 is the the natural death rate of lymphocytes
in the resting compartment.

In certain circumstances an increase in the number of lymphocytes might even-
tually increases the chance of cancer survival. This occurs if b0 ≤ 0, which implies
that cancer cells outgrow the immune response (α3 > δ3 + kk3

δ4
). This behavior has

in fact been observed by Prehn [23].

2.3. Drug model with immune suppression. Now we shall begin to consider
the effect of an M-phase specific drug in the model along with the immune sup-
pression when there is no delay, τ = 0. We are interested in studying how the
conditions for the cancer growth or extinction are varied when we apply drugs to
the model. In this case the system considered becomes

ẋ = −(α1 + δ1)x + sα3z − k1xI
ẏ = α1x− (α2 + δ2)y − k2yI − k4(1− e−k5u)y
ż = 2s−1α2y − (α3 + δ3)z − k3zI

İ = k + ρI(x+y+sz)n

a+(x+y+sz)n − (c1x + c2y + c3z + δ4)I − k6(1− e−k7u)I
u̇ = −γu.

(7)

Under these circumstances, E2(0, 0, 0, k/δ4, 0) is an equilibrium of this system with
zero cancer and drug levels and a positive immune level. Again, in general there are
other fixed points, but this fixed point is of particular interest since it represents a
cancer and drug-free state. The Jacobian matrix about E2 is



−(α1 + δ1 + k1k
δ4

) 0 sα3 0 0
α1 −(α2 + δ2 + k2k

δ4
) 0 0 0

0 2s−1α2 −(α3 + δ3 + k3k
δ4

) 0 0
− c1k

δ4
− c2k

δ4
− c3k

δ4
−δ4

k6k7k
δ4

0 0 0 0 −γ




.

Clearly, λ = −γ, λ = −δ4 are two eigenvalues. The remaining eigenvalues are the
same as the solutions to characteristic equation (5); that is,

λ3 + b2λ
2 + b1λ + b0 = 0,

where b2, b1, b0 are given by (6) in section 2.2. Using the same argument seen in
section 2.2, we have the following lemma.

Lemma 2.3. For system (7), the cancer-free equilibrium E2 is locally asymptotically
stable if and only if b0 > 0.

Summary for the nondelay case
Comparing with Lemma 2 in section 2.2, Lemma 3 shows that the condition for

the extinction of cancer cells in all phases remains the same, which implies that
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the drug does not have any effects on the stability of the cancer-free equilibrium.
This is because the cancer cells in the resting phase escape the action of the cycle-
specific cytotoxic agents, and the drug was only given once. A numerical example
for multiple dosages is given Figure 4. Therefore, we have the following.

(i) We find that including immune suppression in the model greatly helps to
stabilize the system and inhibit the further growth of cancer cells (see the first term
of b0). This is reasonable, because some cancer cells are destroyed by lymphocytes,
and increasing a0 in terms of lymphocyte parameters makes conditions less favorable
for cancer survival.

(ii) It follows from Lemma 2 that in certain situations lymphocytes lose the
ability to recognize these cancer cells, and the cancer cells will continue to reproduce
at a larger rate and eventually dominate the normal tissues.

(iii) Since the drug is assumed to be M-phase-specific, the cancer cells in G0-
phase escape the treatment. By the time they enter the cell cycle again and reach
the M-phase, the drug has decayed and cancer growth is still possible. Hence,
without delay, an M-phase specific drug has little or no effect. Note that here we
consider only one administration of the drug at time t = 0. It is not surprising
that, as the drug has faded out, the cancer is still able to grow, in particular if
new viable cells are delivered from the quiescent state. Again, this confirms our
initial statement that the quiescent compartment must be controlled to effectively
eradicate cancer. More realistic drug treatment protocols can be included into our
model and numerical simulations can be carried out as in Figure 4. For the analysis,
however, we only study a single administration of the drug.

3. Stability results in the presence of delay. Now we determine the type of
dynamics that can arise in the system in the presence of the delay. We begin by
analyzing the simplest case: a drug-free model in a delay case in the absence of an
immune response. We have seen in the previous sections that cells in the resting
phase can evade the treatment and become viable as the treatment fades out. If
the drug is M -phase specific, as we assume here, cells in the G1, S, G2-phases also
avoid the drug. Hence if we include a time-delay for the transition through these
phases, we expect even more cells to avoid treatment, which will or will not have a
significant effect on the treatment success. In this section we consider a time delay
for the phases G1, S, G2 and compare the results to those obtained without delay.
Indeed, we will find stability switches due to a positive delay τ > 0.

3.1. Drug-free model with delay and no immune response. In this sub-
section, we are interested in studying how the conditions for cancer growth or
extinction are varied for positive values of the delay τ . When we add the effect of
the delay in the model, we obtain

ẋ(t) = −α1x(t)− δ1x(t) + sα3z(t)
ẏ(t) = α1x(t− τ)− (α2 + δ2)y(t)
ż(t) = 2s−1α2y(t)− (α3 + δ3)z(t).

(8)

Note that system (2) in section 2.1 corresponds to the special case when τ = 0. As
before the only equilibrium of this system is the cancer-free point E0(0, 0, 0). For
the determination of stability in the case of delayed differential equations, we lin-
earize the system about the equilibrium and consider exponential solutions that are
characterized by the eigenvalues for exponents of these solutions. The characteristic
equation for this system about the equilibrium E0 is given by
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∣∣∣∣∣∣

λ + α1 + δ1 0 −sα3

−α1e
−λτ λ + α2 + δ2 0

0 −2s−1α2 λ + α3 + δ3

∣∣∣∣∣∣
= 0,

that is,

λ3 + a2λ
2 + a1λ + a0 + 2α1α2α3 − 2α1α2α3e

−λτ =: P1(λ) + Q1(λ)e−λτ = 0, (9)

where a0, a1, a2 are given by (3) in section 2.1.
There are many ways in which we can determine if there is a root λ of the

characteristic equation with positive real part. Geometric arguments can be used
to establish the stability of an equilibrium, such as those used by Mahaffy in [19],
where the argument principle is used to count the number of zeros of characteristic
equation (9) on the right hand side of the complex plane. However, in our case we
will resort to some results by Cooke and van den Driessche in Theorem 1 of [5].

They define the function

F (y) = |P1(iy)|2 − |Q1(iy)|2,
and analyze the function F (y), giving conditions under which equation (9) is stable
as a function of τ . They also give conditions under which stability changes may
occur as the delay τ is increased and show that in these cases the equilibrium is
unstable for large enough τ . In short, Cooke and van den Driessche [5] proved the
following: (a) Suppose that F (y) = 0 has no positive roots. Then if (5) is stable at
τ = 0, it remains stable for all τ ≥ 0, whereas if it is unstable at τ = 0 it remains
unstable for all τ ≥ 0. (b) Suppose that F (y) = 0 has at least one positive root
and that each positive root is simple. Then as τ increases, stability switches may
occur. There exists a positive τ̄ such that (9) is unstable for all τ > τ̄ . As τ varies
from 0 to τ̄ , at most a finite number of stability switches may occur. In addition,
if F ′(y) 6= 0, a stability switch does occur (Proposition 1 in [5]).

Following the steps in this theorem, it is straightforward to investigate the sta-
bility of the equilibrium and the conditions for cancer growth. In this case F (y) is
found to be

F (y) = y6 + m2y
4 + m1y

2 + m0,

where

m2 = a2 − 2a1,

m1 = a1
2 − 2a2(a0 + 2α1α2α3),

m0 = a0
2 + 4a0α1α2α3.

Let y2 = x. Then F (y) becomes

F1(x) = x3 + m2x
2 + m1x + m0. (10)

In order to examine the stability of the steady states, we employ a Lemma in
[11] quoted here.

Lemma 3.1. Define

∆ =
4
27

m1
3 − 1

27
m2

2m1
2 +

4
27

m2
3m0 − 2

3
m2m1m0 + m0

2.

Suppose that m0 > 0. Then:
(I) Necessary and sufficient conditions for the cubic equation (10) to have at least
one simple positive root for x are either of the following:
(S1) m2 < 0, m1 ≥ 0, m2

2 > 3m1, ∆ < 0 or
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(S2) m1 < 0, ∆ < 0.

(II) Necessary and sufficient conditions for the cubic equations (10) to have no
positive real roots for x are one of the following:
(N1) 3m1 ≥ m2

2,
(N2) m2

2 > 3m1, ∆ > 0 or
(N3) m2

2 > 3m1, ∆ ≤ 0, m2 > 0, m1 > 0.

Based on Lemma 1 and 4 and methods found in [5], we obtain the following
stability theorems.

Theorem 3.1. For system (8), suppose that one of (N1), (N2), (N3) holds. Then
1) if a0 > 0, the stability of equilibrium E0 is independent of delay τ and it remains
stable for all τ ≥ 0; and
2) if a0 < 0 and m0 > 0, the stability of equilibrium E0 does not depend on τ and
it remains unstable for all τ ≥ 0.

It follows from Lemma 4 and Theorem 1 that there is a certain case in which
the condition for cancer growth or extinction will remain unchanged even if we add
the delay in the corresponding model. In such a case, we say the delay is harmless
for the stability of the system.

Theorem 3.2. For system (8), assume either (S1) or (S2) holds. Then there exists
a positive τ̄ such that
(i) if a0 > 0, the cancer-free equilibrium E0 remains stable for 0 ≤ τ < τ̄ and
becomes unstable for all τ > τ̄ ; and
(ii) if a0 < 0 and m0 > 0, the cancer-free equilibrium E0 remains unstable for
0 ≤ τ < τ̄ and becomes stable when τ > τ̄ .

Biomedical interpretation
Compared to the nondelay models discussed in section 2, the delay τ > 0 can

have two effects as expressed in Theorem 2.
In the nondelay case, Lemma 1, we found that cancer growth corresponds to

a0 < 0. Now, if in addition m0 > 0 then there is a delay threshold τ̄ such that
cancer would go extinct if the delay τ > τ̄ . Hence cell arrest in the interphase by
another chemotherapeutic agent would be beneficial for treatment.

In another situation, we might find that a0 > 0 but still cancer grows. This
would corresponds to case (i) of Theorem 2 but now cancerous cells spend too
much time in the interphase. In this case, as we see later, immune response and
chemotherapy need to be considered.

3.2. Drug-free model with τ > 0 and immune suppression. When we add
the effect of the delay in the drug-free model with immune suppression, we obtain

ẋ(t) = −α1x(t)− δ1x(t) + sα3z(t)− k1x(t)I(t)
ẏ(t) = α1x(t− τ)− (α2 + δ2)y(t)− k2y(t)I(t)
ż(t) = 2s−1α2y(t)− (α3 + δ3)z(t)− k3z(t)I(t)
İ(t) = k + ρI(t)(x+y+sz)n

a+(x+y+sz)n − (c1x(t) + c2y(t) + c3z(t) + δ4)I(t).

(11)

Again, E1(0, 0, 0, k/δ4) is an equilibrium and its analysis is similar to the case of
section 3.1 though computations are complicated by more terms. This system has
the same equilibria as the system described in section 2.2, but again we focus on
the cancer free equilibrium E1.
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In the case of a positive delay, the characteristic equation for the linearized
equation about the fixed point E1 is given by:

∣∣∣∣∣∣∣∣∣

λ + α1 + δ1 + k1k
δ4

0 −sα3 0
−α1e

−λτ λ + α2 + δ2 + k2k
δ4

0 0
0 −2s−1α2 λ + α3 + δ3 + k3k

δ4
0

c1k
δ4

c2k
δ4

c3k
δ4

λ + δ4

∣∣∣∣∣∣∣∣∣
= 0 .

Clearly, λ = −δ4 is an eigenvalue and the remaining eigenvalues are given by the
solutions to the characteristic equation

H(λ) = P2(λ) + Q2(λ)e−λτ

= λ3 + b2λ
2 + b1λ + b0 + 2α1α2α3 − 2α1α2α3e

−λτ ,

where b0, b1, b2 are given by (6) in section 2.2.
Geometric arguments using the argument principle can be used to establish the

stability of a given fixed point by counting the number of zeros of H(λ) on the
right-hand side of the complex plane [19]. The argument is based on the relative
orientation of H(λ) compared to P2(λ) as we traverse a given contour. Unfortu-
nately, the theorem developed in [19] cannot be used directly in our case because
the hypotheses are not satisfied, but the argument can be modified, and we can
thereby deduce conditions on the parameter space which ensure stability. However,
these conditions are not easy to satisfy in reality. Therefore, we will apply the same
methods as in section 3.1 to study the stability.

Define
G(y) = |P2(iy)|2 − |Q2(iy)|2.

Then
G(y) = y6 + n2y

4 + n1y
2 + n0, (12)

where

n2 = b2 − 2b1

n1 = b1
2 − 2b2(b0 + 2α1α2α3)

n0 = b0
2 + 4b0α1α2α3.

Let y2 = x. Then G(y) becomes

G1(y) = x3 + n2x
2 + n1x + n0 (13)

To analyze the stability we use again Lemmas 4 with mi replaced by ni, i = 1, 2, 3.
Based on Lemmas 2 and 4, we obtain the following theorems.

Theorem 3.3. For system (11), suppose one of (N1), (N2), or (N3) is satisfied
for mi = ni, i = 1, 2, 3. Then
1) if H(λ) is stable with τ = 0 (i.e. b0 > 0), it remains stable for all τ ≥ 0,
2) if H(λ) is unstable with τ = 0 (i.e. b0 < 0) and n0 > 0, it remains unstable for
all τ ≥ 0.

Theorem 3 implies that there exists a certain case in which the condition for
cancer growth or extinction of all cancer cells will remain unchanged even if we add
the delay in the corresponding model with immune suppression. In such a case, we
say the delay is harmless for the stability of the system.
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Theorem 3.4. For system (11), assume either (S1) or (S2) for mi = ni, i = 1, 2, 3
holds. Then there exists a positive τ̂ such that
(i) if b0 > 0, the cancer-free equilibrium E1 remains stable for 0 ≤ τ < τ̂ , and
becomes unstable for all τ > τ̂ .
(ii) if b0 < 0 and n0 > 0, the cancer-free equilibrium E1 remains unstable for
0 ≤ τ < τ̂ , and becomes stable for τ > τ̂ .

Biomedical interpretation
As mentioned earlier, in the context of cancer models, stability switching as the

delay is varied is very important, because many cycle-specific drugs retain the cells
or trap them in a given phase, thus increasing the time a cell spends in a particular
compartment. For an example, if spindle assembly is blocked, then the point where
the M state becomes unstable moves to a much higher mass/DNA value. As a
consequence, mitosis becomes a stable state, and cells entering into the M phase
will be stuck there [21].

This analysis shows that care must be taken when trapping the cells in a com-
partment since the ultimate effect may be adverse: the cancer-free fixed point may
switch from a stable equilibrium to an unstable one ( see (i) of Theorem 4). This
would mean that when the immune response is blocked, the system would not move
toward the disease-free state. On the other hand, it is possible to increase or de-
crease the resident time during the interphase to “unlock” a fixed point from its
instability and to push it toward the stable range (see (ii) of Theorem 4).

3.3. Drug model when τ > 0 with immune suppression. When we add the
administration of a delay, we obtain our full model (1). Again E2(0, 0, 0, k/δ4, 0) is
an equilibrium and its analysis is similar to that shown in section 3.2. The system
has the same equilibria as the system described in section 2.3, but again we focus
on the cancer-free equilibrium E2.

In this case, the characteristic equation for the linearized equation about a fixed
point E2 is given by

∣∣∣∣∣∣∣∣∣∣∣

λ + α1 + δ1 + k1k
δ4

0 −sα3 0 0
−α1e

−λτ λ + α2 + δ2 + k2k
δ4

0 0 0
0 −2s−1α2 λ + α3 + δ3 + k3k

δ4
0 0

c1k
δ4

c2k
δ4

c3k
δ4

λ + δ4
−k6k7k

δ4

0 0 0 0 λ + γ

∣∣∣∣∣∣∣∣∣∣∣

= 0

Obviously, λ = −δ4, λ = −γ are two eigenvalues. The remaining eigenvalues are
given as the solutions to the characteristic equation

F (λ) = λ3 + b2λ
2 + b1λ + b0 + 2α1α2α3 − 2α1α2α3e

−λτ = 0,

where b2, b1, b0 are given by (6) in section 2.2 and the stability analysis of the
equilibria is the same as for H(λ) in section 3.2. Thus we state the appropriate
theorems here.

Theorem 3.5. For system (14), suppose one of (N1), (N2), (N3) with mi = ni, i =
1, 2, 3 holds. Then
1) if b0 > 0, then E2 remains stable for all τ ≥ 0; and
2) if b0 < 0 and n0 > 0, then E2 remains unstable for all τ ≥ 0.
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Theorem 3.6. For system (14), assume either (S1) or (S2) with mi = ni, i = 1, 2, 3
holds. Then there exists a positive τ̂ such that
(i) if b0 > 0, the cancer-free equilibrium E2 remains stable for 0 ≤ τ < τ̂ , and
becomes unstable for all τ > τ̂ ; and
(ii) if b0 < 0 and n0 > 0, the cancer-free equilibrium E2 remains unstable for
0 ≤ τ < τ̂ , and becomes stable for τ > τ̂ .

Biomedical interpretation
The interpretation of this result is the same as above. Under conditions (ii) a

cell arrest in the interphase is beneficial for treatment. For conditions (i) a long
delay in the interphase enables cells to avoid treatment and re-enter the M -phase.
The next question, again, is the question of multiple treatments, which we will not
study here; however, a numerical solution for multiple dosages is given in Figure 4.

3.4. Hopf bifurcation. With the aid of Theorem 1 in [5], it is also straightforward
to check for possible Hopf bifurcations for the full model (1), when we increase
the delay τ . The importance of Hopf bifurcations in this context is that at the
bifurcation point a limit cycle is formed around the fixed point, resulting in stable
periodic solutions. The existence of periodic solutions is relevant in cancer models
because it implies that the cancer levels may oscillate around a fixed point even
in the absence of any treatment. Such a phenomenon has been observed clinically
and is known as “Jeff’s Phenomenon” [11]. Periodic oscillations also indicate cell
synchronization within the cell cycle. In this section, we will prove that such Hopf
bifurcations can occur. Now consider a general characteristic equation for system
(1):

λ3 + r2λ
2 + r1λ + r0 − s0e

−λτ = 0. (14)
Let λ = u + iv,(u, v ∈ R), and rewrite (14) in terms of its real and imaginary parts
as

u3 − 3uv2 + r2(u2 − v2) + r1u + r0 = s0e
−uτ cos(vτ)

3u2v − v3 + 2r2uv + r1v = −s0e
−uτ sin(vτ). (15)

Let τ̄ be such that u(τ̄) = 0. Then the above equations reduce to

−r2v̄
2 + r0 = s0 cos(v̄τ̄)

−v̄3 + r1v̄ = −s0 sin(v̄τ̄). (16)

It follows by taking the sum of squares that

v̄6 + (r2
2 − 2r1)v̄4 + (r1

2 − 2r2r0)v̄2 + r0
2 − s0

2 = 0. (17)

Suppose that v̄1 is the largest positive simple root of equation (17). Then with this
value of v̄1, (16) determines a τ̄1 uniquely such that u(τ̄1) = 0 and v(τ̄1) = v̄1. To
apply the Hopf bifurcation theorem as stated in Marsden & McCracken [20], we
state and prove the following theorem.

Theorem 3.7. Suppose that equation (17) has at least one simple positive root and
v̄1 is the largest such root. Then iv(τ̄1) = iv̄1 is a simple root of equation (14) and
u(τ) + iv(τ) is differentiable with respect to τ in a neighborhood of τ = τ̄1.

Proof . To show that iv(τ̄1) = iv̄1 is a simple root, equation (14) can be written
as f(λ) = 0 where

f(λ) = λ3 + r2λ
2 + r1λ + r0 − s0e

−λτ . (18)

Any double root λ satisfies

f(λ) = 0, f ′(λ) = 0,
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where
f ′(λ) = 3λ2 + 2r2λ + r1 + τs0e

−λτ . (19)
Substituting λ = iv̄1 and τ = τ̄1 into (19) and equating real and imaginary parts if
iv̄1 is a double root, we obtain

−r2v̄
2
1 + r0 = s0 cos(v̄1τ̄1)

−v̄3
1 + r1v̄1 = −s0 sin(v̄1τ̄1),

(20)

and
r1 − 3v̄2

1 = −τ̄1s0 cos(v̄1τ̄)
2r2v̄1 = τ̄1s0 sin(v̄1τ̄). (21)

Now, equation (16) can be written as F (v̄1) = 0, where

F (v) = (−r2v
2 + r0)2 + (−v3 + r1v)2 − (s0)2 (22)

F ′(v) = 2(−r2v
2 + r0)(−2r2v) + 2(−v3 + r1v)(−3v2 + r1). (23)

By substituting (20) and (21) into (22), (23), we obtain

F (v̄1) = F ′(v̄1) = 0.

Note that v̄1 is a double root of F (v̄1) = 0 and that F (v̄1) = F ′(v̄1) = 0, which is
a contradiction as we have assumed that v̄1 is a simple root of (17). Hence iv̄1 is a
simple root of equation (14), an analytic equation. By using the analytic version of
the implicit function theorem (Chow & Hale [3]), we can see u(τ)+ iv(τ) is defined
and analytic in a neighborhood of τ = τ̄1. ¤

Next, to establish Hopf bifurcation at τ = τ̄1, we need to verify the transversality
condition

du

dτ
|τ=τ̄1 6= 0.

By differentiating equations (16) with respect to τ and setting u = 0 and v = v̄1,
we obtain

Adu
dτ |τ=τ̄1 + B dv

dτ |τ=τ̄1 = −s0v̄1 sin(v̄1τ̄1)
−B du

dτ |τ=τ̄1 + A dv
dτ |τ=τ̄1 = s0v̄1 cos(v̄1τ̄1),

(24)

where

A = r1 − 3v̄2
1 + s0τ̄1 cos(v̄1τ̄1)

B = −2r2v̄1 + s0τ̄1 sin(v̄1τ̄1).

Solving for du
dτ , dv

dτ form (23) with the help of (16), we have

du

dτ
|τ=τ̄1 =

v̄2
1 [3v̄4

1 + 2(r2
2 − 2r1)v̄2

1 + r1
2 − 2r2r0]

A2 + B2
. (25)

Let z = v̄2
1 . Then equation (17) reduces to

Φ(z) = z3 + (r2
2 − 2r1)z2 + (r1

2 − 2r2r0)z + r0
2 − s0

2.

Hence
dΦ
dz

= 3z2 + 2(r2
2 − 2r1)z + r1

2 − 2r2r0.

Since v̄2
1 is the largest positive single root of equation (17), then

dΦ
dz
|z=v̄2

1
> 0.

Therefore,
du

dτ
|τ=τ̄1 =

v̄2
1

A2 + B2

dΦ
dz
|z=v̄2

1
> 0.
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Table 3. Parameter values in Figure 2

Parameter value parameter value
α1 1 day−1 k1 0.1x 10−7 cell−1day−1

α2 0.6 day−1 k2 0.4 x 10−8 cell−1day−1

α3 0.9 day−1 k3 0.1 x 10−8 cell−1day−1

δ1 0.11 day−1 k4 0.25 day−1

δ2 0.28 day−1 k5 0.25 x 10−3 mg−1

δ3 0.1 x 10−4 day−1 k6 0.3 x 10−1 day−1

δ4 0.3 day−1 k7 0.5 x 10−2 mg−1

c1 0.2 x 10−6 cell−1day−1 ρ 0.2 day−1

c2 0.8 x 10−7 cell−1day−1 γ 0.3 x 10−2 day−1

c3 0.108 x 10−6 cell−1day−1 k 0.15 x 106 cellday−1

a 0.5 x (0.1 x 106 cell)3

We summarize the preceding details in the following theorem.

Theorem 3.8. Suppose that (17) has at least one simple positive root and v̄1 is the
largest such root. Then a Hopf bifurcation occurs as τ passes through τ̄1 for system
(1). On the other hand, if (17) has no positive real roots, then the disease-free fixed
point is locally asymptotically stable for all values of τ for system (1).

4. Numerical results. In this section, we will use the original mathematical
model (1) to determine numerical solutions for the cancer population. To do this,
we first find reasonable estimates for the values of the parameters from [27]. For
the cancer cells, we will use the estimates for the parameters of τ = 14 hr(0.6 days),
x(0) = y(0) = 0.1 x 106 cells, z(0) = 0.2 x 106, α1 = 0.84 day−1, α2 = 0.9 day−1,
α3 = 0.024 day−1, δ1 = 0.11 day−1, δ2 = 0.67 day−1, δ3 = 0.056 day−1.

First, we consider the nondelay case. The MATLAB simulations in Figure 2
(a) show that cancer without delay, with immune suppression, grows exponentially
in the absence of drugs, in which the total cancer biomass N(t) = x(t) + y(t) +
z(t) reaches 25 x 106 cells after 60 days. When we apply the drug to the model,
the cancer-free equilibrium is still unstable (see Lemma 3), however; cancer grows
much slower and only reaches 15 x 106 cells in 60 days. Hence, although from the
linear analysis the stability of the cancer-free equilibrium does not change, the drug
reduces cancer growth by about 40%.

In the introduction we mentioned the cell synchronization method, where cancer
cells are synchronized within the cell cycle prior to the application of the M-phase
specific drug. We test this treatment strategy with our model. In Figure 3 we
investigate two different delays (τ = 0 in Figure 3 (A) and τ = 2 in Figure 3 (B)),
where we assume that all cancer cells are in the same stage of the cell cycle. We
observe the strongest treatment effect if the drug is given at the time all cells are
in the M-phase (dotted line in Figure 3 (B)).

Finally, as an example, we consider a typical dose protocol in which the drugs are
delivered periodically. To reduced the toxic effect of the chemotherapeutic agent
on healthy tissue, the administration of the drug is split between treatment days
and treatment holidays. For example [2], patients receiving the drug Vincristine on
days ,1,2,3,4, have a rest on days 5 to 27 and have another four days of treatment
and so on. In Figure 4 (b) we show show a simulation of the first 50 days, where all
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Figure 2. (a) In the absence of delay, solutions for models (4) and
(7) in the case of no drugs and drugs applied respectively. (b) In
the case of delay, solutions for models (11) and (14) in the case of no
drugs and drugs applied respectively. When drug is applied, cancer
grows much slower than in the untreated case. Here x(0) = y(0) =
0.1 x 106 cells, z(0) = 0.2 x 106 cells, I(0) = 2 x 106 cells, u(0) = 8.
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Figure 3. Solutions for models (11) and (14) with the same pa-
rameter values as in Figure 2 but with different initial values. In
the case of (A), (a) with x(0) = 0, y(0) = 0.4 x 106 z(0) = 0; (b)
x(0) = 0.4 x 106 y(0) = 0, z(0) = 0; (c) x(0) = 0, y(0) = 0, z(0) =
0.4 x 106; (d) x(0) = 0.1, y(0) = 0.1, z(0) = 0.2 x 106. In the case
of (B), the initial values are the same as for case (A) but with a
delay of 2 days.

parameter values are the same as in (a) of Figure 3 (B). Figure 4 (b) shows that
the overall effect of multiple dosage protocols is slightly reduced compared to a full
dose delivery at day 1 (Figure 4 (a)). However, side effect are reduced as well. More
detailed and more specific treatment protocols could be tested numerically. The
qualitative results about the stability of the cancer-free equilibrium are unchanged.

5. Discussion. In this paper we study the effect of a cell-cycle -specific drug on
the growth of cancer as well as interactions with the immune response. The cancer
cells are split into three compartments related to the cell cycle, the M-phase, the
G0-phase and the interphase (G1, S, G2). We also study the effect of a time delay
during the passage of cells through the interphase. Immune cells are assumed to
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Figure 4. Solutions for models (14) with the same parameter
values and initial values as in (a) of Figure 3 B but with a different
drug delivery term where u̇(t) = fδ0(t)+fδ1(t)+fδ2(t)+fδ3(t)+
fδ27(t) + fδ28(t) + fδ29(t) + fδ30(t) − γu(t) − ξy(t)u(t). In the
presence of periodic treatment, the drug is delivered in the first
and last four days of a month with one dose each day, a total dose
of 8 doses for a month, the same amount as in the single treatment
where the drug is initially delivered in 8 doses at the beginning.
That is, f = 1mg day−1 for the periodic drug delivery and f = 0
for single drug delivery. In both cases ξ = 0.4cell−1 day−1.

Table 4. A summary of the main theoretical stability results for
system (1)

Section Delay Immune Sup. Drug Result Cancer
Section 2.1 No No No a0 < 0 grows
Section 2.2 No Yes No b0 < 0 grows
Section 2.3 No Yes Yes b0 < 0 grows
Section 3.1 Yes No No 1) a0 < 0 and τ < τ̄ grow

2) a0 > 0 and τ > τ̄ grows
Section 3.2 Yes Yes No 1) b0 < 0 and τ < τ̂

2) b0 > 0 and τ > τ̂ grows
Section 3.3 Yes Yes Yes 1) b0 < 0 and τ < τ̂

2) b0 > 0 and τ > τ̂ grows

interact with cells from all phases and the chemotherapy drug only affects M-phase
cells and immune cells.

We break down the stability analysis of the cancer-free equilibrium into the spe-
cial cases as illustrated in Table 4.

It is easy to see from Table 4 that the drug does not change the stability of the
systems, since cancer cells in the resting stage escape the action of drugs. However,
as we see in the numerical simulation, cancer growth is significantly reduced through
the M-phase specific drug. Now we can answer the questions we listed at the
beginning. In the absence of any treatments, we see that cancer growth mainly
depends on the death rate of cells in the resting phase and the reproduction rate at
which cells in the resting phase go into the cell cycle (see Lemma 1). Cancer will
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begin to grow if the reproduction rate is greater than the death rate of cancer cells
in the resting phase. In that case, without treatment cancer will grow, accumulate
and eventually become fatal to the body. Cell cycle duration is an important factor
which can give rise to oscillation of solutions. When including the cell cycle time
into consideration, we determined those situations where the cell cycle time delay
is harmless and in which cases, stability switches occur and thus periodic solutions
exist.

When disease develops, the immune system is a natural force to fight the disease.
Taking the immune suppression into account in the model, we show that it will
greatly help to inhibit the growth of cancer cells (see Lemma 2), especially, if the
lymphocytes are rapidly producing and are very effective in combining with cancer
cells in order to destroy them. There is little chance for the cancer cells to reach
maturity. Unfortunately, this may happen only at the beginning of the disease, and
we may depend on drugs to inhibit the growth of cancer cells if the disease gets
worse and the lymphocytes lose their ability to fight these abnormal cells.

Our model presented here is relatively simple, but it gives interesting information
about the dynamics of the system. The inclusion of a quiescent phase into consid-
eration does give us a deep insight into the mechanism of disease development and
helps us to understand how the resistant population contributes to the eradication
of the disease. Our simulations are consistent with our analysis.

Here we discuss a few features we consider significant that have not been included
in our model. For example the inclusion of another delay in the cell cycle might be
pertinent as we separate the phases of the cycle to be more precise about the model
action of the drugs on the different phases. It is possible that these delays may be a
function of the drug. The immune system is a very complicated entity, and in this
paper we have merely touched the surface of the interactions and processes involved
in the immune system response. A more careful study and detailed modelling of
the interaction is another avenue of possible future research. In our analysis, we
study the dynamics of the model for a single administration of the chemotherapeutic
agent. From this analysis, we see that the quiescent compartment plays an essential
role. We speculate that a similar analysis for an G1, S-phase specific drug, such
as considered in Kimmel and Swierniak [13] would also emphasize the G0-phase
for cancer control. For more quantitative predictions, a realistic drug-treatment
protocol needs to be included, and numerical simulations need to be done. We give
one those example in Figure 4.

Acknowledgments. This work was supported by the Natural sciences and Engi-
neering Research Council of Canada, OGP4823 and RGPIN253660.

REFERENCES

[1] Birkhead, B.G., Rakin, E.M., Gallivan, S., Dones, L. and Rubens, R.D. A mathematical
model of the development of drug resistance to cancer chemotherapy, J. Cancer. Clin. Oncol.
23(9), 1421-1427, 1987.

[2] Barton-Burke, M., Wilkes, G.M., Ingwersen, K.C. Cancer Chemotherapy: A Nursing Process
approach, Jones & Bartlett, Mississauga, ON, 2001.

[3] Chow, S.N., Hale, J.K. Methods of Bifurcation Theory, Sringer-Verlag, New York, 1982.
[4] Cojocaru, L. and Agur, Z. A theoretical analysis of interval drug dosing for cell-cycle-phase-

specific drugs, Math. Biosci. 109, 85-97, 1992.
[5] Cooke, K., Van den Driessche, P. On the zeros of some transcendental equations, Funkcialaj

Ekvacioj, 29, 77-90, 1986.



CHEMOTHERAPY AND G0-PHASE 259

[6] Coppel, W.A. Stability and Asympotic Behavior of Differential Equations, D.C. Heath,
Boston, 1965.

[7] De Boer et al Macrophage T lymphocyte interactions in the anti-tumor immune response: A
mathematical model, J. Immu. 134, 2748-2758, 1985.

[8] DeLisi, C and Resoigno, A. Immune surveillance and neoplasia: A minimal mathematical
model, B. Math. Biol., 39, 201-221, 1997.

[9] Eisen, M.M Mathematical Models in Cell Biology and Cancer Chemotherapy, Volume 30 of
Lecture Notes in Biomathematics, Springer-Verlag, New York, 1979.

[10] Hillen, T. and Dawson, A. A cell cycle derivation of the linear quadratic model in radiation
treatment, in preparation, 2006.

[11] Khan, Q.J.A., Greenhalgh, D. Hopf bifurcation in epidemic models with a time delay in
vaccination, IAM J. Appl. Med. Biol. 16, 113-142, 1999.

[12] Kheifetz, Y., Kogan, Y., Agur, Z. Long-range predictability in models of cell populations
subjected to phase-specific drugs: Growth-rate approximation using properties of positive
compact operators, Mathematical Models & Methods in the Applied Sciences. In Press.

[13] Kimmel, M. and Swierniak, A. Using control theory to make cancer chemotherapy benefical
from phase dependence and resistant to drug resistance, J. Math. Biosci. , 2006.

[14] Kirschner, D., Panetta, J. Modeling immunotherapy of the tumor-immune interation, J.
Math. Biol. 37, 235-252, 1998.

[15] Knolle, H. Cell Kinetic Modeling and the Chemotherapy of Cancer, Volume 75 of Lecture
Notes in Biomathematics, Springer-Verlag, New York, 1988.

[16] Kozusko, F. et al. A mathematical model of invitro cancer cell growth and treatment with the
antimitoic agent curacin A, Math. Biosci. 170, 1-16, 2001.

[17] Kuznetsov, A., et al. Nonlinear dynamics of immunogenic tumors: Parameter estimation
and global bifurcation analysis, B. Math. Biol., 56, 295-321, 1994.

[18] Mackey, M.C. Cell kinetic status of hematopoietic stem cells, Cell Prolif., 34, 71-83, 2001.
[19] Mahaffy, J.: A test for stability of linear differential equations, Quart. Appl. Math. 40, 193-

202, 1982.
[20] Marsden, J.E., McCracken, M. The Hopf Bifurcation and its Applications, Springer-Verlag,

New York, 1976.
[21] Novak, B. and Tyson, J.J. Modelling the controls of the eukaryotic cell cycle, Biochem. Soc.

Trans. 31, 1526-1529, 2003.
[22] Panetta, J. A mathematical model of periodically pulsed chemotherapy: Tumor metastasis in

a competitive environment, Bull. Math. Biol. 58, 425-447, 1996.
[23] Prehn, R.T. Prospectives in oncogenesis: Does immunity stimulate or inhibit neoplasia?, J.

Reticuloendothel. Soc., 10, 1-18, 1971.
[24] Rubinow, S.I. and Lebowitz, J.L.: A mathematical model of the acute myeloblastic leukemic

state in man, Biophys. Journal, 16, 897-910, 1976.
[25] Swan, G.W. Tumor growth models and cancer chemotherapy, In Cancer Modeling , Volume

83, Chapter 3, (Edited by J.R. Thompson and B. Brown), Marcel Dekker, New York, 91-179,
1987.

[26] Villasana, M., Ochoa, G. An optimal control problem for cancer cycle-phase-specific
chemotherapy, to appear, IEEE TEC Journal, 2004.

[27] Villasana, M, Radunskaya, A. A delay differential equation model for tumor growth, J. Math.
Biol. 47, 270-294, 2003.

[28] Webb, G.F. A cell population model of periodic chemotherapy treatment, In
Biomedical Modeling and Simulation, Elsevier Science, 83-92, 1992.

Received on July 18, 2006. Accepted on September 25, 2006.

E-mail address: wliu@math.ualberta.ca

E-mail address: thillen@ualberta.ca

E-mail address: hfreedma@math.ualberta.ca


