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In this paper, we consider spatial predator-prey models with diffusion and prey-taxis. We investigate necessary conditions for pattern
formation using a variety of nonlinear functional responses, linear and nonlinear predator death terms, linear and nonlinear prey-taxis
sensitivities, and logistic growth or growth with an Allee effect for the prey. We identify combinations of the above nonlinearities that lead
to spatial pattern formation and we give numerical examples. It turns out that prey-taxis stabilizes the system and for large prey-taxis
sensitivity we do not observe pattern formation. We also study and find necessary conditions for global stability for a type I functional
response, logistic growth for the prey, nonlinear predator death terms, and nonlinear prey-taxis sensitivity.
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1. Introduction

There are basically three mechanisms for spatial pattern formation in systems of two reaction-advection-
diffusion equations; the Turing patterns (see [25]), chemotaxis patterns (see [12]), and patterns created
through reaction kinetics, e.g. the Brusselator (see [15]). Turing patterns typically arise for a fast inhibitor
and a slow activator. Chemotaxis patterns are based upon aggregation towards a chemical signal.

For a predator-prey system without prey-taxis, Okubo and Levin [26] note that an Allee effect in the
functional response and a density-dependent death rate of the predator are necessary to generate spatial
patterns. The inclusion of species migration (constant flow) as an additional transport process may also
increase the possibility of pattern formation [13]. The directional movement of zooplankton plays a role
in generating patterns in a plankton community model [22]. For the same system, diffusion also generates
pattern formation, and the combined effects of diffusion and velocity result in spatial pattern and an
instability like travelling waves, i.e. travelling patchy distributions [23]. Indeed, the magnitude of the
relative flow velocity determines the flow-induced instability [28]. Various travelling wave solutions have
been studied with similar systems [4, 18, 33]. In particular, [4, 33] also considered escaping behaviours of
prey from predation.

For chemotaxis models, spatial patterns have been studied analytically and numerically (see, for example
[7, 35, 36]). In contrast to the rich development of chemotaxis models, the pattern formation of prey-taxis
models is still open to wide investigations. Lewis [20] studied pattern formation in plant and herbivore
dynamics and herbivory-taxis was seen to reduce the likelihood of pattern formation. Arditi et al. [3] and
Chakraborty et al. [6] considered a different aspect of predator response to the prey distribution that the
velocity of the predators is dependent of prey density.
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The goal of this paper is to investigate the contribution of predator and prey movements to spatial
pattern formation in predator-prey systems. In particular, we consider foraging behaviour of predators
that move towards high prey density. For that, we extend the predator-prey diffusion-reaction model in
[27] by incorporating the concept of prey-taxis (see [14]).

1.1. The Model

A prey-taxis model was derived by Kareiva and Odell in [14] and they studied predator aggregation in
high prey density areas. Later the model was applied to estimate the mean travel time of a predator to
reach a prey resource [9]. Here we extend the Kareiva and Odell model to studying pattern formation.

The prey-taxis model discussed below contains both diffusion terms that might lead to Turing type
instabilities and a prey-taxis term that might lead to aggregation of predators on local concentrations of
prey. In this paper we will investigate the relative importance of these effects for spatial pattern formation.
Prey-taxis allows predators to search more actively for prey, and can generate different spatial patterns
from those formed in models without prey-taxis. Generally speaking, we find that prey-taxis tends to
stabilize the predator-prey interactions.

The characteristic feature of prey-taxis equations is that taxis is incorporated as an advection term (see
[14, 17]). In this paper, we consider the following prey-taxis model

vt = ǫvxx + vf(v) − nh(v, n), (1)

nt = nxx − (χ(v)vxn)x + γn(h(v, n) − δ(n)), (2)

where ǫ and γ are positive dimensionless parameters. Here v(x, t) and n(x, t) are prey density and predator
density respectively. f(v) is the per capita prey population growth rate, h(v, n) is the functional response,
and γδ(n) is the mortality rate of the predator without the prey. The prey-sensitivity, χ(v), is a non-
negative non-increasing function of the prey density, and as example we choose χ(v) = χ, or χ(v) = χ

v
.

To investigate the pattern formation properties of (1)-(2) we first consider (1)-(2) without taxis, i.e.
χ = 0. Secondly we study the full model (1)-(2) with χ 6= 0. In Section 2.1, we study pattern formation
for (1)-(2). It turns out that pattern formation crucially depends on the functional forms of functional
response h(v, n), on the death rate δ(n), and on the prey growth kinetics f(v). We investigate typical
cases, that are discussed in the literature, see e.g. [34]. For h(v, n) we consider type I (linear) functional

response h(v, n) = v, type II (hyperbolic) functional response h(v, n) = (α+1)
α+v

v, linear-ratio functional

response h(v, n) = ν0
v
n
, and hyperbolic-ratio functional response h(v, n) = µv

dn+v
. The death rate δ(n) is

either constant δ(n) = δ or density-dependent δ(n) = δ + νn. For the prey kinetics we assume either
logistic growth f(v) = 1 − v or an Allee effect f(v) = K(1 − v)(v − a). The above parameters α, ν0, µ,
d, ν, K, and a are all positive constants. We summarize the choices of these functions, the corresponding
pattern formation results, and the corresponding section in Table 1.

[Table 1 about here.]

In Section 3 we consider global stability of the system (1)-(2) with a type I functional response, density-
dependent predator death rate, logistic prey growth rate, and a prey-taxis term. We construct a Lyapunov
functional and find that for some condition the coexistence steady state is globally stable. We finish the
paper with a discussion and suggestions for further studies (Section 4).

Note that in this paper we implement efficient and accurate numerical methods for each term via a
fractional step method ([19, 36]) by using MATLAB. For diffusion and reactions terms, we use the Crank-
Nicolson scheme and a second order Runge-Kutta scheme, respectively ([1, 32]). For the advection term,
we use a high-resolution central scheme [16].
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2. Pattern Formation in Prey-Taxis Systems

In this section we focus on constant prey-taxis χ(v) = χ and study (1) and (2) on an interval [0, L] with
homogeneous Neumann boundary conditions given by

vx(0, t) = 0, vx(L, t) = 0, nx(0, t) = 0, nx(L, t) = 0. (3)

We first consider (1)-(2) for general f(v), h(v, n), and δ(n), and study the specific functional forms
later. Since we are interested in understanding biological phenomena, the prey growth function f(v) can
be negative with an Allee effect but the functional response h(v, n) is assumed nonnegative. We assume
that a non-trivial coexistence steady state (vs, ns) exists.

In order to investigate pattern formation, we follow the standard Turing stability analysis (see [25] and
[17] for details).

We first assume that (vs, ns) is linearly stable for the purely kinetic equations.
Assumption:

A + D < 0, AD − BC > 0, (4)

where

A = (vsf
′(vs) + f(vs) − nshv(vs, ns))

B = −h(vs, ns) − nshn(vs, ns) (5)

C = γnshv(vs, ns)

D = γ(h(vs, ns) + nshn(vs, ns) − δ(ns) − nsδ
′(ns)).

Assumption (4) guarantees linear stability of (vs, ns).
Now, we consider the full reaction-taxis-diffusion system (1)-(2) and obtain the following characteristic

equation for an eigenvalue λ of the linearization at (vs, ns):

λ2 − M1(k
2)λ + M2(k

2) = 0, (6)

where

M1(k
2) = A + D − (1 + ǫ)k2, (7)

and

M2(k
2) = AD − BC + ǫk4 − (A + ǫD + Bχns)k

2, (8)

where A, B, C and D are defined in equations (5) and k denotes the wave number. Nonnegative ǫ and k2

guarantee M1(k
2) ≤ A+D < 0 for all k, so the only way λ(k2) can be positive is the case that M2(k

2) < 0
for some k2. Hence a necessary condition for pattern formation is A + ǫD + Bχns > 0. Due to negative B
(see equation (5)), indeed positive χ tends to inhibit A + ǫD + Bχns from becoming positive as shown in
the following lemma.
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Lemma 2.1 Assume that A, B, C, and D are defined in (5) and ǫ is positive. In addition, AD −BC > 0
is assumed as in (4), then there exists χ∗ ≥ 0 such that M2(k

2) > 0 for all k and all χ ≥ χ∗. In this case,
the homogeneous solution (vs, ns) is linearly stable.

Proof. Since AD − BC > 0 and ǫ > 0, positive −(A + ǫD + Bχns) guarantees that M2(k
2) > 0. From

the expression A + ǫD + Bχns = 0, we can isolate χ and set this χ as χ0. Then we have χ0 = −A+ǫD
Bns

> 0.

We now define χ∗ = max(χ0, 0). We have χ∗ ≥ 0 and for all χ ≥ χ∗, we have M2(k
2) > 0 independent of

the value k. �

Therefore prey-taxis tends to reduce the occurrence of dispersal-induced instability. It is indeed the
predator diffusion that is crucial to dispersal-induced instability. When prey act anti-predator defensive
behaviours such as kicking and attacking and show chemical defences [21], predators may retreat from high
prey area, in which case χ in (8) can be negative. As a result a predator-prey system may generate pattern
formation. But we do not consider here this case in detail. In absence of predators, the prey diffusion would
reduce local prey maxima and equilibrate the prey distribution. If predators are present and if they are
attracted to local prey maxima through prey-taxis, then the reduction of local prey maxima is enhanced.
Hence if the taxis component is strong enough, we might not expect pattern formation. This is indeed the
case, as given in Lemma 2.1. For a specific example, we refer to Section 2.2.

In the following subsections we consider specific choices for the functional responses, h, the death rate
of the predator, δ, and prey growth rate, f . The ability of the prey taxis model (1)-(2) to exhibit a spatial
pattern crucially depends on the parameter functions h(v, n), δ(n), and f(v). Thus in this section we study
various typical cases separately. An overview of the cases and the corresponding results is given in Table
1.

2.1. Type I Functional Response, Density-Dependent Predator Death Rate and Allee Effect with

Diffusion Only

In this subsection we show that pattern formation is possible when there is a type I functional response
and an Allee effect along with a density-dependent predator death rate (Table 1, row 1). We consider an
Allee effect on the prey population dynamics f(v) = K(1 − v)(v − a) with 0 < a < 1 and K = 4

(1−a)2 , a

type I functional response, h(v, n) = v, a density-dependent predator death rate, δ(n) = δ + νn, ν ≥ 0,
and no taxis, i.e. χ = 0. Here the parameter a is a threshold, below which the prey population declines.
Okubo and Levin [26] argued that a predator-prey model with dispersal may generate diffusion driven
instability if the mortality of the predator depends on the population density and the per-capita growth
rate of the prey is determined by an Allee effect. Note that the trivial steady state (v, n) = (0, 0) is locally
stable because for (v, n) = (0, 0) the characteristic polynomial for purely kinetic equations has two negative
eigenvalues, λ = −γδ and λ = −Ka. We assume biologically relevant parameters in the region 0 < δ < 1
and 0 < a < 1. For the prey-only steady state (v, n) = (1, 0) the characteristic polynomial has one positive
eigenvalue λ = γ(1 − δ) and one negative eigenvalue λ = −K(1 − a).

For the homogeneous coexistence steady state (vs, ns), we find

A = Kvs(1 + a − 2vs), B = −vs, C = γns, D = −γnsν, (9)

and M1(k
2) and M2(k

2) are given by

M1(k
2) = A + D − (1 + ǫ)k2 (10)

M2(k
2) = AD − BC + ǫk4 − (A + ǫD)k2. (11)

It is noted that the sign of A depends on the sign of 1 + a − 2vs.

[Figure 1 about here.]
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Here we set v̄ = 1+a
2 . Hence, when vs > v̄, A is negative and when vs < v̄, A is positive. Recall that

the coexistence steady state (vs, ns) comes from the intersection of the two nullclines: v − δ − νn = 0 and
K(1 − v)(v − a) − n = 0 (see Figure 1).

First, we consider vs > 1+a
2 . Since vs > v̄ we find that at v = vs the v-nullcline is above the n-nullcline.

This means that K(1 − v̄)(v̄ − a) > v̄−δ
ν

, which translates into the condition

a + 1 < 2(δ + ν).

For this case we prove stability.

Lemma 2.2 Assume that h(v, n) = v, δ(n) = δ+νn, f(v) = K(1−v)(v−a), and χ = 0. If a+1 < 2(δ+ν),
then no pattern formation occurs about the coexistence steady state, (vs, ns) for the system (1)-(2).

Proof. The condition a + 1 < 2(δ + ν) implies that vs > 1+a
2 . Hence A < 0. In addition, we find B < 0,

C > 0, and D < 0 and A < 0, B < 0, and D < 0 imply M2(k
2) = AD − BC + ǫk4 − (Aǫ + D)k2 > 0 for

all real k. Hence, we cannot expect diffusion-taxis driven instability about the coexistence steady state.�

In Figure 1 it is noted that vs should be between a and 1, i.e. a < vs < 1, otherwise ns is negative. In
Lemma 2.2, we considered that vs > 1+a

2 and found no pattern. Thus we now consider a < vs < v̄ = 1+a
2 .

First we investigate how many vs may exist between a and v̄, and then we find conditions for the existence
of vs between a and v̄.

The v values for the coexistence steady state are obtained from

Kνv2 − (Kν(1 + a) − 1)v + Kνa − δ = 0. (12)

When a < δ, Figure 1 shows that equation (12) has two real roots. Indeed, for the root less than a, ns

would be negative, which is not biologically relevant. Hence, when a < δ equation (12) has one biologically
relevant root. In addition, vs < v̄ leads to a > 2(δ + ν) − 1. Therefore, for

2(δ + ν) − 1 < a < δ, (13)

the biologically relevant coexistence state exists and its v value is located between δ < vs < v̄.
When a > δ, we may expect two positive roots from equation (12). However, a simple computation

of (12) shows that we cannot have two positive roots. Under assumption (13) the biologically relevant
solution of (12) is given by

vs =

Kν + Kνa − 1 +
√

K2ν2a2 + (−2Kν − 2K2ν2)a + K2ν2 + 1 − 2Kν + 4Kνδ

2Kν
. (14)

The discriminant in (14) is zero for

v =
Kν + Kνa − 1

2Kν
=

1 + a

2
− 1

2Kν
. (15)

Equations (14) and (15) give a condition for the existence of the coexistence steady state,



December 22, 2008 10:22 Journal of Biological Dynamics Jungmin02

6

vs ≥ v =
1 + a

2
− (1 − a)2

8ν
,

which will be used to show that AD − BC > 0, whenever vs exists.
We find A > 0 from the condition (13). Additionally, from (9) we find B < 0, C > 0, and D < 0. The

stability condition A + D < 0 leads to a condition

Kvs(1 + a − 2vs) < γ(vs − δ). (16)

In Figure 2 we plot the left and right hand sides of (16) as a function of vs.

[Figure 2 about here.]

As γ varies from zero to infinity, the intersection of Kvs(1 + a− 2vs) and γ(vs − δ) changes from vs = 1+a
2

to vs = δ. Given a value for vs we can always choose γ small enough such that condition (16) is not true.

Thus γ should be greater than a minimum value, γ0. Here γ0 = Kvs(1+a−2vs)
vs−δ

where vs is computed in (14).
Therefore for γ > γ0, we have A + D < 0.

Thus a biologically relevant vs is in the interval

max

(

δ,
1 + a

2
− (1 − a)2

8ν

)

≤ vs <
a + 1

2
. (17)

We found that (17) holds under assumption (13).

Theorem 2.3 Assume that h(v, n) = v, δ(n) = δ + νn, f(v) = K(1 − v)(v − a), and χ = 0. If a satisfies
condition (13), then (i) the coexistence steady state (vs, ns) exists, (ii) AD − BC > 0, (iii) if in addition,
there exists ǫ1 > 0 such that for each ǫ < ǫ1 there exists an nonempty interval [k1, k2] of unstable modes,
so we may expect diffusion driven instability about the coexistence steady state, (iv) if ǫ > ǫ1, then (vs, ns)
is linearly stable.

Proof. (i) It was shown that condition (13) implies the existence of a unique positive root vs. (ii) When
a positive vs exists, vs satisfies condition (17). Now we consider the condition for AD − BC > 0.

AD − BC

= −Kvs(1 + a − 2vs)γnsν + γnsvs

= γnsvs(1 − Kν(1 + a − 2vs)) > 0,

which holds if vs > 1+a
2 + 1

2Kν
. Indeed, this is true by condition (17). Therefore AD−BC is always positive

under the assumption of the existence of a coexistence steady state. (iii) M1(k
2) and M2(k

2) are given by
(10) and (11), respectively with A = Kvs(1 + a − 2vs), B = −vs < 0, C = γns > 0 and D = −γnsν < 0.

Hence A + D < 0 guarantees M1(k
2) = A + D − (1 + ǫ)k2 < 0. If ǫ ≥ 1, then D < 0 gives A + Dǫ ≤

A + D < 0, hence M2(k
2) is always positive. On the other hand, setting ǫ0 = Kvs(1+a−2vs)

γ(vs−δ) , for ǫ < ǫ0, we

have A + Dǫ > 0 and M2(k
2) can be negative for some k.

Setting T = k2, the quadratic equation M2(T ) = 0 may have two roots, T1,2 (see Figure 3). By solving
this quadratic equation, it can be shown that for ǫ < ǫ1 there exist real k1 and k2. For unstable modes
k ∈ [k1, k2] with k1 =

√
T1 and k2 =

√
T2, we have Re(λ)> 0. Hence we may expect diffusion driven

instability about the coexistence steady state (see also [30]).
(iv) if ǫ > ǫ1, then M2(k

2) is always positive for all k. Hence we cannot expect diffusion driven instability
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about the coexistence steady state.�

Segel and Jackson [30] also considered diffusion driven instability in a predator-prey interaction. They
used δ(n) = νn and f(v) = 1 + Kv, and found the wavelength of the instability (see also [26] for general
discussion on diffusion driven instability in a predator-prey interaction).

In particular, for ǫ ≪ 1, we apply a perturbation method to approximate two values T1,2, that is,
T1 = AD−BC

A
and T2 = A

ǫ
. Therefore for AD−BC

A
< T < A

ǫ
, M2(T ) is negative.

[Figure 3 about here.]

For example, we consider an interval [0, L] with homogeneous Neumann boundary condition given by (3).
If k(n) = nπ

L
in [k1, k2] with positive integer n, then pattern formation occurs. Thus we can calculate a

minimum domain size for pattern formation. Since k1 < k(n) < k2, we substitute k(n) = nπ
L

and rearrange
the inequality with respect to L. Then we have

nπ

k2
< L <

nπ

k1
,

which should hold for some integer n. Therefore, the minimum length for possible instabilities is L∗ = π
k2

,
and for L < π

k2
, we cannot expect pattern formation.

[Figure 4 about here.]

In Figure 4 we show phase portraits of the predator-prey system (1)-(2) without dispersal terms. As γ
increases, the coexistence steady state bifurcates from an unstable spiral to a stable spiral. From simulations
with various γ, it is noted that an unstable limit cycle occurs for a certain range of γ. When γ is smaller
than the lower bound of this range, the coexistence steady state is an unstable spiral. When γ is bigger
than the upper bound of the range, the coexistence steady state is a stable spiral with nonempty basin
of attraction. Figure 5 shows that the stable coexistence steady state without dispersal terms becomes
unstable if diffusion terms are introduced. As a result patterns are generated. We demonstrate a snapshot
of the asymptotic prey and predator distributions in Figure 6. It is noted that high prey density area seems
to attract more predators. Moreover, the patch size of prey is seen to be an important factor to attract
more predators.

[Figure 5 about here.]

[Figure 6 about here.]

2.2. Type I Functional Response, Density-Dependent Predator Death Rate and Allee Effect with

Diffusion and Prey-Taxis

We now include prey-taxis into the calculations of the previous subsection (Table 1, row 1). We consider
the reaction-diffusion-taxis system (1)-(2) for χ(v) = χ. We consider Allee type growth for the prey,
f(v) = K(1 − v)(v − a) with 0 < a < 1 and K = 4

(1−a)2 , a type I functional response, h(v, n) = v, and a

density-dependent predator death rate, δ(n) = δ + νn. We have shown in the previous subsection that for
χ = 0 pattern formation may occur. In this subsection we consider how the conditions of pattern formation
change if χ is introduced.

Lemma 2.4 Assume a, δ, and ǫ satisfy instability conditions of Theorem 2.3. Then from Lemma 2.1 we

compute χ∗ = Kvs(1+a−2vs)+ǫγ(vs−δ)
vsns

such that the coexistence steady state (vs, ns) for system (1)-(2) is
linearly stable for each χ ≥ χ∗. For χ < χ∗ there exists an interval [k1, k2] of unstable modes.

Proof. Here M1(k
2) (7) is the same as in the case of diffusion-only (10) so that it is negative for all k. But

M2(k
2) (8) is different by the term Bχns. Setting M2(k

2) = 0 and T = k2, we obtain after rearrangements
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ǫT 2 − (A + ǫD)T + AD − BC = BχnsT. (18)

Figure 7 shows three typical situations of intersections of the left hand and the right hand sides of
equation (18). In the diffusion-only case, we saw that there may be two roots, T1 and T2, of ǫT 2−(A+ǫD)T+
AD−BC = 0 under the conditions that A+ ǫD > 0. Between T1 < T < T2, ǫT 2 − (A+ ǫD)T + AD−BC
is negative. In order for M2(T ) to be negative, the left hand side of equation (18) should be less than the
right hand of the equation (18). In Figure 7, the region T3 < T < T4 where the solid curve is below the
dashed line makes M2(T ) negative. As we can see in Figure 7, T3 is always greater than T1 and T4 smaller
than T2 for positive χ.

[Figure 7 about here.]

As χ gets bigger, the slope of the line of the right hand side of equation (18) is steeper so that for
χ ≥ χ∗ there will be no intersection of the curve and the line (see Figure 7). In that case, M2(T ) is always
non negative, which leads to negative eigenvalues and to stability. In Theorem 2.3, for χ = 0 we found a

threshold of ǫ0 = Kvs(1+a−2vs)
γ(vs−δ) . For χ 6= 0, the threshold for pattern formation is ǫ1 = Kvs(1+a−2vs)−vsχns

γ(vs−δ) ≤
ǫ0. Thus as χ gets bigger, ǫ1 requires smaller value ǫ for pattern formation.�

Figure 4 shows that the coexistence steady state for the spatially homogeneous predator-prey system
(1)-(2) without dispersal terms is stable. In Figure 5, introducing the diffusion term generates patterns.
The numerical simulations confirmed that when we introduce a large prey-taxis term patterns disappear
(not shown here).

2.3. Linear Ratio-Dependent Functional Response, Constant Predator Death Rate and Logistic

Growth

In this subsection we show that pattern formation is impossible when there is a linear ratio functional
response and logistic growth along with a constant predator death rate (Table 1, row 2). We consider the
linear ratio-dependent functional response, h(v, n) = ν0

v
n

with logistic growth for the prey, f(v) = 1 − v
and a constant predator death rate, δ(n) = δ and ν0 is a constant parameter. Thus the coexistence steady
state is now (vs, ns) = (1 − ν0,

ν0

δ
(1 − ν0)), which is biologically relevant for 0 ≤ ν0 < 1. In this case we

obtain

A = −(1 − ν0), B = 0, C = γν0, D = −γδ.

We observe that A < 0 ,D < 0, B = 0, AD−BC > 0, and M2(k
2) = AD−BC+ǫk4−(A+ǫD+Bχns)k

2 >
0 for all k. Hence the homogeneous steady state is linearly stable.

Lemma 2.5 Assume f(v) = 1 − v, h(v, n) = ν0
v
n
, and δ(n) = δ + νn, then no pattern formation occurs

about the coexistence steady state, (vs, ns) = (1 − ν0,
ν0

δ
(1 − ν0)) for system (1)-(2).

2.4. Hyperbolic Ratio-Dependent Functional Response, Constant Predator Death Rate and Logistic

Growth

We now modify the analysis of the previous subsection to include a hyperbolic ratio rather than linear ratio
functional response. This allows for the possibility of pattern formation, providing that taxis is sufficiently
small (Table 1, row 3). We consider hyperbolic ratio-dependent functional response, h(v, n) = µv

dn+v
with

logistic growth for the prey, f(v) = 1 − v and a constant predator death rate, δ(n) = δ, and µ ≥ 0 and

d ≥ 0 are constants. Thus the coexistence steady state in this case is (vs, ns) = ( (d−µ+δ)
d

, (d−µ+δ)(µ−δ)
d2δ

),
which is biologically relevant for δ < µ < d + δ. In this case, we have
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A = −(dµ − µ2 + δ2)

dµ
, B = −δ2

µ
, C =

(µ − δ)2

dµ
γ, D = −δ(µ − δ)

µ
γ.

We consider conditions that A + D < 0 and AD − BC > 0. For A < 0, it is seen that A + D < 0 and

AD − BC > 0. For A > 0, γ > γ0, with γ0 = − (dµ−µ2+δ2)
d(µ−δ)δ > 0, implies that A + D < 0.

Lemma 2.6 Assume f(v) = 1 − v, h(v, n) = µv
dn+v

, δ(n) = δ, and χ = 0.

(i) If (dµ−µ2 + δ2) > 0, no pattern formation occurs about the coexistence steady state, (vs, ns) for system
(1)-(2).
(ii) Assume (dµ − µ2 + δ2) < 0. There exists ǫ1 > 0 such that for each ǫ < ǫ1 there exists an nonempty
interval [k1, k2] of unstable modes, so we may expect diffusion driven instability about the coexistence steady
state, (iii) in case (ii) if ǫ > ǫ1, then (vs, ns) is linearly stable.

Proof. (i) First, (dµ−µ2 +δ2) > 0 implies A < 0. In addition, B < 0, C > 0, and D < 0 result in positive
M2(k

2) (11). Hence, we cannot expect diffusion-taxis driven instability about the coexistence steady state.
(ii) Second, we consider (dµ − µ2 + δ2) < 0, which gives A > 0. It is also seen that AD − BC > 0

and for γ > γ0, A + D < 0, which implies that M1(k
2) (10) is negative. However, when ǫ is less than

ǫ0 = − (dµ−µ2+δ2)
dγ(µ−δ)δ , A + ǫD is positive. Thus M2(k

2) can be negative. With the same steps in Theorem 2.3,

we can find k1 and k2 with k2
1,2 = (µ2 − dµ − δ2 − ǫdµγδ + ǫdγδ2 ∓

√
G0 + G1ǫ + G2ǫ2)/(2ǫdµ) where

G0 = (−dµ + µ2 − δ2)2

G1 = 2d(µ − δ)γδ(µ2 − dµ − 2µδ + δ2)

G2 = γ2δ2d2(µ − δ)2.

Consequently for ǫ < ǫ1 =
−G1−

√
G2

1−4G0G2

2G2
, there exist real k1 and k2. Furthermore, for k1 < k < k2 we

have Re(λ)> 0 and we may expect diffusion driven instability about the coexistence steady state.
(iii) If ǫ > ǫ1, then M2(k

2) is positive for all k. Hence we cannot expect diffusion driven instability about
the coexistence steady state.�

Alonso et al. [2] also considered a hyperbolic ratio-dependent functional response for pattern formation
by using numerical exploration of the parameter space.

Now we can follow the argument of the case including an Allee effect. Thus the reaction-diffusion system
may show diffusion-driven instability depending on parameters µ, d, δ, γ, and ǫ. Furthermore, the prey-
taxis term tends to inhibit the occurrence of dispersal-driven instability (see Lemma 2.1 and Subsection
2.2 for the full argument).

In Figure 8 we show phase portraits of the predator-prey system (1)-(2) with hyperbolic ratio functional
response and without dispersal terms. As γ increases, the coexistence steady state bifurcates from an
unstable spiral to a stable spiral. Figure 9 demonstrates that this homogeneous coexistence steady state
becomes unstable if diffusion terms are introduced. As a result patterns are generated. It is shown that
when we introduce a large prey-taxis term patterns eventually disappear (see [17] for Figure).

[Figure 8 about here.]

[Figure 9 about here.]

2.5. Type II Functional Response, Density-Dependent Predator Death Rate, and Logistic Growth

Next we consider a hyperbolic functional response and a density-dependent predator death rate from the
setting of the previous subsection and show that pattern formation is possible, provided that taxis is
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sufficiently small (Table 1, row 4). We consider type II functional response, h(v, n) = (α+1)
α+v

v as in [27], a
density-dependent predator death rate, δ(n) = δ + νn, and logistic growth for the prey, f(v) = 1− v with
α > 0, 0 < δ < 1, and ν > 0. The coexistence steady state can be obtained from the root of the following
system

n = g1(v) =(1 − v)
(α + v)

α + 1
,

n = g2(v) =

(

(α + 1)

α + v
v − δ

)

/ν.

By applying the intermediate-value theorem, it is shown that there is at least one point v = vs in the
open interval (0, 1) such that g(vs) = 0. Moreover, since ns = g1(vs) > 0 for vs ∈ (0, 1), ns corresponding
to vs is positive as well.

Lemma 2.7 Assume f(v) = 1−v, h(v, n) = v (α+1)
α+v

, and δ(n) = δ+νn, there exists at least one coexistence
steady state, (vs, ns) for the system (1)-(2).

For a homogeneous coexistence steady state (vs, ns), we find

A = 1 − 2vs − ns
(α + 1)α

(α + vs)2
, B = −vs

α + 1

α + vs
,

C = γns
(α + 1)α

(α + vs)2
, D = −γnsν.

It is noted that B < 0, C > 0, and D < 0. Thus for A < 0, we cannot expect spatial pattern because
M1(k

2) < 0 and M2(k
2) > 0 for all k. The condition for A < 0 is rewritten in terms of parameters α, δ,

and ν as follows

ν >
4(1 − α − δ)

α + 1
.

Therefore we can summarize the result

Lemma 2.8 Assume f(v) = 1 − v, h(v, n) = v (α+1)
α+v

, and δ(n) = δ + νn. If ν > 4(1−α−δ)
α+1 , then no pattern

formation occurs about the coexistence steady state, (vs, ns) for the system (1)-(2).

This result was also confirmed numerically for selected parameter values (not shown here).
Now we consider the case of A > 0, that is,

0 < vs <
1 − α

2
, equivalently 0 < ν <

4(1 − α − δ)

α + 1
.

The condition for A + D = −2v2
s+(1−α−γ(1+α−δ))vs+γδα

α+vs
< 0 implies (after some computation)

1 − α − δ > 0. (19)

Under condition (19) we set the positive root of A+D expressed above with v∗ and then v∗ is between 0

and 1−α
2 . Thus for vs in (v∗, 1−α

2 ), we have A + D < 0. Note: v∗ = 1−α−γ(1+α−δ)
4 +

√
(1−α−γ(1+α−δ))2+8γδα

4 .
Recall that vs is independent of γ, so by controlling γ we can make v∗ smaller than vs.
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Now we consider AD − BC > 0. Because A is positive, we cannot guarantee AD − BC > 0. After
rearrangement we find,

AD − BC = γns

(

−ν(1 − 2vs) + (α + 1)α
(2α + 2 − δ)vs − δα

(α + vs)3

)

,

which is positive if G(vs) =
(

−ν(1 − 2vs) + (α + 1)α (2α+2−δ)vs−δα

(α+vs)3

)

> 0. After some computation, we

obtain that

G(0) = −(α + 1)
δ

α
− ν < 0, and G(

1 − α

2
) = −BC > 0

since at vs = (1−α)
2 , we have A = 0. In addition, the continuity of G(vs) on (0, 1−α

2 ) guarantees that

there is at least one root v∗∗ in (0, 1−α
2 ) such that G(v∗∗) = 0. Therefore, for vs ∈ (v∗∗, 1−α

2 ), we have
AD − BC > 0.

Theorem 2.9 Assume that h(v, n) = v (α+1)
α+v

, δ(n) = δ + νn, f(v) = 1 − v, and χ = 0. (i) Then at

least one coexistence steady state (vs, ns) exists, (ii) there exists a ṽ < 1−α
2 such that for all vs ∈ (ṽ, 1−α

2 )
we have A + D < 0 and AD − BC > 0, (iii) there exists ǫ1 > 0 such that for each ǫ < ǫ1 there exists
an nonempty interval [k1, k2] of unstable modes, so we may expect diffusion driven instability about the
coexistence steady state, (iv) if ǫ > ǫ1, then (vs, ns) is linearly stable.

Proof. Property (i) was shown in Lemma 2.7. (ii) It was also shown that for vs ∈ (v∗, 1−α
2 ), we have

A + D < 0 and for vs ∈ (v∗∗, 1−α
2 ), AD − BC > 0. Hence we define ṽ = max(v∗, v∗∗), so for vs ∈ (ṽ, 1−α

2 ),
we have A + D < 0 and AD − BC > 0.

(iii) Now M2(k
2) is

M2(k
2) = (−ǫk2 + A)(−k2 + D) − BC,

with A = 1 − 2vs − ns
(α+1)α
(α+vs)2 , B = −vs

α+1
α+vs

< 0, C = γns
(α+1)α
(α+vs)2 > 0 and D = −γnsν < 0.

If ǫ ≥ 1, then D < 0 gives A + Dǫ ≤ A + D < 0, hence M2(k
2) is always positive, which results

in no diffusion-driven instability for ǫ ≥ 1. Therefore ǫ should be strictly less than 1. Indeed, setting

ǫ0 = vs(1−α−2vs)
γ((α+1−δ)vs−δα) , then for ǫ < ǫ0, we have A + Dǫ > 0 and M2(k

2) can be negative for some k.

By Setting T = k2, we have a quadratic form of M2(T ), that is, M2(T ) = AD−BC + ǫT 2 − (A+ Dǫ)T .
Solving this quadratic form gives that there are two positive ǫ, say ǫ1 and ǫ2 with ǫ1 < ǫ2, such that
for ǫ < ǫ1, M2(T ) has two positive roots, say T1 and T2 with T1 < T2. Therefore M2(T ) is negative for
k ∈ (k1, k2) with k1 =

√
T1 and k2 =

√
T2. For unstable modes k ∈ [k1, k2], we have Re(λ)> 0. Hence we

may expect diffusion driven instability about a coexistence steady state (vs, ns).
(iv) if ǫ > ǫ1, then M2(k

2) is always positive for all k. Hence we cannot expect diffusion driven instability
about the coexistence steady state.�

For χ 6= 0 we obtain a similar result as in Section 2.2.

Lemma 2.10 Assume that instability conditions of Theorem 2.9 are satisfied. Then we define χ∗ =
−2v2

s+(1−α+ǫγ(δ−α−1)vs+ǫγδα
(α+1)vsns

such that a coexistence steady state (vs, ns) for system (1)-(2) is linearly stable

for each χ ≥ χ∗. For χ < χ∗ there may exist an interval [k1, k2] of unstable modes.

Proof. See Lemma 2.1. �

Figure 10 demonstrates that the stable coexistence steady state without dispersal terms becomes unstable
when diffusion terms are introduced (Theorem 2.9). As a result patterns are generated. It is shown that
when we introduce a large prey-taxis term, patterns are disappearing (Lemma 2.10 and see [17] for Figure).
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[Figure 10 about here.]

2.6. Type II Functional Response, Constant Predator Death Rate, and Logistic Growth

We now modify the analysis of the previous subsection to include a constant rather than density-dependent
predator death rate. This doesn’t allow for the possibility of pattern formation (Table 1, row 5). We

consider type II functional response, h(v, n) = (α+1)
α+v

v as in [27], a constant predator death rate, δ(n) = δ,
and logistic growth for the prey, f(v) = 1 − v. Thus the coexistence steady state is

(vs, ns) =
(

δα
(1+α−δ) ,

(1+α)α(1−δ)
(1+α−δ)2

)

, which is biologically relevant for 0 ≤ δ < 1. In this case

A = −δ(α − 1 + δ)

(1 + α − δ)
, B = −δ, C = γ(1 − δ), D = 0,

and consequently

M2(k
2) = δγ(1 − δ) + ǫk4 +

(

δ(α − 1 + δ)

(1 + α − δ)
+ δχns

)

k2 > 0

for all k. Thus the homogeneous steady state is linearly stable.
It is noted that type II functional response does not play any role for pattern formation versus type I. In

a numerical solution (not shown) with χ = 6.5 and randomly chosen initial distribution, we observe that
the solution converges to the coexistence equilibrium (vs, ns) = (0.6, 0.2667).

2.7. Type I Functional Response, Density-Dependent Predator Death Rate, and Logistic Growth

We now modify the analysis of Subsection 2.5 to include a type I rather than type II functional response.
This also doesn’t allow for the possibility of pattern formation (Table 1, row 6). We include competition
in the predator death rate, so the predator death rate is δ(n) = δ + νn. In addition, we consider type I
functional response, h(v, n) = v and logistic growth for the prey, f(v) = 1−v. Thus the coexistence steady

state is (vs, ns) =
(

δ+ν
1+ν

, 1−δ
1+ν

)

, which is biologically relevant for 0 ≤ δ < 1. In this case we obtain

A = −δ + ν

1 + ν
, B = −δ + ν

1 + ν
, C = γ

1 − δ

1 + ν
, D = −νγ

1 − δ

1 + ν
.

We find A < 0 and D < 0 for biologically relevant δ, which result in A + D < 0. Moreover, B < 0
and C > 0 give rise to AD − BC > 0. In addition, A < 0, D < 0, B < 0, and AD − BC > 0 give
M2(k

2) = AD − BC + ǫk4 − (A + ǫD + Bχns)k
2 > 0 for all k. Hence we note that M2(k

2) > 0 for all k,
hence the homogeneous steady state is linearly stable.

This result was also confirmed numerically for selected parameter values (not shown here).

3. Global Stability

In the previous section, we showed that without both the Allee effect and the density-dependent predator
death rate, diffusion and prey-taxis do not change the local stability of the coexistence steady state. We
choose one of the cases without pattern formation to study the global stability of (vs, ns). We consider
logistic growth for the prey, f(v) = 1 − v, a type I functional response, h(v, n) = v, a density-dependent
predator death rate, δ(n) = δ + νn, and a non-constant prey sensitivity, χ(v) = b

v
for the spatially

homogeneous case of system (1), (2) on an interval Ω = [0, L] with homogeneous Neumann boundary
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conditions (3). The following Lyapunov function,

Ṽ (v, n) =

∫ v

vs

ṽ − vs

ṽ
dṽ +

∫ n

ns

ñ − ns

γñ
dñ,

= v − vs ln(v) − vs + vs ln(vs) +
n − ns ln(n) − ns + ns ln(ns)

γ
, (20)

has been used to show the global stability of (vs, ns) [5]. We will show that V (v, n) =
∫

Ω Ṽ (v, n)dx is a
Lyapunov functional for the spatially dependent problem (1)-(2) in this case.

Theorem 3.1 Let f(v) = 1 − v, h(v, n) = v, δ(n) = δ + νn, and χ(v) = b
v
, with boundary condition (3).

We assume that 4ǫγ > ns

vs
b2, then the functional V (v, n) defined in (20) is a strong Lyapunov function

for system (1)-(2). The sets NL = {(v, n)|V (v, n) ≤ L} are positively invariant and (vs, ns) is globally
asymptotically stable.

Proof. Setting NL = {(v, n)|V (v, n) ≤ L} for L large enough, then we claim that the sets NL are positive
invariant. When (v, n) = (vs, ns), V (vs, ns) becomes zero due to Ṽ = 0. For v > vs, the first term of (20) is
positive. Similarly, the second term of (20) is positive. Therefore Ṽ is positive in NL. Hence the functional,
V (v, n) is bounded below by zero. Moreover, the definition of Lyapunov functional, Ṽ = v− vs ln(v)− vs +

vs ln(vs) + n−ns ln(n)−ns+ns ln(ns)
γ

leads to limv→0,n→0 V (v, n) = ∞ and limv→∞,n→∞ V (v, n) = ∞. Since
∂V (v,n)

∂v
=

∫

Ω
v−vs

v
dx and ∂V (v,n)

∂n
=

∫

Ω
n−ns

γn
dx, V (v, n) is continuously differentiable for v, n > 0. The next

step is showing that for (v, n) ∈ NL dV/dt is negative definite for a certain parameter space.

dV/dt =

∫

Ω

dṼ (v, n)

dt
dx

=

∫

Ω

v − vs

v
v̇ +

n − ns

γn
ṅdx

=

∫

Ω

v − vs

v
vxx + (v − vs)(f(v) − n)dx

+

∫

Ω

n − ns

γn
(ǫnxx − (χ(v)vxn)x) + (n − ns)(v − δ − νn)dx.

(21)

We arrange the right hand side of this equation into two parts; one including the local dynamics and
the other including the dispersal terms. First we look at local dynamics

∫

Ω
(v − vs)(f(v) − n) + (n − ns)(v − δ − νn)dx

=

∫

Ω
(v − vs)(f(v) − ns + ns − n) + (n − ns)(v − δ − νn)dx

=

∫

Ω
(v − vs)(f(v) − ns) + (n − ns)(v − δ − νn − v + vs)dx

=

∫

Ω
(v − vs)(f(v) − f(vs)) + (n − ns)(vs − δ − νn)dx

(see also [5] for the case of a constant death rate of the predator). Here (v−vs) and (f(v)−f(vs)) have the
opposite sign with f(v) = 1−v so that (v−vs)(f(v)−f(vs)) is negative. Similarly, (n−ns) and (vs−δ−νn)
have the opposite sign due to (vs−δ−νn) = ν(ns−n). Therefore

∫

Ω(v−vs)(f(v)−n)+(n−ns)(v−δ−νn)dx
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is negative unless (v, n) = (vs, ns). We now take into account the dispersal term of (21) by using integration
by parts with zero flux boundary condition

∫

Ω

v − vs

v
vxx +

n − ns

γn
(ǫnxx − (χ(v)vxn)x)dx

= −
∫

Ω

(v − vs

v

)

v
(vx)2 + ǫ

(n − ns

γn

)

n
(nx)2 −

(n − ns

γn

)

n
χ(v)nvxnxdx

= −
∫

Ω

vs

v2
(vx)2 + ǫ

ns

γn2
(nx)2 − ns

γn
χ(v)vxnxdx

= −
∫

Ω
XT AXdx,

where X =

(

vx

nx

)

and A =

( vs

v2 − ns

2γn
χ(v)

− ns

2γn
χ(v) ǫ ns

γn2

)

. Thus the matrix A is symmetric. Hence if A is

positive definite, all eigenvalues of the matrix A are positive. Here tr(A) = vs

v2 + ǫ ns

γn2 is positive. Thus a

positive determinant ∆(A) = vs

v2 ǫ ns

γn2 − n2
s

4γ2n2 χ(v)2 guarantees two positive eigenvalues for the matrix A.

As a result, for (v, n) ∈ NL
dV
dt

< 0. With the specific example of χ(v) = b
v
, we have the condition for

positive eigenvalues that 4ǫγ > ns

vs
b2. For the special case of χ(v) = 0, i.e. diffusion-only case, the matrix A

is always positive definite for NL. Therefore the functional V (v, n) is shown to be a Lyapunov functional
under the condition specified above. Thus V (v, n) → 0 as t → ∞, so v → vs and n → ns. Therefore the
homogeneous steady state (vs, ns) is globally asymptotically stable.�

4. Conclusion

In this paper we considered pattern formation for a predator-prey taxis model of reaction-diffusion-
advection type given by (1), (2). We considered various reaction terms: for the predator term they include
type I and type II functional responses as well as ratio dependent functional responses. We considered
constant and density-dependent death rate of the predator, and logistic growth or an Allee type growth
for the prey.

In summary, the following functional forms support spatial pattern formation:

(i) a density-dependent death rate, e.g. δ(n) = δ + νn, and an Allee effect, e.g. f(v) = K(1 − v)(v − a),
and a type I functional response, e.g. h(v, n) = v.

• Patterns form with no prey-taxis (Section 2.1)

• Patterns persist with small prey-taxis but disappears for large prey-taxis (Section 2.2)

• Patterns disappear when Allee dynamics are replaced by logistic dynamics (Section 2.7)
(ii) a hyperbolic ratio-dependent functional response, e.g. h(v, n) = µv

dn+v
and logistic growth, e.g. f(v) =

1 − v.

• Patterns form with no prey-taxis (Section 2.4)

• Patterns persist with small prey-taxis but disappears for large prey-taxis (Section 2.4)

• Patterns disappear if a hyperbolic functional response is replaced by a linear functional response
(Section 2.3)

(iii) a density-dependent death rate, e.g. δ(n) = δ + νn, and a type II functional response, e.g. h(v, n) =
(α+1)v

v+α
.

• Patterns form with no prey-taxis (Section 2.5)

• Patterns persist with small prey-taxis but disappears for large prey-taxis (Section 2.5)

• Patterns disappear if a density-dependent predator death rate is replaced by a constant predator
death rate (Section 2.6)
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The significance of this research is as follows; contrary to a diffusion process which may give rise to
pattern formation, prey-taxis tends to stabilize predator-prey interactions (Theorem. 2.3). In the long run,
prey-taxis tends to transform heterogeneous environments into homogeneous environments, which gives an
opposite result to the chemotaxis case. Under strong chemotactic sensitivity, amoebae tend to aggregate
[29]. Hence the role of taxis may be strongly related to the local population dynamics of the species.

In this paper, prey-taxis is shown to tend to reduce the likelihood of pattern formation in spatial predator-
prey systems, but other kinds of taxis may have the opposite effect on pattern formation. For example,
we may investigate prey defences. Prey tend to adjust their relative position to the predator to reduce
predation risk [10, 24, 37, 38]. We may apply the concept of prey–taxis to prey escape response to predator
density. It may refer to predator–taxis. For instance, crayfish (prey) exhibit different activities depending
on the presence of a predator (bass). An increased predation risk restricts crayfish foraging and increases
anti–predator behaviour such as shelter seeking [8, 11]. Another interesting taxis is that predators may
attract their prey to come nearby [31]. In this case, prey move toward predators. As a conjecture, from
(8) we may predict that positive predator-taxis (away from predators) tend to generate pattern formation
but negative predator-taxis (towards predators) tend to inhibit pattern formation. However, the detailed
argument is left for future work.
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TABLES 17

Table 1. The possibility of spatial pattern formation is considered in the spatial predator-

prey system (1)-(2) with various functional responses, h, prey population dynamics, f , and

predator death rates, δ. We study type I (linear) functional response of the form h(v, n) =

v, type II (hyperbolic) functional response of the form h(v, n) = (α+1)
α+v

v, linear ratio

functional response of the form h(v, n) = ν0
v
n

, and hyperbolic ratio functional response

of the form h(v, n) = µv
dn+v

. Constant death rate means δ(n) = δ and density-dependent

death rate means δ(n) = δ + νn. For logistic growth rate, we have f(v) = 1 − v, and for

an Allee effect we have f(v) = K(1 − v)(v − a). The parameters α, ν0, µ, d, ν, K, and a

are all positive constants.

functional death rate prey pattern pattern
response δ(n) = δ + νn growth formation formation Section
h(v, n) f(v) without with diffusion

taxis & taxis

linear density-dependent Allee yes yes for 2.1 &
(ν 6= 0) small taxis 2.2

linear ratio constant (ν = 0) logistic no no 2.3

hyperbolic constant (ν = 0) logistic yes yes for 2.4
ratio small taxis

hyperbolic density-dependent logistic yes yes for 2.5
(ν 6= 0) small taxis

hyperbolic constant (ν = 0) logistic no no 2.6

linear density-dependent logistic no no 2.7
(ν 6= 0)
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18 FIGURES

The two nullclines and the coexistence steady state

V

N

V = δ

V = 1V = a

N = K(1 − V )(V − a)

(vs, ns)

v̄ = a+1
2

N = V −δ
ν1

N = V −δ
ν2

1

Figure 1. The v-nullcline N = K(1 − V )(V − a) is shown as a solid curve. For two values of ν we show the corresponding n-nullcline,

N = V −δ

ν
as a dashed line and a dash-dotted line. The equilibrium (vs, ns) is the intersection of the nullclines. We have chosen two

values of ν so that vs < v̄ for ν1 and vs > v̄ for ν2 with ν1 < ν2.
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FIGURES 19

The existence of positive vs

f1(vs) = Kvs(1 + a − 2vs)

0 δ 1+a

2
vs

f2(vs) = γ(vs − δ)

Figure 2. Plot of the left and right hand sides of (16) as function of vs. The region of A + D < 0 is where the dashed line lies above
the curve.
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The positive real part of eigenvalues vs. wavenumbers

wavenumbers of unstable nodes

T

Re(λ)

0
T2T1

Tc

Figure 3. Plot of the eigenvalue λ(k2) as a function of T with T = k2.
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Figure 4. Coexistence steady state is shown to be locally asymptotically stable for system (1)-(2) without dispersal terms and with
f(v) = 16(1 − v)(v − 0.5), h(v, n) = v, and δ(n) = 0.6 + 0.1n. Time step is dt = 0.01 and γ = 13. Here the coexistence steady state is

(vs, ns) = (0.695, 0.952).
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Diffusion-only

Figure 5. Coexistence steady state is shown to be locally unstable for system (1)-(2) with χ(v) = 0.0, f(v) = 16(v − 0.5)(1 − v),
h(v, n) = v, and δ(n) = 0.6 + 0.1n. Spatial grid size is dx = 0.25, time step dt = 0.01, and γ = 14 with 60 time units. The diffusion

coefficient ǫ is 0.01. Here the coexistence steady state is (vs, ns) = (0.695, 0.952).



December 22, 2008 10:22 Journal of Biological Dynamics Jungmin02

FIGURES 23

Diffusion-only
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Figure 6. With the same parameters in Figure 5, we demonstrate a snapshot of the spatial prey and predator distributions after 60
time units between dimensionless spatial location 10 and 15.
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The role of prey-taxis to inhibit instability

f2(T ) = BχnsT

T0

T1 T2

T3 T4

f1(T ) = ǫT 2
− (A + ǫD)T + AD − BC

Figure 7. Plot of the left and right hand sides of equation (18) as a function of T with T = k2. The solid curve is from the left hand
side of equation (18) and the dashed lines are from the right hand side of equation (18). As χ varies, the number of intersection changes

from zero to two. Note that B is negative.
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Figure 8. Coexistence steady state is shown to be locally asymptotically stable for system (1)-(2) without dispersal terms and with

h(v, n) = 0.8v

0.05n+v
, f(v) = 1 − v, and δ(n) = 0.76. Time step is dt = 0.005, and γ = 15. Here the coexistence steady state is

(vs , ns) = (0.2, 0.211).
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Diffusion-only

Figure 9. Coexistence steady state is shown to be locally unstable for system (1)-(2) with h(v, n) = 0.8v

0.05n+v
, f(v) = 1 − v, and

δ(n) = 0.76 and with χ(v) = 0.0. The diffusion coefficient ǫ is 0.01. Spatial grid size is dx = 0.25, time step dt = 0.01, and γ = 15. Here
the coexistence steady state is (vs, ns) = (0.2, 0.211).
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Diffusion-only

Figure 10. Coexistence steady state is shown to be asymptotically unstable for the system (1-2) with χ = 0, f(v) = 1 − v,

h(v, n) = v
(α+1)
α+v

, and δ(n) = δ + νn with α = 0.2, δ = 0.6, γ = 1.2, and ν = 0.4. The diffusion coefficient ǫ is 0.01. Spatial grid size is

dx = 0.25, and time step dt = 0.01 with 60 time units. Here the coexistence steady state is (vs, ns) = (0.2962932807, 0.2910374303).


