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Abstract. Transport equations are intensively used in Mathematical Biology.

In this article the moment closure for transport equations for an arbitrary

finite number of moments is presented. With use of a variational principle the

closure can be obtained by minimizing the L2(V )-norm with constraints. An
H-Theorem for the negative L2-norm is shown and the existence of Lagrange

multipliers is proven. The Cattaneo closure is a special case for two moments
and was studied in Part I (Hillen 2003). Here the general theory is given and
the three moment closure for two space dimensions is calculated explicitly. It

turns out that the steady states of the two and three moment systems are
determined by the steady states of a corresponding diffusion problem.

1. Introduction. In this article the moment closure for a class of transport equa-
tions is studied, which are used in mathematical biology. Based on a variational
principle the moment system will be closed for general turning kernel, for general
bounded spaces of velocities and for an arbitrary finite number of moments. The
L2-moment closure was introduced in an earlier paper (Part I) [6], where the 2-
moment closure (Cattaneo approximation) for a specific transport equation was
studied in detail. In Part I nonlinearities due to birth, death, cell interactions,
and oriented movement were also studied. The general theory is developed further
in this paper for linear transport equations. Extensions to the nonlinear case are
briefly mentioned.

The moment closure procedure is based on an L2-norm minimization method.
Besides of a careful notation of tensor indices, the moment closure requires two
main ingredients, which are proven in this paper. First an H-Theorem for the
negative L2-norm (Theorem 3.5), which ensures that the negative L2-norm can be
seen as a physical entropy for the transport equation. The closure then corresponds
to entropy maximization. Secondly, the existence of Lagrange multipliers for the
associated variational problem is proven in Theorem 3.6.

In Hadeler [4] and Hillen [5, 6, 7] the relevance of transport equations and mo-
ment closure to biological applications is discussed in detail. The relations to other
moment closure methods as they are known for Boltzmann equations [3], for the
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semiconductor transport equation [15, 10] and in the theory of Extended Thermo-
dynamics [11] are presented. A large number of references is given in Part I. For
this paper, a short introduction is sufficient.

The paper proceeds as follows. In Section 2 a class of transport equation in a
general form is introduced. Some basic notations for moments, moment tensors
and velocity tensors are given. Section 3 presents the L2-moment closure proce-
dure. The H-Theorem (Theorem 3.5) and the existence of Lagrangian multipliers
(Theorem 3.6) are proven. The latter is a key to obtain the moment closure. In
Extended Thermodynamics the existence of Lagrangian multipliers was shown by
Liu [9]. Liu’s result is specific to the physical application and not applicable to the
case studied here. Theorem 3.6 is proven with the use of basic variational princi-
ples. Also in Section 3 explicit formulas for the closed systems are given (equations
(28)-(31)). In Section 4 two examples of the theory are given: the 2-moment Cat-
taneo closure, which was discussed in Part I [6] in detail, and the 3-moment closure
in two spatial dimensions. “Three-moment closure” refers to closure for the fourth
order moment. In 3-D the three-moment closure consists of 13 dependent functions
(M0,M1,M2,M3,M11, . . . ,M33). Finally, in Section 5 the steady states are calcu-
lated for the 2- and 3-moment closures and it is shown that they are steady states
of the corresponding diffusion limit.

2. Transport Equations. As shown by Stroock [16] and Othmer et al. [12] the
movement characteristics of flagellated bacteria and other organisms can be modeled
by a linear transport equation for the population density p(t, x, v) at time t ≥ 0,
space x ∈ Rn and velocity v ∈ V ⊂ Rn. The set of velocities V is compact and in
some cases, where indicated, symmetry is assumed. The linear transport equation
reads

∂

∂t
p(t, x, v) + v · ∇p(t, x, v) = −µp(t, x, v) + µ

∫

V

T (v, v′)p(t, x, v′)dv′, (1)

where µ denotes the turning rate and T (v, v′) the distribution of newly chosen veloc-
ities. Transport equations with nonlinearities and with terms for oriented movement
are discussed in Part I [6] and also in [1]. In Hillen and Othmer [8, 13] the diffu-
sion limit of transport equations was considered in great detail. General conditions
were given such that a diffusion limit exists, which usually is non-isotropic. More-
over, applications to reaction-transport equations and to transport equations for
chemosensitive movement were considered. See also the review [5].

As in Hillen et al. [7, 8], the following basic assumptions are made:

(T1) T (v, v′) ≥ 0,
∫

V
T (v, v′)dv = 1, and

∫

V

∫

V
T 2(v, v′)dv′dv <∞.

(T2) There exist some u0 ≥ 0 with u0 6≡ 0, some integer N and a constant ρ > 0
such that for all (v, v′) ∈ V × V

u0(v) ≤ TN (v′, v) ≤ ρu0(v),

where the N -th iterate of T is

TN (v, v′) :=

∫

. . .

∫

T (v, w1)T (w1, w2) · · ·T (wN−1, v
′)dw1 . . . dwN−1.

(T3) We introduce an integral operator T by

T p =

∫

V

T (v, v′)p(v′)dv
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and we assume that ‖T ‖〈1〉⊥ < 1, where 〈1〉⊥ denotes the orthogonal comple-

ment of the subspace 〈1〉 ⊂ L2(V ) of functions constant in v.
(T4)

∫

V
T (v, v′)dv′ = 1.

The turning operator is defined as L := −µ(I−T ) and Proposition 2.1 of [8] applies:

Proposition 2.1. Assume (T1)-(T4). Then

1. 0 is a simple eigenvalue of L with eigenfunction φ(v) ≡ 1.
2. There exists an orthogonal decomposition L2(V ) = 〈1〉 ⊕ 〈1〉⊥ and for all
ψ ∈ 〈1〉⊥ we have

∫

ψLψdv ≤ −ν2‖ψ‖
2
L2(V ), with ν2 ≡ µ(1− ‖T ‖〈1〉⊥).

3. Each eigenvalue λ 6= 0 satisfies −2µ < Re λ ≤ −ν2 < 0, and there is no other
positive eigenfunction.

4. ‖L‖L(L2(V ),L2(V )) ≤ 2µ.

5. L restricted to 〈1〉⊥ ⊂ L2(V ) has a linear inverse F with norm

‖F‖L(〈1〉⊥,〈1〉⊥) ≤
1

ν2
.

In addition to (T1)-(T4) we assume that

(T5) For each v′ ∈ V there exists a moment-generating function for T (., v′).

Assumption (T5) ensures that the v-moments of the kernel T are bounded and
that the distribution T (., v′) can be generated from its moments (see Billingsley [2]).

With use of Stone’s theorem (see e.g. Pazy [14]) it is straightforward that under
the above assumptions the transport equation (1) generates a strongly continuous
solution group on L2(Rn × V ). For initial data

φ0 ∈ D := {φ ∈ L2(Rn × V );φ(., v) ∈ H1(Rn)}

a unique solution exists globally in

X = C1([0,∞), L2(Rn × V )) ∩ C([0,∞),D). (2)

2.1. Notations. A careful notation of tensor indices is absolutely necessary for
the theory to be developed further. The following notations turns out to be very
helpful.

The velocity moments of a distribution function p(t, x, v) are defined as

m0(t, x) =

∫

p(t, x, v)dv

mi(t, x) =

∫

vip(t, x, v)dv, i ∈ {1, . . . , n}

...

mi1...ik(t, x) =

∫

vi1 · · · vikp(t, x, v)dv, k ∈ N, (i1, . . . , ik) ∈ {1, . . . , n}
k.

Here tensor notation is used, which means that mi1...ik denotes the (i1, . . . , ik)-
component of a k-tensor. In Euclidean space Rn, both sub and super indices are
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used and the summation convention is applied on repeated indices, e.g.

Λi1...ikm
i1...ik =

∑

(i1,...,ik)∈{1,...,n}k

Λi1...ikm
i1...ik .

It is, however, ensured that a specific function or parameter appears only covariant
or contravariant, respectively.

For fixed k ∈ N the tuple of all tensor indices for tensors of lower than or equal
to order k is denoted by

αk := (0, 1, 2, . . . , n, (1, 1), (1, 2), . . . , (n, n), . . . ,

. . . , (1, . . . , 1
︸ ︷︷ ︸

k times

), . . . , (n, . . . , n
︸ ︷︷ ︸

k times

)). (3)

The index-vector αk has the length

|αk| =

k∑

l=0

nl =: Nk.

Then mαk denotes a vector of length Nk of all moments of order ≤ k:

mαk :=
(
m0,m1,m2, . . . ,mn,m11,m12, . . . ,mnn, . . . ,

. . . , m1...1, . . . ,mn...n
)
.

(4)

This notation is used for products of velocity components as well; vi1...il = vi1 · · · vil

and it makes sense to write vαk .
To distinguish between different summations βk is used equivalently with αk.

2.2. The Velocity Tensors. The mean of the velocity tensors are defined as

v̄i1...ik :=

∫

vi1 · · · vikdv.

For the specific choice of V = sSn−1 the v̄i1...ik can be calculated explicitly: It is
clear that v̄0 =

∫
dv = ω = ω0s

n−1, with ω0 = |Sn−1|, and that v̄i =
∫
vidv = 0.

Moreover, explicit formulas for the velocity tensors v̄i1...ik for odd and even orders
are given.

Lemma 2.2. Assume V = sSn−1.

1. If k ∈ N is odd, then

v̄i1...ik = 0, for all i1, . . . , ik ∈ {1, . . . , n}.

2. If k ∈ N is even, then there is a constant ck > 0 such that

v̄i1...ik = sk+n−1ck




∑

P(i1,...,ik)

δij1 ij2 . . . δijk−1
ijk



 , (5)

where the set of all pairs of indices out of (i1, . . . , ik) is defined as

P(i1, . . . , ik) :=
{ (

(ij1 , ij2), . . . , (ijk−1
, ijk

)
)

: {j1, . . . , jk} = {1, . . . , k}
}

.

The constants ck are given by

c0 = ω0, c2 =
ω0

n
, ck =

ck−2

k − 2 + n
, for k ≥ 4.
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Proof. 1.: Let (i1, . . . , ik) ∈ {1, . . . , n}
k. In case of k odd we split V into V + and

V − defined by

V + := {v ∈ V : vi1 > 0}, V − := {v ∈ V : vi1 < 0}.

Then for each v ∈ V + we have −v ∈ V −. Since the set of {vi1 = 0} ⊂ V is a set of
measure zero we get

v̄i1...ik =

∫

V +

vi1 · · · vikdv +

∫

V −
vi1 · · · vikdv

=

∫

V −
(−1)kvi1 · · · vikdv +

∫

V −
vi1 · · · vikdv = 0

since k is assumed to be odd.

2.: In the case of k even we use an induction argument and the divergence
theorem on the ball Bs(0) in Rn.
k = 0: v̄0 = ω0s

n−1.
k = 2: For any two vectors a1, a2 ∈ Rn we obtain

a1
i1
a2
i2
v̄i1i2 =

∫

V

(a1
i1
vi1a2

i2
vi2)dv

= s

∫

V

vi1
|v|

(a1,i1a2
i2
vi2)dv

= s

∫

Bs(0)

∂vi1
(a1,i1a2

i2
vi2)dv

= s

∫

Bs(0)

dv a1,i1a2
i2
δi2i1

Now we have

|Bs(0)| = sn|B1(0)| =
sn

n

∫

B1(0)

∂vi
vidv =

sn

n

∫

Sn−1

σiσ
idσ =

sn

n
ω0.

Then we get

a1
i1
a2
i2
v̄i1i2 = sn+1ω0

n
a1
i1
a2
i2
δi1i2 ,

which shows that

v̄i1i2 = sn+1ω0

n
δi1i2 . (6)

Since in the case k = 2 the set of pairs P(i1, i2) for i1, i2 ∈ {1, . . . , n} reduces to

P(i1, i2) =
{
(ij1 , ij2) : {j1, j2} ∈ {1, 2}

2 with {j1, j2} = {1, 2}
}

= {(i1, i2)},

we obtain
∑

P(i1,i2)

δij1 ij2 = δi1,i2 .

and (6) is (5) for k = 2.
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k − 2→ k: Assume (5) holds for k−2. For any vectors a1, . . . , ak ∈ Rn we have

a1
i1
. . . akik v̄

i1...ik =

∫

V

(a1
i1
vi1 . . . akikv

ik)dv

= s

∫

V

vi1
|v|
a1,i1

(
a2
i2
vi2 . . . akikv

ik
)
dv

= s

∫

Bs(0)

∂vi1
a1,i1

(
k∏

l=2

alilv
il

)

dv

= s

∫

Bs(0)

dv a1,i1

k∑

r=2

arirδ
ir
i1





k∏

l=2,l 6=r

alilv
il



 dv

= sa1,i1

k∑

r=2

arirδ
ir
i1

∫

Bs(0)

k∏

l=2,l 6=r

alilv
il dv. (7)

To exclude one entry from a tuple we will now use the notation for l ≤ r ≤ k, l < k

(il, . . . , ik)\{r} :=







(il+1, . . . , ik), if r = l,
(il, . . . , ir−1, ir+1, . . . ik) if l < r < k,
(il, . . . , ik−1), if r = k.

With use of this notation we study the integral term in (7) separately. We will use
the assumption that (5) holds for k − 2.

∫

Bs(0)

k∏

l=2,l 6=r

alilv
il dv

=

∫ s

0

∫

σSn−1





k∏

l=2,l 6=r

alilv
il



 dvdσ

=

∫ s

0

σk−2+n−1ck−2

(
a2
i2
. . . akik

)

\{r}

∑

P((i1,...,ik)\{r})

δij1 ij2 . . . δijk−3
ijk−2 dσ

=
sk−2+n

k − 2 + n
ck−2

(
a2
i2
. . . akik

)

\{r}

∑

P((i1,...,ik)\{r})

δij1 ij2 . . . δijk−3
ijk−2 .

Using this equality in (7) we finally get

a1
i1
. . . akik v̄

i1...ik

= sk+n−1 ck−2

k − 2 + n
a1,i1

k∑

r=2

arirδ
ir
i1




(
a2
i2
. . . akik

)

\{r}

∑

P((i1,...,ik)\{r})

δij1 ij2 . . . δijk−3
ijk−2





= sk+n−1ck




∑

P(i1,...,ik)

δij1 ij2 . . . δijk−1
ijk



 .
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Example for P(i1, . . . , i4):

P(i1, . . . , i4) =
{(

(ij1 , ij2), (ij3 , ij4)
)

:

{j1, j2}, {j3, j4} ∈ {1, 2, 3, 4}
2, with {j1, j2, j3, j4} = {1, 2, 3, 4}

}

=
{(

(i1, i2), (i3, i4)
)

,
(

(i1, i3), (i2, i4)
)

,
(

(i1, i4), (i2, i3)
)}

. (8)

In case of n = 2 with polar representation v = s(cos θ, sin θ) we explicitly calculate,
e.g.

v̄1111 =

∫ 2π

0

cos4 θdθ = 3
π

4
, v̄1122 =

∫ 2π

0

cos2 θ sin2 θdθ =
π

4
,

v̄1222 =

∫ 2π

0

cos θ sin3 θdθ = 0.

2.3. Symmetry of the Moments and the Velocity Tensors.

Lemma 2.3. The tensors mi1...ik , and v̄i1...ik are invariant with respect to exchange
of two indices.

This follows directly from the definitions of mi1...ik , and v̄i1...ik . For later use we
will introduce an operator for change of two indices. For 1 ≤ r ≤ l ≤ k, 1 < k we
define

ηr,l(i1, . . . , ir, . . . , il, . . . , ik) := (i1, . . . , il, . . . , ir, . . . , ik).

And we allow ηr,l to act on tensors and vectors as well, i.e.

ηr,la
i1...ik := aηr,l(i1...ik), etc..

3. Moment Closure. We derive the system of moment equations by multiplying
with combinations of vi1 · · · vik and integrating along V : Integration of (1) leads,
with

∫
T (v, v′)dv = 1, to a conservation law for the particle number:

m0
t + ∂jm

j = 0. (9)

For higher-order moment equations we use the following abbreviation. Let the
T -modulated moments of p(t, x, v) be denoted by

wi1...ik :=

∫

V

∫

V

vi1 · · · vikT (v, v′)p(t, x, v′)dv′dv. (10)

Using this definition, multiplication of equation (1) by vi and integration leads
to

mi
t + ∂jm

ij = −µmi + µ

∫ ∫

viT (v, v′)dv p(t, x, v′)dv′

= µ(wi −mi). (11)

and analogously we get for the l-moment, l ≤ k :

mi1...il + ∂jm
i1...ilj = µ(wi1...il −mi1...il). (12)

Finally, for all k ∈ N we have the system of moments which consists of equations (9),
(11) and (12) for all l ≤ k. In the highest-order equation for mi1...ik the divergence
of the next higher moment mi1...ikj appears, hence the system is not closed. If,
moreover, the T -modulated moments depend on moments of p of order > k, then
these higher moments appear as well. We will show that in some important cases
the T -modulated moments of order k are linear functions of p-moments of order less
than or equal to k (Lemma 3.3). We give two examples first:
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Example 3.1. 1. Assume T (v, v′) = 1/ω describes uniform choice of any direc-
tion. Then

wi1...ik =
v̄i1...ik

ω
m0.

2. Assume, for example, that T (v, v′) = δ(v − v′) (which is not included in our
general hypotheses, but illustrates possible dependencies). Then

wi1...ik = mi1...ik .

Since we aim to close the moment system (9), (11) and (12) with respect to the
k-th order moment we distinguish two cases:

Definition 3.2. The system of moments (9), (11) and (12) is called k-quasi closed
if all T -modulated moments of order less than or equal to k depend on p only via
the moments of p of order less than or equal to k, but not higher, i.e.

wαk = wαk(mαk).

The moment systems in both examples in Example 3.1 are k-quasi closed for
each k ∈ N, k ≥ 1.

If the moment system is not k-quasi closed then we have to use the minimization
procedure below to find good approximations for wαk as well.

Lemma 3.3. 1. If wi1...ik depends on some moments of p it is a linear function
of these.

2. System (9), (11) and (12) is k-quasi closed if and only if the moments of
T (v, v′) are linear in v′αk , i.e. for each v ∈ V there exists a linear mapping
Rαk×βk

: RNk → RNk such that
∫

vαkT (v, v′)dv = Rαk×βk
v′

βk . (13)

Proof.

1. We write

wi1...ik =

∫

Qi1...ik(v′)p(v′)dv′, with Qi1...ik(v) =

∫

vi1 · · · vikT (v, v′)dv′.

Now assume wαk = wαk(mαj ) for some j ∈ N. Then for two functions p, q ∈
L2(V ) and c1 ∈ R we have

wαk
(
c1m

αj
p +mαj

q

)
=

∫

Qαk(v′) (c1p(v
′) + q(v′)) dv′

= c1w
αk
(
mαj

p

)
+ wαk

(
mαj

q

)
.

2. We assume that the moment system is k-quasi closed. Since wαk is a linear
function in mαk , we can find a linear map Rαk×βk

: RNk → RNk with

wαk = Rαk×βk
mβk =

∫

Rαk×βk
v′βkp(v′)dv′. (14)

On the other hand

wαk =

∫ ∫

vαkT (v, v′)p(v′)dv′,

which equals (14) if and only if
∫ [

Rαk×βk
v′βk −

∫

vαkT (v, v′)dv

]

p(v′)dv′ = 0, for all p ∈ L2(V ).
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This is true only if

Rαk×βk
v′βk =

∫

vαkT (v, v′)dv.

Example 3.4. Besides the examples shown above we get a k-quasi closed moment
system if T has the form

T (v, v′) = a0(v) + ai(v)v
′i + · · ·+ ai1...il(v)v

′i1 . . . v′il (15)

for some l ≤ k and bounded integrable coefficients aαk
(v).

Note. If a system of moments is l-quasi closed it does not need to be k-quasi
closed for k > l.

3.1. Minimizing the L2-Norm. First we show that the negative L2-norm is an
entropy for the transport model (1). We denote the L2(V )-norm by

E(u) :=

∫
u2

2
dv

and the corresponding flux by

F (u) :=

∫

v
u2

2
dv.

Theorem 3.5. (H-Theorem) Assume (T1)-(T4). Solutions p(t, x, v) ∈ X of the
linear transport equation (1) satisfy

d

dt
E(p) + ∂jF

j(p) ≤ 0.

Proof.
d

dt
E(p) =

∫

p(−vj∂jp+ Lp)dv = −∂jF
j(p) +

∫

pLp dv.

In Proposition 2.1 it has been shown that on 〈1〉⊥ the operator L0 satisfies
∫

pLp dv ≤ −µ2‖p‖
2
2.

For p(t, x, .) ∈ 〈1〉 we have
∫
pLp dv = 0. Hence the entropy estimate follows.

For now we fix (t, x) as a parameter and consider the dependence on v. For
functions in L2(V ) we aim to minimize the functional E(u) with constraints of
given moments mαk of order less than or equal to k:

G(u) = 0, with G(u) =

∫

vαku(v)dv −mαk .

Note that αk defines a multi-index such that G : L2(V )→ RNk .
For minimization of E under the constraint G = 0 we use the framework of

Lagrangian multipliers as presented e.g. in Zeidler [17]. If u0 is a minimizer, then

E′(u0) : L
2(V )→ R : h 7→

∫

u0(v)h(v)dv

G′(u0) : L
2(V )→ RNk : h 7→

∫

vαkh(v)dv.
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Theorem 3.6. Assume umin is a minimizer, then there exist Lagrangian multipliers
Λαk

∈ RNk such that all φ ∈ L2(V ) satisfy

E′(umin)φ+ Λαk
G′(umin)φ = 0,

where the summation convention is applied for Λαk
G′(umin)φ, since G

′(umin)φ ∈
RNk .

Proof. For the existence of Lagrangian multipliers we have to check two conditions
(see Zeidler [17])

: (i) For each h ∈ L2(V ) with G′(umin)h = 0 there exists a curve ũ(s) such that
ũ′(0) = h and ũ is admissible, which means that ũ is differentiable at s = 0
and G(u(s)) = 0 for s ∈ (−ε, ε) for some ε > 0.

: (ii) The range R(G′(umin)) is closed.

We first check (i): Consider h ∈ L2(V ) with G′(umin)h = 0. Then
∫

vαkh(v)dv = 0αk , (16)

which means that the first k moments of h vanish identically (here 0αk denotes the
zero of RNk .) We define a curve

ũ(v, s) := p(v) + h(v)s

which satisfies
∂

∂s
ũ(v, 0) = h(v)

and

G(ũ(v, s)) =

∫

vαkp(v)dv +

∫

vαkh(v)dv s−mαk = 0αk ,

with use of (16). Then ũ(v, s) is admissible, i.e. It is tangential to relative minima
of the functional E. Then indeed for each h ∈ L2(V ) with G′(umin)h = 0 there is
an admissible curve ũ and condition (i) is satisfied.
Condition (ii) is immediate in this case. Since G′(umin) is a linear mapping into a
finite dimensional space, its range is closed.

From Theorem 3.6 it follows that for all φ ∈ L2(V ) we get
∫

umin(v)φ(v)dv + Λαk

∫

vαkφ(v) dv = 0.

Hence the integrand vanishes pointwise and the minimizer satisfies:

umin = −Λαk
vαk . (17)

The first k moments of the minimizer umin are given by the constraints G(umin) = 0,
hence we obtain for l ≤ k (i1, . . . , il) ∈ {1, . . . , n}

l

mi1...il = −

∫

vi1 · · · vilΛαk
vαk dv. (18)

This is a linear system for the Lagrangian multiplier Λαk
. Since from Theorem

3.6 we know that this multiplier exists it must be a linear function of the first k
moments. Hence there is a Nk ×Nk-matrix Bαk×βk

with

Λαk
= Bαk×βk

mβk , (19)

hence

umin = −vαkBαk×βk
mβk . (20)
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With use of the notation of the velocity tensor v̄i1...ik introduced above we can write
the linear system (18) in explicit form.

m0 = −Λ0v̄
0 − Λj v̄

j − · · · − Λj1...jk
v̄j1...jk

mi = −Λ0v̄
i − Λj v̄

ij − · · · − Λj1...jk
v̄ij1...jk

...

mi1...ik = −Λ0v̄
i1...ik − · · · − Λj1...jk

v̄i1...ikj1...jk

(21)

In case of V = sSn−1 the odd velocity tensors vanish identically (see Lemma 2.2),
and the system de-couples into two independent systems for odd and even multi-
pliers.

If k ∈ N is even and V = sSn−1 then we obtain for the even indices

m0 = −Λ0v̄
0 − Λj1j2 v̄

j1j2 − · · · − Λj1...jk
v̄j1...jk

mi1i2 = −Λ0v̄
i1i2 − Λj1j2 v̄

i1i2j1j2 − · · · − Λj1...jk
v̄i1i2j1...jk

...

mi1...ik = −Λ0v̄
i1...ik − · · · − Λj1...jk

v̄i1...ikj1...jk

(22)

and for the odd indices

mi = −Λj v̄
ij − · · · − Λj1...jk−1

v̄ij1...jk−1

...

mi1...ik−1 = −Λj v̄
i1...ik−1j − · · · − Λj1...jk−1

v̄i1...ik−1j1...jk−1 .

(23)

In case of k ∈ N is odd and V = sSn−1 then we obtain the following two de-coupled
systems. For the even indices:

m0 = −Λ0v̄
0 − · · · − Λj1...jk−1

v̄j1...jk−1

...

mi1...ik−1 = −Λ0v̄
i1...ik−1 − · · · − Λj1...jk−1

v̄i1...ik−1j1...jk−1

(24)

and for the odd indices

mi = −Λj v̄
ij − · · · − Λj1...jk

v̄ij1...jk

...

mi1...ik = −Λj v̄
i1...ikj − · · · − Λj1...jk

v̄i1...ikj1...jk .

(25)

We will use these equations to consider explicit examples later.
The above systems of equations are invariant under exchange of pairs of indices.

Hence it follows that

Lemma 3.7. The Lagrangian multipliers Λi1...ik are symmetric with respect to
exchange of indices.

Now we proceed with the general notion of (18) to find the general moment
closure.
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3.2. Moment Closure. We consider the unknown (k + 1)-st moment of umin.
Using (20), we get

∫

vi1 · · · vik+1umin(v)dv = −

∫

vi1 · · · vik+1vαkBαk×βk
dv mβk .

Hence the (k + 1)-st moment of umin is a linear combination of the lower-order
moments of the form

mi1...ik+1 = A
i1...ik+1

βk
mβk , (26)

with mappings A
i1...ik+1

βk
: RNk → R given by

A
i1...ik+1

βk
:=

∫

vi1 · · · vik+1vαkBαk×βk
dv. (27)

The next step to obtain the moment closure is to assume that the highest mo-
ment mi1...ik+1 of p(t, x, v) has approximately the same relation to the lower order
moments as umin has, and to replace mi1...ikj in (12) with (26). Since this is an
approximation we switch notation to capital letters M i1...il to distinguish from the
original (exact) values mi1...il .

In cases where the system (9), (11) and (12) is k-quasi closed (see Def. 3.2 and
Lemma 3.3) we obtain the following closed system:

M0
t + ∂jM

j = 0

M i
t + ∂jM

ij = µ(wi −M i)
...

M i1...il
t + ∂jM

i1...ilj = µ(wi1...il −M i1...il)
...

M i1...ik
t + ∂j

(
Ai1...ikj

αk
Mαk

)
= µ(wi1...ik −M i1...ik),

(28)

with wαk = wαk(Mαk) as given in Lemma 3.3.

If the moment system is not k-quasi closed, then the terms wi1...ik in (12) depend
on the original distribution as well. Hence we also assume that they are appropri-
ately approximated by using the minimizer umin instead of p. This way they will
depend on moments of order less than or equal to k. We carry out this approxima-
tion in equation (12) and obtain a closed system for approximations to the first k
moments:

M0
t + ∂jM

j = 0

M i
t + ∂jM

ij = µ(W i −M i)
...

M i1...il
t + ∂jM

i1...ilj = µ(W i1...il −M i1...il)
...

M i1...ik
t + ∂j

(
Ai1...ikj

αk
Mαk

)
= µ(W i1...ik −M i1...ik),

(29)

where for 1 ≤ l ≤ k we have approximate T -modulated moments

W i1...il :=

∫

V

∫

V

vi1 · · · vilT (v, v′)U(t, x, v′)dv′dv (30)
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with an approximate minimizer

U(t, x, v) := −vαkBαk×βk
Mβk , (31)

and Bαk×βk
is given by (19).

Note that the system (29)-(31) indeed defines a closed system for Mαk .

4. Examples.

4.1. The Cattaneo Approximation. To obtain the Cattaneo model as a second-
order moment approximation we recall the arguments from Part I [6]. We study a
transport equation with fixed speed s, and constant turn-angle distribution T (v, v ′) =
1
ω
. In this case V = sSn−1 with s > 0 and we denote ω = |V | = sn−1ω0, where

ω0 = |Sn−1|.
Then the linear transport equation (1) reads

pt + v · ∇p = µ

(
m0

ω
− p

)

. (32)

The system for the first two moments is

m0
t + ∂jm

j = 0,

mi
t + ∂jm

ij = −µmi.

The entropy maximizer can be explicitly calculated as

umin(t, x, v) =
1

ω

(

m0(t, x) +
n

s2
(vim

i(t, x))
)

, (33)

where the Lagrange multipliers are given by

Λ0 =
1

ω
m0, Λi =

n

ωs2
mi, for i = 1, 2, 3.

The second moment of the above maximizer is

mij(umin) =
s2

n
m0δij ,

with transition matrices

Aij
β2

=
s2

n
δij







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






.

Since T is constant the moment system is 2-quasi closed. Hence the two-moment
closure is given by a linear Cattaneo system

M0
t + ∂jM

j = 0,

M i
t +

s2

n
∂iM

0 = −µM i.
(34)

In Part I we also consider nonlinear terms and drift terms and we prove approxi-
mation properties for the two-moment closure. For details we refer to Part I [6].
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4.2. The Three-Moment Equations. In case of k = 3 and n = 2 and V = sS1

we study the above procedure explicitly to find a closed system for the first three
moments M0,M i,M i1,i2 , i, i1, i2 ∈ {1, 2}. The 3-moment system reads:

m0
t + ∂jm

j = 0

mi
t + ∂jm

ij = µ(wi −mi), i = 1, 2

mi1i2
t + ∂jm

i1i2j = µ(wi1i2 −mi1i2) i1, i2 = 1, 2.

(35)

We use systems (24) and (25) to find expressions for the Lagrangian multipliers
Λ0,Λi,Λi1i2 . In the present case system (25) for odd indices is

(
m1

m2

)

= −

(
v̄11 v̄12

v̄21 v̄22

)(
Λ1

Λ2

)

. (36)

Now, with use of Lemma 2.2, we obtain, with ω0 = |S1| = 2π,

v̄11 = v̄22 = s3π, v̄12 = v̄21 = 0.

Then (36) is immediately solved with

Λi = −
1

πs3
mi, for i = 1, 2. (37)

The system (24) for the even indices reads in this case:








m0

m11

m12

m21

m22









= −









v̄0 v̄11 v̄12 v̄21 v̄22

v̄11 v̄1111 v̄1112 v̄1121 v̄1122

v̄12 v̄1211 v̄1212 v̄1221 v̄1222

v̄21 v̄2111 v̄2112 v̄2121 v̄2122

v̄22 v̄2211 v̄2212 v̄2221 v̄2222

















Λ0

Λ11

Λ12

Λ21

Λ22









. (38)

Again we use Lemma 2.2 to obtain explicit values for the velocity tensors. Especially
in (8) we explicitly calculated the four-velocity tensor. In the present case the
relevant constant is c4 = π

4 . Then the matrix in (38) is given by








s2π s3π 0 0 s3π
s3π 3σ 0 0 σ
0 0 σ σ 0
0 0 σ σ 0
s3π σ 0 0 3σ









with σ = s5
π

4
.

Hence the equations for the mixed indices de-couple and due to symmetry (see
Lemmata 2.3, 3.7) we have m12 = m21 and Λ12 = Λ21. Then it follows from (38)
that

Λ12 = Λ21 = −
2

s5π
m12. (39)

The remaining system for Λ0,Λ11 and Λ22 reads




m0

m11

m22



 = −





s2π s3π s3π
s3π 3σ σ
s3π σ 3σ









Λ0

Λ11

Λ22



 .

We denote the above matrix by J and observe that

det(J) =
π

4
s11 6= 0.
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Hence J is invertible and we get





Λ0

Λ11

Λ22



 = −J−1





m0

m11

m22



 . (40)

When we denote J−1 = (σij)i,j∈{1,2,3} then formula (19) can be written explicitly
as













Λ0

Λ1

Λ2

Λ11

Λ12

Λ21

Λ22













= −Bα2×β2













m0

m1

m2

m11

m12

m21

m22













, (41)

where

Bα2×β2
=













σ11 0 0 σ12 0 0 σ13

0 (πs3)−1 0 0 0 0 0
0 0 (πs3)−1 0 0 0 0
σ21 0 0 σ22 0 0 σ23

0 0 0 0 2(πs5)−1 2(πs5)−1 0
0 0 0 0 2(πs5)−1 2(πs5)−1 0
σ31 0 0 σ32 0 0 σ33













.

Finally the minimizer umin given in (17) reads

umin = −Λ0 − Λjv
j − Λj1j2v

j1vj2 . (42)

4.3. Closure of the 3-Moment Equations. To close the system (35) for the first
three moments m0,mi,mij we consider the third moment of the minimizer umin,
given in (42). For i1, i2, i3 ∈ {1, 2} we obtain, using the representation of v̄:

mi1i2i3(umin) =

∫

vi1vi2vi3umindv

= −Λ0v̄
i1i2i3 − Λj v̄

i1i2i3j − Λj1j2v
i1i2i3j1j2

=
1

πs3
(
m1v̄i1i2i31 +m2v̄i1i2i32

)
.

Then, with (8), we get

m111(umin) =
1

πs3
(
3σm1

)
=

3

4
s2m1

m112(umin) = m121(umin) = m211(umin) =
s2

4
m2

m122(umin) = m212(umin) = m221(umin) =
s2

4
m1

m222(umin) =
3

4
s2m2.
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The linear forms Ai1i2i3 defined in (27) are given by

A111 = (0, 3s2/4, 0, 0, 0, 0, 0)

A112 = A121 = A211 = (0, 0, s2/4, 0, 0, 0, 0)

A122 = A212 = A221 = (0, s2/4, 0, 0, 0, 0, 0)

A222 = (0, 0, 3s2/4, 0, 0, 0, 0),

which are linear forms for the vector mα2 = (m0,m1,m2,m11,m12,m21,m22)T .

The crucial term in (35) is ∂jm
i1i2j . For the moments of umin we get

∂1m
111(umin) + ∂2m

112(umin) =
s2

4

(
3∂1m

1 + ∂2m
2
)

∂1m
121(umin) + ∂2m

122(umin) =
s2

4

(
∂1m

2 + ∂2m
1
)

∂1m
211(umin) + ∂2m

212(umin) =
s2

4

(
∂1m

2 + ∂2m
1
)

∂1m
221(umin) + ∂2m

222(umin) =
s2

4

(
∂1m

1 + 3∂2m
2
)
.

Again we choose capital letters M 0,M i,M ij to finally close the moment system

M0
t + ∂jM

j = 0

M1
t + ∂1M

11 + ∂2M
12 = µ(W 1 −M1)

M2
t + ∂1M

21 + ∂2M
22 = µ(W 2 −M2)

M11
t + s2

4

(
3∂1M

1 + ∂2M
2
)

= µ(W 11 −M11)

M12
t + s2

4

(
∂1M

2 + ∂2M
1
)

= µ(W 12 −M12)

M21
t + s2

4

(
∂1M

2 + ∂2M
1
)

= µ(W 21 −M21)

M22
t + s2

4

(
∂1M

1 + 3∂2M
2
)

= µ(W 22 −M22),

(43)

with

W i1...il :=

∫

V

∫

V

vi1 · · · vilT (v, v′)U(t, x, v′)dv′.

The approximate minimizer is

U(t, x, v) := −Λ0 − Λjv
j − Λj1j2v

j1vj2 (44)

and the approximate multipliers are given by (41) with capitalMα2 instead of mα2 .
It is clear that if system (35) is 2-quasi closed then we obtain (43) with wα2

instead of Wα2 .

4.4. A Specific Example. We assume for now that T (v, v′) = 1
ω
, with ω =

|sS1| = 2πs. Then the moment system is 2-quasi closed (see Example 3.1) and
we have

wα2 =
v̄i1...i2

2πs
M0.

Hence

w0 =M0, w1 = w1 = 0,

w11 = w22 =
s2

2
M0 w12 = w21 = 0.
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Then the closed moment system reads

M0
t + ∂jM

j = 0

M i
t + ∂jM

ij = −µM i, i = 1, 2

M11
t + s2

4

(
3∂1M

1 + ∂2M
2
)

= µ
(
s2

2 M
0 −M11

)

M12
t + s2

4

(
∂1M

2 + ∂2M
1
)

= −µM12

M21
t + s2

4

(
∂1M

2 + ∂2M
1
)

= −µM21

M22
t + s2

4

(
∂1M

1 + 3∂2M
2
)

= µ
(
s2

2 M
0 −M22

)

.

(45)

We consider a scaling limit for large turning rate µ → ∞ but finite speed s < ∞.
Then formally the last four equations of (45) become

M11 =M22 =
s2

2
M0, M12 =M21 = 0. (46)

The whole system (45) reduces to

M0
t + ∂jM

j = 0

M i
t +

s2

2
∂iM

0 = −µM i,

which is exactly the two moment - or Cattaneo - approximation in 2-dimensions (34).

It is important to investigate the classical parabolic limit. As shown earlier
there are two ways to obtain the parabolic limit for transport equations. One is

a parameter scaling of s → ∞, µ → ∞ such that s2

2µ → D < ∞, the other is to

consider scaled space and time variables τ = ε2t and ξ = εx. It is easily checked
that the first limit is not appropriate for the study of (45), since an additional factor
of s2 appears in the equations for M 11 and M22. It is however useful to study the
scaling of τ = ε2t and ξ = εx. In these new coordinates the system (45) reads:

ε2M0
τ + ε∂jM

j = 0

ε2M i
τ + ε∂jM

ij = −µM i, i = 1, 2

ε2M11
τ + ε s

2

4

(
3∂1M

1 + ∂2M
2
)

= µ
(
s2

2 M
0 −M11

)

ε2M12
τ + ε s

2

4

(
∂1M

2 + ∂2M
1
)

= −µM12

ε2M21
τ + ε s

2

4

(
∂1M

2 + ∂2M
1
)

= −µM21

ε2M22
τ + ε s

2

4

(
∂1M

1 + 3∂2M
2
)

= µ
(
s2

2 M
0 −M22

)

.

(47)

We consider solutions of this system which can be written as a perturbation expan-
sion

Mα2 =Mα2

(0) + εMα2

(1) + ε2Mα2

(2).

The order one terms of the above system (47) lead to

M i
(0) = 0, M12

(0) =M21
(0) = 0, M11

(0) =M22
(0) =

s2

2
M0

(0). (48)

From the order ε system we only need the second equation of (47) which has the
following order ε terms:

∂jM
ij

(0) = −µM
i
(1). (49)
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The first equation of the order ε2 system reads

M0
(0),τ + ∂jM

j

(1) = 0. (50)

Together with (49) and the last identity from (48) we obtain the diffusion limit of

M0
(0),τ =

s2

2µ
∂i∂

iM0
(0). (51)

5. Steady States. For dissipative processes steady states are typical candidates for
limit sets. Moreover the study of steady states for different levels of moment closure
helps to get insight into the relation of different closures. Here we consider the
example of constant speed V = s ·S1 in two dimensions with uniformly distributed
velocities T (v, v′) = 1

ω
.

5.1. Cattaneo-Approximation. The system for steady states of the Cattaneo
approximation (34) is

∂jM
j = 0,

s2

2µ
∂jM

0 = −M j , for j = 1, 2.

We introduce the second equation into the first and arrive at the Laplace equation

s2

2µ
∆M0 = 0, and M j = −

s2

2µ
∂jM

0, (52)

which describes exactly the steady states of the corresponding heat equation (51).

5.2. The Three-Moment Closure. The system for stationary solutions of (45)
is

∂1M
1 + ∂2M

2 = 0 (53)

∂1M
11 + ∂2M

12 = −µM1 (54)

∂1M
21 + ∂2M

22 = −µM2 (55)

s2

4
(3∂1M

1 + ∂2M
2) = µ

(
s2

2
M0 −M11

)

(56)

s2

4
(∂1M

2 + ∂2M
1) = −µM12 = −µM21 (57)

s2

4
(∂1M

1 + 3∂2M
2) = µ

(
s2

2
M0 −M22

)

. (58)

We solve (56)-(58) for M ij , i, j = 1, 2 and introduce these into (54) and (55), re-
spectively.

∂1

(
s2

2
M0 −

s2

4µ
(3∂1M

1 + ∂2M
2)

)

− ∂2

(
s2

4µ
(∂1M

2 + ∂2M
1)

)

= −µM1

−∂1

(
s2

4µ
(∂1M

2 + ∂2M
1)

)

+ ∂2

(
s2

2
M0 −

s2

4µ
(∂1M

1 + 3∂2M
2)

)

= −µM2.

Rearrangement leads to

s2

4µ (3∂1∂1 + ∂2∂2)M
1 + s2

4µ (∂1∂2 + ∂2∂1)M
2 = µM1 + s2

2 ∂1M
0

s2

4µ (∂1∂2 + ∂2∂1)M
1 + s2

4µ (∂1∂1 + 3∂2∂2)M
2 = µM2 + s2

2 ∂2M
0.

(59)
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We differentiate the first equation with respect to x1 and the second equation with
respect to x2 and we add the resulting equations. We obtain after rearrangements:

3s2

4µ
((∂2

1 + ∂2
2)(∂1M

1 + ∂2M
2)) = µ(∂1M

1 + ∂2M
2) +

s2

2
∆M0.

In view of equation (53) the Laplace equation follows

s2

2µ
∆M0 = 0.

To find the corresponding first moments M 1,M2 we use Fourier transformation.
Let (ξ1, ξ2) denote the dual parameters of (x1, x2), then the transformed system of

(59) reads, with for now d = s2

4µ

d(−3ξ21 − ξ
2
2)M̂

1 − 2dξ1ξ2M̂
2 = µM̂1 +

s2

2
(−iξ1)M̂

0

−2dξ1ξ2M̂
1 + d(−ξ21 − 3ξ22)M̂

2 = µM̂1 +
s2

2
(−iξ2)M̂

0.

We write this as a linear equation

FL = −i
s2

2
M̂0

(
ξ1
ξ2

)

, (60)

with L = (M̂1, M̂2)T and

F =

(
−µ− d(3ξ21 + ξ22) −2dξ1ξ2

−2dξ1ξ2 −µ− d(ξ21 + 3ξ22)

)

.

We find for the determinant that

detF = µ2 + 4µd(ξ21 + ξ22) + 3d2(ξ21 + ξ22)
2, (61)

which is positive for each (ξ1, ξ2) ∈ R2 and µ > 0. Hence (60) is uniquely solvable
for each (ξ1, ξ2) ∈ R2. The solution is given by

(
M̂1

M̂2

)

= i
s2

2

µ+ d(ξ21 + ξ22)

detF
M̂0

(
ξ1
ξ2

)

. (62)

Then (M1,M2) are given by (62) and we can finally calculate the remaining func-
tions from (56), (57) and (58)

M11 = s2

2 M
0 − s2

4µ (3∂1M
1 + ∂2M

2)

M12 = M21 = − s2

4µ (∂1M
2 + ∂2M

1)

M22 = s2

2 M
0 − s2

4µ (∂1M
1 + 3∂2M

2).

(63)

Lemma 5.1. The steady states of the three-moment problem for (M 0,M i,M ij)i,j∈{1,2}
are given as follows

1. M0(x) solves the Laplace equation ∆M 0(x) = 0 on R2.
2. (M1,M2) are given from Fourier transformation of (62).
3. (M ij)i,j∈{1,2} are given by (63).
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5.3. Steady States for the Nonlinear Case. Of course the steady states for the
two examples given above on R2 are identically zero. The method, however, carries
over to the nonlinear problem with

M0
t + ∂jM

j = f(M0)

(see [6]). Then the steady states of the two- and three-moment systems are related
to a semilinear elliptic problem of the form

c∆M0 = f(M0)

with an appropriate diffusion constant c > 0.
The author believes that, at any level of moment closure, the stationary solution

can be constructed from the elliptic equation ∆M 0 = 0 in the linear case and
c∆M0 = f(M0) in the nonlinear case. This, however, needs further exploration.
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