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Abstract. We consider the moment-closure approach to transport equations
which arise in Mathematical Biology. We show that the negative L2-norm
is an entropy in the sense of thermodynamics, and it satisfies an H-theorem.
With an L2-norm minimization procedure we formally close the moment hi-
erarchy for the first two moments. The closure leads to semilinear Cattaneo
systems, which are closely related to damped wave equations. In the linear
case we derive estimates for the accuracy of this moment approximation. The
method is used to study reaction-transport models and transport models for
chemosensitive movement. With this method also order one perturbations of
the turning kernel can be treated - in extension of an earlier theory on the
parabolic limit of transport equations (Hillen and Othmer 2000). Moreover,
this closure procedure allows us to derive appropriate boundary conditions for
the Cattaneo approximation. Finally, we illustrate that the Cattaneo system
is the gradient flow of a weighted Dirichlet integral and we show simulations.

The moment closure for higher order moments and for general transport
models will be studied in a second paper.

1. Introduction. Flagellated bacteria show a very distinct movement behavior.
They move with an almost constant speed (run), then they stop to choose a new
direction (tumble) and continue to move. The tumbling intervals are short com-
pared to the mean run times. This movement pattern can be modeled by a velocity
jump process or transport equation (Stroock [35], Othmer, Dunbar, and Alt [27]).
The characteristic parameters are mean runtime, turning distribution and mean
speed. In Hillen and Othmer [20] a transport model (1) has been studied system-
atically with respect to different forms of biases and possible limit equations (of
reaction-advection-diffusion type).

In this paper and in a following paper (Part II [18]) we present an L2-moment
closure procedure for transport equations in biology. In this paper we focus on the
simplest nontrivial case: the Cattaneo closure (second-moment approximation).
This case alone is of particular interest in biological modeling and it has been
used to analyse pattern formation in populations of slime molds Dictyostelium
discoideum, and bacteria Salmonella typhimurium and Eschirichia coli in [9], [10],
[33]. A nonlinear reaction-Cattaneo model has been studied in detail in [15], where
a Lyapunov function was constructed to show that solutions converge to steady
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states.
In Part II [18] we treat the general case for general turning kernel, and arbitrary
number of moments.

1.1. Transport Equations. Let p(t, x, v) denote the population density at time
t ≥ 0 at spatial position x ∈ Rn with velocity v ∈ Rn. Most important are space
dimensions of n = 1, 2, 3, the theory, however, works for all n ∈ N. We assume that
individuals choose any movement direction with bounded speed. We denote the set
of possible velocities as V , where we assume V ⊂ Rn is bounded and symmetric
(i.e. v ∈ V ⇒ −v ∈ V ). Then the linear transport model reads

∂

∂t
p(t, x, v) + v · ∇p(t, x, v) = −µp(t, x, v) + µ

∫

V

T (v, v′)p(t, x, v′)dv′, (1)

where µ is the turning rate or turning frequency, hence τ = 1
µ is the mean run

time, and T (v, v′) is the probability kernel for the new velocity v given the previous
velocity was v′. Of course ∫

T (v, v′)dv = 1

to ensure particle conservation.
If cell proliferation, death and other interactions were included, then we obtain

reaction-transport models, or resting-phase transport models. The resting-phase
transport models are important if birth events are correlated to resting phases of
the “mothers”. That case is studied in detail in [19]. Here we assume that resting
is not so important for the overall dynamics and we model birth-death with a
reaction-transport equation of the form as used by Hadeler (see the review article
[14]):

pt + v · ∇p = −µp + µ

∫
T (v, v′)p(t, x, v′)dv′ + f(v, p, m0), (2)

where the total population density is denoted by

m0(t, x) =
∫

V

p(t, x, v) dv. (3)

In the isotropic case the nonlinearity f depends only on the total population density
m0.

Transport equations appear in physics as models for dilute gases, i.e. Boltzmann
equations, in neutron transport theory, in models for radiation transport, and in
semiconductor theory (for references to the physical literature see also [17]). In the
cases of gases and neutrons, reorientation results from collisions of two particles,
hence the right-hand side of the transport equation (2) is quadratic in p ([7]). In
some cases collisions are modeled with respect to a background Maxwellian dis-
tribution, then the model equations are linear. In case of radiation transport the
right-hand side of (2) consists of a linear absorbing term and the Planck function,
which describes emission of radiation. In physical applications some quantities
are conserved, among these are energy, momentum and mass. In biological ap-
plications the only conserved quantity is the total particle number (in absence of
birth or death). Bellomo and co-workers [3, 4] developed a theory to generalize
the Boltzmann equation to biological systems. Internal state variables of the un-
derlying species are included. A quadratic scattering term is derived based on the
assumption that binary particle interactions dominate. Depending on the appli-
cation these include transmission of an infection or of a parasite, predator-prey
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interactions, or competition for nutrients. Our model (2) falls into the class stud-
ied in [4] and Hilbert- and Chapman-Enskog approximations can be derived. The
moment closure method presented here differs from the Hilbert method, and from
the Chapman-Enskog method as it is not based on an asymptotic expansion, it is
based on energy minimization.

1.2. The Moment Closure Method. One common feature in understanding the
dynamic properties of reaction-transport equations and of Boltzmann equations are
moment methods. By multiplying (1) with powers of v and integrating them, we
can derive an infinite sequence of equations for the v-moments of p. As a matter
of fact, in the equation for the n–th moment the (n + 1)–st moment appears. To
close the equations for the first n moments one needs to approximate the (n + 1)–
moment. This “closure problem” is well known and widely discussed in transport
theory. Most authors use ad hoc arguments or projection methods to close the
moment system (see e.g. [1], [29], [32]). Here we present a theory for closing the
moment equations, which is based on a minimization principle.

For Boltzmann equations the closure problem has also been treated in the theory
of Extended Thermodynamics (see e.g. Müller and Ruggeri [25]). The physical
entropy is maximized under the constraint of fixed first n moments. One assumes
that the (n + 1)–st moment of the minimizer approximates the (n + 1)–st moment
of the true solution. This gives the desired closure. It appears that theories for a
large number of moments can approximate steep gradients and shocks [25].
The most important first-moment approximations to the Boltzmann equation are
the Euler equations and the Navier-Stokes equations ([25]). Here the Cattaneo
system (17) ranges at the same level as the Euler equations.
The Cattaneo system of heat transport also appears in the theory of extended
thermodynamics. There it is part of the 13-moment model. It extends the Navier-
Stokes-Fourier model if some terms, which might have the same order in magnitude
than other remaining terms, in the 13 moment system are neglected, (see Müller
and Ruggeri [25] for details). Hence in that context, the Cattaneo model is not
useful.

Ringhofer et al. [32] study moment systems for the semiconductor Boltzmann
equation. They use orthogonal projections of expansions in terms of Hermite poly-
nomials. The closed system forms a Galerkin approximation to the transport equa-
tion. Ringhofer et al. derive a numerical method and, given appropriate scaling
of space and time, they prove error estimates. As pointed out in [32], the expan-
sion in Hermite polynomials together with an orthogonal projection is equivalent
to Levermore’s procedure of moment closure [24] and also to entropy maximization
used in Extended Thermodynamics.

The method presented here is different in many ways. First of all, we use a differ-
ent entropy (the negative L2-norm), secondly there is only one conserved quantity
(the total population size), whereas, in physical context, mass, momentum and
energy are conserved. This difference leads to different properties of the turn-
ing operator (called L in this paper). Finally, the nonlinearities are quite different.
Here we are interested in particle interaction, birth- or death-events and in oriented
movement of self propelling particles.

The method presented here is also different from Fourier-series truncation. In
one space dimension, for example, the Fourier transform p̂(σ) of a distribution p(v)
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can be expressed by the moments

p̂(σ) =
∞∑

j=1

(iσ)j

j!
µj ,

where µj =
∫

vjp(v)dv denotes the j-th moment. A moment approximation could
be achieved by

p̂N (σ) =
N∑

j=1

(iσ)j

j!
µj ,

where all higher moments are set to zero, in contrast to the L2-closure method
presented here (see e.g. formula (16) and Part II [18]).

In the context studied here, the negative L2(V )-norm can be seen as an entropy
as defined in thermodynamics. We close the moment system by minimizing the
L2-norm under the constraint of fixed first n-moments. This minimization flattens
oscillations, details and high oscillations: high frequencies in space and time will
be smoothed out and the global structure of the solution will be emphasized. In
this paper we introduce this minimization procedure and we close the system for
the first two moments (total population density and population flux). The closed
system is a Cattaneo system, which is well known in heat transport theory (see the
next section). We show estimates for the accuracy of this approximation. Finally
we apply this method to the transport equation for chemosensitive movement and
to reaction- transport equations. In Part II [18] we generalize this approach to
close the moment system at any order and we discuss the 3-moment closure in
more detail.

1.3. Cattaneo’s Law. The Cattaneo system has the following form

ut +∇ · v = 0
τvt + d∇u + v = 0,

(4)

where u(t, x) ∈ R and v(t, x) ∈ Rn are functions of space x ∈ Ω ⊂ Rn and time
t ≥ 0. The diffusion constant d and the time constant τ are positive. There are
two interpretations of this system. First, it appears to describe heat transport with
finite speed, or heat transport in media with memory ([22, 12]). In that case u is
the temperature and v is the heat flux. Second, the Cattaneo system can be seen
as a generalization of a correlated random walk ([14]). Then u is the population
density and v is the population flux. The Cattaneo law (second equation in (4))
was introduced by Cattaneo [6] to describe heat transport with finite speed. For
τ = 0 Cattaneo’s law becomes Fourier’s law. For τ 6= 0 the flux is not directly
proportional to the temperature gradient, it adapts with a time constant of τ .

The Cattaneo system directly leads to a damped wave equation

τutt + ut = D∆u,

which, for τ → 0, formally converges to the heat equation (see the review article
of Joseph and Preziosi [22] on heat transport or Hillen [15] on the Cattaneo sys-
tem). In Section 6.1 we show that the Cattaneo law appears as gradient flux of an
exponentially weighted Dirichlet integral.

The connections of the Cattaneo system to biological applications was first no-
ticed by Hadeler [13]. In more than one space dimension there is no random walk
which leads directly to the Cattaneo system. In [26] it is claimed that such a ran-
dom walk exists, but the arguments are incomplete. Hence, it was long unclear
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how the n-dimensional Cattaneo model is related to the n-dimensional transport
equation. The moment closure procedure presented here establishes a formal rela-
tion between these models. The Cattaneo model is a moment approximation to the
transport equation, and we show that the error can be controlled (Theorem 3.6).
The closure theory gives a new understanding of the role of the Cattaneo system in
biological applications. Moreover, the relevant parameters are now related to the
individual movement behavior of the underlying species.

The results of this paper are based on my habilitation thesis [16], which is un-
published. The method for the Cattaneo closure has been mentioned in the review
article [17] and it has been used in [9] to describe aggregations in bacteria and slime
molds. Here we present the whole theory and also the proofs for the approximation
properties which have not been published elsewhere.

1.4. Velocity Moments. We consider the equations of the first two velocity mo-
ments (m0,m1) of p, where m0 is defined by (3) and the higher moments of p are
denoted by m1 = (m1, . . . ,mn) and m2 = (mij)ij , where the coefficients are

mi(t, x) =
∫

V

vip(t, x, v) dv, i = 1, . . . , n (5)

mij(t, x) =
∫

V

vivj p(t, x, v) dv, i, j = 1, . . . , n. (6)

For constant turn-angle distribution T (v, v′) we will show that the negative of
the L2(V )-norm is an entropy for (1). We minimize the L2(V )-norm under the
constraint of fixed moments m0 and m1. Then we assume that the second moment
m2(umin) of the minimizer umin approximates the second moment m2(p). This
leads to a closed hyperbolic system (17) for an approximate density M0 and an
approximate flow M1. Since the resulting system is known from heat transport
theory as the Cattaneo system we call it Cattaneo approximation to (m0,m1). We
derive an error estimate for (m0,m1)− (M0,M1) in L2(Rn) in Theorem 3.6. This
estimate motivates the use of Cattaneo systems as models for the movement of
microorganisms like bacteria or amoeba (see [9]).

The approximation method presented here can also be interpreted in the sense
that minimizing the L2(V )-norm minimizes oscillations (see Remark 2.1). Qualita-
tively the approximate solution is smoother than the true solution. High frequencies
are damped and envelopes of the particle distribution are formed.

It turns out that the minimizer is the orthogonal projection of p onto the n + 1-
dimensional subspace of L2(V ) spanned by the functions 1, v1, . . . , vn. Schnitzer
[33] derived a Cattaneo model for chemosensitive movement ((5.12) in [33]) with
the ad hoc assumption that the density can be expanded as p = p0(t, x)+v ·p1(t, x).
The minimizing procedure developed here gives a justification of his ansatz.

Since our estimates are valid for all times (in the linear case) the Cattaneo model
can be used to approximate the transport model for all times whereas the parabolic
approximations are valid for large times only (see the discussion in Section 6).

In the context of the moment closure method presented here the Cattaneo ap-
proximation is the first nontrivial approximation to the transport process. If we
fix the zero’s moment m0 only and minimize the L2(V )-norm then the minimizer
is simply the mean density with respect to velocity v. The one-moment closure
does not depend on v and t and it is an equilibrium distribution (see Remark 2.3).
Generalizations to higher closure levels, general sets of velocities V and general
kernel T are given in [18].
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In the case of one spatial dimension with only two velocities ±s, the even mo-
ments are proportional to the zero–moment and the odd moments are proportional
to the first moment. Hence the first two moment equations are closed by itself and
the 1-D Cattaneo system is equivalent to the 1-D transport equation ([27, 13]).

Applications to chemosensitive movement and to reaction transport equations
appear at the end of this article. In case of chemosensitive movement we use
our method to close the first moment equations and obtain a Cattaneo system
for chemosensitive movement. Then we consider appropriate scaling of speed and
turning rate (parabolic limit) to arrive at the well known and well studied Patlak-
Keller-Segel equations (PKS-equations) [23]. In this framework we are able to
handle order one perturbations of the turning rate due to chemical cues. This was
not possible in the framework of parabolic scaling, as illustrated in [20].

The paper is organized as follows: In Section 2 we present the minimizing prin-
ciple for the linear transport equation (1) for equally distributed turn-angle dis-
tribution T (v, v′) =const. We calculate the minimizer umin which motivates the
Cattaneo approximation (17) for (M0,M1). We show that the moment closure
method presented here can be used to find appropriate boundary conditions for the
Cattaneo system on bounded domains. In Section 3 we consider the L2(V )-norm
of the true solution p and compare it to the norm of the minimizer umin (Theorem
3.2). An L2(Rn)–estimate is derived for (m0,m1)− (M0,M1) in Theorem 3.6. In
Section 4 we generalize the moment closure method to nonlinear reaction-transport
equations (2), again with equally distributed kernel T . A nonlinear Cattaneo sys-
tem (41) follows, which has been studied in detail in [15]. In Section 5 we introduce
a prototype model for chemosensitive movement based on a transport equation
(1). We show that under natural assumptions the 2-moment approximation is a
Cattaneo model for chemosensitive movement (49) which was used in [9] to model
biological pattern formation. In the discussion section (Section 6) we show that the
Cattaneo system is the minimizing flux of a weighted Dirichlet integral. Finally we
show simulations of the Cattaneo model for chemosensitive movement, which have
been developed in collaboration with Y. Dolak [9].

2. A Minimization Principle. We consider a transport equation which corre-
sponds to a velocity jump process with fixed speed, but variable direction (Pearson
walk). In this case V = sSn−1 with s > 0 and we denote ω = |V | = sn−1ω0, where
ω0 = |Sn−1|. The turn-angle distribution is assumed to be constant T (v, v′) = 1

ω .
The method developed here will be generalized to more general kernel T and more
general velocity sets V in [18]

The initial value problem for the linear transport equation reads

pt + v · ∇p = µ

(
m0

ω
− p

)
, (7)

p(0, x, v) = ϕ0(x, v). (8)

The shift operator Φ := −v · ∇ on L2(Rn × V ) with domain

D(Φ) = {φ ∈ L2(Rn × V ) : φ(., v) ∈ H1(Rn)}
is skew-adjoint. Hence it generates a strongly continuous unitary group on L2(Rn×
V ) (see e.g. Pazy [30]: Stones Theorem). The right-hand side of (7) is bounded,
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therefore the linear transport equation (7) defines a strongly continuous solution
group on L2(Rn × V ). For ϕ0 ∈ D(Φ) solutions p(t, x, v) exist in

X = C1([0,∞), L2(Rn × V )) ∩ C([0,∞),D(Φ)). (9)

A detailed existence theory on transport and reaction-transport equations of the
above type on bounded domains is given in Schwetlick [34].

Later we will use the L2-norm to carry out the moment closure. Hence in this
context it is natural to work in L2 spaces. For other applications the L1-theory
is preferred, since the total particle number is preserved by the linear transport
equation.

To derive the equations for the first two moments m0 and m1 we integrate (7)
over V to obtain the conservation law

m0
t +∇ ·m1 = 0. (10)

Multiplication of (7) with v and integration gives
∫

vpt dv = −
∫

v(v · ∇)p dv + µ
m0

ω

∫
v dv − µ

∫
vp dv.

¿From the symmetry of V = sSn−1 it follows that
∫

vdv = 0. Hence

m1
t +∇ ·m2 = −µm1. (11)

To close this system of two-moment equations (10) and (11) we want to replace
m2(p). We derive a function umin(t, x, v) which minimizes the L2(V ) norm under
the constraint that umin has the same first moments m0 and m1 as p has. We will
show in (25) that this norm is an entropy in the sense of thermodynamics. Once
we have such a function umin we replace m2(p) by m2(umin).

We introduce Lagrangian multipliers Λ0 ∈ R and Λ1 = (Λ1, . . . , Λn) ∈ Rn and
define

H(u) :=
1
2

∫

V

u2dv − Λ0

(∫

V

udv −m0

)
− Λ1 ·

(∫

V

vudv −m1

)
.

The Euler-Lagrange equation (first variation) of H(u) reads u − Λ0 − Λ1 · v = 0,
which gives

u = Λ0 + Λ1 · v. (12)

We use the constraints to determine Λ0 and Λ1:
1.

m0 =
∫

V

u dv =
∫

V

Λ0 dv +
∫

V

v · Λ1 dv.

We have
∫

V
v dv · Λ1 = 0 hence

Λ0 =
m0

ω
. (13)

2.

m1 =
∫

V

vu dv =
∫

V

vΛ0dv +
∫

V

v(Λ1 · v)dv

The first integral vanishes. To evaluate the second integral note that
∫

Sn−1
σσT dσ =

ω0

n
I,
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where I denotes the n× n identity matrix. Hence
∫

V

vvT dv =
∫

Sn−1
(sσ)(sσ)T sn−1dσ = ω

s2

n
I. (14)

It follows that Λ1 is given by

Λ1 =
n

ωs2
m1.

Then from (12) we get an explicit representation of the minimizer

umin(t, x, v) =
1
ω

(
m0(t, x) +

n

s2
(v ·m1(t, x))

)
. (15)

Remark 2.1. 1. Let 〈1, v1, . . . , vn〉 ⊂ L2(V ) denote the subspace generated by
the constant functions and linear functions. Let Π denote the orthogonal
projection to this subspace

Πφ(v) =
1
ω

∫
φ(v′)dv′ +

n

ωs2

∫
v′φ(v′)dv′ · v.

It turns out that the minimizer umin in (15) satisfies umin = Πp for each
(t, x) ∈ R+ × Rn.

2. If we minimize the functional

Ha(u) :=
1
2

∫

V

(u− a)2dv − Λ0

(∫

V

udv −m0

)
− Λ1 ·

(∫

V

vudv −m1

)
,

for some arbitrary a ∈ R with the same constraints as above we arrive at the
same minimizer (15). For fixed a ∈ R the norm ‖u(t, x, .)− a‖2 is a measure
of the oscillation around the level a. Hence umin minimizes oscillations with
respect to every given level.

3. The previous remark gives us a key to understand the biological significance
of the minimization procedure. The minimization procedure acts on the v-
dependence and x and t appear only as parameters. Hence umin also minimizes

‖u(t, x, .)−m0(t, x)‖2,
which is the variance in the velocity distribution. This means that this form of
moment closure is appropriate for species that tend to minimize the variance
in movement velocity. This could occur through next neighbor correlations.

4. The extremum umin is indeed a minimum, since the second variation of H is
δ2H(u) = 1 > 0.

To finally derive the moment closure we consider the second moment of the
minimizer umin:

m2(umin) =
∫

V

vvT umin(t, x, v)dv

=
1
ω

∫

V

vvT m0 dv +
n

ωs2

∫

V

(vvT )v dv ·m1

=
s2

n
m0 I, (16)

where (14) has been used, and because the tensor (
∫

V
vivjvk dv)ijk vanishes (see

the following Lemma).



CATTANEO APPROXIMATION 969

Lemma 2.2. For all vectors a, b, c ∈ Rn we have
∫

V

(v · a)(v · b)(v · c)dv = 0.

Proof: Using the divergence theorem on the ball Bs(0) ∈ Rn gives
∫

V

(v · a)(v · b)(v · c)dv =
∫

V

v · (a(v · b)(v · c))dv

= s

∫

Bs(0)

∇v · (a(v · b)(v · c))dW

= s

(
(a · b)c ·

∫

Bs(0)

vdW + (a · c)b ·
∫

Bs(0)

vdW

)

= 0,

where dv describes the surface element on V and dW the volume element on Bs(0).

We have chosen umin such that m0(umin) = m0(p) and m1(umin) = m1(p).
Now we close the system of the first two moments (10), (11) by assuming that
m2(umin) ≈ m2(p). Then, replacing m2 in (11) together with (10) gives a linear
Cattaneo system

M0
t +∇ ·M1 = 0,

M1
t + s2

n ∇M0 = −µM1,
(17)

with initial conditions

M0(0, .) = m0(0, .), M1(0, .) = m1(0, .). (18)

We introduce capital letters to distinguish between the moments (m0,m1) of p and
the solutions (M0, M1) of the Cattaneo system (17). Of course, if m2(umin) 6=
m2(p) then (M0,M1) 6= (m0, m1). In the next Section we consider errors between
umin and p and between (M0, M1) and (m0,m1).

Remark 2.3. The minimizer umin(t, x, v) given by (15) is the first nontrivial ap-
proximation to p(t, x, v) in the following sense: If we only fix the first moment m0

then minimizing the L2(V )-norm leads to

u∗min(t, x, v) =
1
ω

m0(t, x).

Then u∗min is the projection of p onto the space of functions constant in v. Then the
first moment of this minimizer u∗min vanishes and it follows from the conservation
law (10) that the corresponding moment closure is simply

M0
t = 0.

To develop a sequence of approximating functions (u∗min, umin, . . . ) one can derive
equations for higher moments and fix more and more moments in the minimizing
procedure. We will do this in [18].

In [15] the Cattaneo system has been studied in L2(Ω) with homogeneous Dirich-
let or Neumann boundary conditions. Existence of solutions was shown using Stones
theorem for skew-adjoint generators (see Pazy [30]). The same argument applies
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on an unbounded domain. Using a simple scaling of the space coordinates the
generator of the Cattaneo system (17) has the form

G :=




0 −∂1 · · · −∂n

−∂1 0
...

. . .
−∂n 0




with domain

D(G) := {(ϕ0, . . . , ϕn) ∈ L2(Rn)n+1 : ∂iϕ
0, ∂iϕ

i ∈ L2(Rn), i = 1, . . . , n}
The operator G is skew adjoint. Therefore it is dissipative, the spectrum belongs
to the imaginary axis and it generates a unitary group on (L2(Rn))n+1. Since the
Cattaneo approximation (17) is linear we have global existence:

Lemma 2.4. For each (ϕ0, ϕi, i = 1, . . . , n) ∈ D(G) there exists a unique global
solution (M0,M1) of (17) with

(M0,M1) ∈ C1((−∞,∞), L2(Rn)n+1) ∩ C0((−∞,∞),D(G)),

with M0(0) = ϕ0 and Mi(0) = ϕi, i = 1, . . . , n.

2.1. Boundary Conditions. The use of this method for bounded domains with
boundary conditions has to be considered carefully. It is not obvious, how boundary
conditions for transport models translate into boundary conditions of the Cattaneo
approximation. We will give two examples for a bounded domain Ω ∈ Rn with
smooth boundary ∂Ω. For x ∈ ∂Ω we denote the outer normal by η(x). We assume
V is symmetric with respect to SO(n) and at each x ∈ ∂Ω we split V into inward
and outward pointing velocities:

V −(x) := {v ∈ V : v · η(x) < 0}, V +(x) := {v ∈ V : v · η(x) ≥ 0}.
a) Dirichlet boundary conditions: The homogeneous Dirichlet boundary

condition for the transport equation (7) reads

p(t, x, v) = 0, ∀x ∈ ∂Ω, v ∈ V −(x).

We stipulate that the energy minimizer umin constructed in (15) satisfies the same
boundary condition

m0(t, x) +
n

s2
v ·m1(t, x) = 0, ∀x ∈ ∂Ω, v ∈ V −(x).

We integrate this boundary condition along V − and obtain

m0 =
n

s2

2κV

ω
η ·m1, with κV :=

∫

{v∈V :v1≥0}
v dv · e1, (19)

where e1 denotes the first unit vector in an orthonormal basis of Rn and ω = |V |
as usual. Hence the Dirichlet boundary conditions of the Cattaneo approximation
are given by

M0 =
n

s2

2κV

ω
η ·M1. (20)

This condition has been suggested by Hadeler [13] and it has been used in [15] for
a nonlinear Cattaneo system. It is remarkable that the Dirichlet condition appears
in form of a Robin condition for the Cattaneo system. Note that in the parabolic
scaling of s → ∞, µ → ∞ with s2/µ < ∞ the homogeneous Dirichlet boundary
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condition M0 = 0 follows.

b) Neumann boundary conditions: General reflection boundary conditions
for the transport model (7) have the following form:

p(t, x, v) =
∫

V +
B(v, v′)p(t, x, v′)dv′, ∀ v ∈ V −,

with a nonnegative symmetric kernel B with
∫

V − B(v, v′)dv =
∫

V + B(v, v′)dv′ = 1.
We assume the same boundary condition to hold for the minimizer umin, which
leads to

1
ω

(
m0 +

n

s2
v ·m1

)
=

∫

V +
B(v, v′)

1
ω

(
m0 +

n

s2
v′ ·m1

)
dv′, ∀ v ∈ V −,

hence

v ·m1 =
∫

V +
B(v, v′)v′ dv′ ·m1, ∀ v ∈ V −. (21)

In case of pure physical reflection an outgoing velocity v′ ∈ V + is reflected into the
incoming velocity v = r(v′) := v′ − 2(η · v′)η. In this case the kernel B is given by

B(v, v′) = δ0(v − r(v′)), v′ ∈ V +, v ∈ V −.

Condition (21) reduces to

v ·m1 = (v − 2(η · v)η) ·m1, ∀ v ∈ V −

Since on V − we have η · v 6= 0 it follows that

η ·m1 = 0, on ∂Ω.

Hence the corresponding Neumann boundary condition for the Cattaneo approxi-
mation reads

η ·M1 = 0. (22)
Also this boundary condition has been suggested by Hadeler [13].

3. Error Estimates.

3.1. Estimate of umin Versus p. The L2(V )-norm of the minimizer (15) is

‖umin(t, x, .)‖22 =
1
ω2

∫

V

(
m0 +

n

s2
(v ·m1)

)2

dv

=
1
ω2

∫

V

(
(m0)2 + 2m0 n

s2
(v ·m1) +

n2

s4
(v ·m1)2

)
dv

=
1
ω2

(
ω(m0)2 +

n2ωs2

s4n
m1 ·m1

)
,

=
1
ω

(
(m0)2 +

n

s2
(m1)2

)
, (23)

which of course is the L2 norm of p restricted to the subspace 〈1, v1, . . . , vn〉 (see
Remark 2.1).

For the L2-norm of p we have
d

dt
‖p(t, x, .)‖22 = 2

∫

V

ppt dv

= −2
∫

V

p(v · ∇)p dv − 2µ

∫

V

p2dv + 2µ

∫

V

p
m0

ω
dv,
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which leads to the balance equation

d

dt
‖p(t, x, .)‖22 +∇ · F (p) = −2µ‖p(t, x, .)‖22 +

2µ

ω
(m0)2(t, x) (24)

with energy flow

F (p) =
∫

V

v p2dv.

Moreover, the negative L2(V )-norm satisfies an H-Theorem, i.e., it is an entropy
for equation (7):

Proposition 3.1.
d

dt
‖p(t, x, .)‖22 +∇ · F (p) ≤ 0. (25)

Proof: The right-hand side of (24) can be written as

−2µ‖p(t, x, .)‖22 +
2µ

ω
(m0)2 = 2µ

(
−

∫

V

p2dv +
1
ω

(∫

V

p dv

)2
)

= −2µ

∫

V

(
p− m0

ω

)2

dv

≤ 0.

We denote the square of the L2-norm on Rn × V by

E(p) :=
∫

Rn

‖p(t, x, .)‖22dx

and we abbreviate

E0 =
∫

Rn

∫

V

p(0, x, v)2dv dx.

Theorem 3.2. Let p(t, x, v) ∈ X denote the solution of (7), (8) and let umin(t, x, v)
denote the minimizer constructed in (15). Then for all t ≥ 0

0 ≤ E(p(t))−E(umin(t)) ≤ e−2µtE0+
1
ω

(
sup

0≤ϑ≤t
‖m0(ϑ, .)‖22

(
1− e−2µt

)− ‖m0(t, .)‖22
)

.

(26)

Proof: If we integrate the balance equation (24) over Rn we observe that

d

dt
E(p) = −2µE(p) +

2µ

ω
‖m0(t, .)‖22. (27)

Hence

E(p)(t) = e−2µtE0 +
2µ

ω

∫ t

0

e−2µ(t−ϑ)‖m0(ϑ, .)‖22dϑ (28)

Since umin is a minimizer we have ‖umin(t, x, .)‖2 ≤ ‖p(t, x, .)‖2. From (23) we
obtain

E(umin) =
1
ω

(
‖m0(t, .)‖22 +

n

s2
‖m1(t, .)‖22

)
.

Then with (28) it follows that

0 ≤ E(p)− E(u) = (I) + (II) + (III)
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with

(I) := e−2µtE0

(II) :=
1
ω

(
2µ

∫ t

0

e−2µ(t−ϑ)‖m0(ϑ, .)‖22dϑ− ‖m0(t, .)‖22
)

(III) := − n

ωs2
‖m1(t, .)‖22.

The first term (I) tends to zero exponentially for t → ∞. The third term (III)
is non-positive. We consider the second term (II) in more detail. For this let
y(t) := ‖m0(t, .)‖22.

2µ

∫ t

0

e−2µ(t−s)y(s)ds ≤
(

sup
0≤ϑ≤t

y(ϑ)
)
2µ

∫ t

0

e−2µ(t−s)ds

=
(

sup
0≤ϑ≤t

y(ϑ)
) (

1− e−2µt
)

Putting all this together we arrive at (26).

Remark 3.3. 1. The right-hand side of (26) is bounded by

E0 +
1
ω

sup
0≤ϑ≤t

‖m0(ϑ, .)‖22.

If in addition we know that ‖m0(t, .)‖2 is not decreasing in time, then the
right-hand side converges to zero for t →∞.

2. It follows from (25) and from (27) that E(p) tends to zero in L2(Rn × V ) for
t →∞. Hence solutions converge to zero, which is expected by a dissipative
system on the whole of Rn.

3.2. Estimates of the True Moments (m0,m1) Versus the Solution of the
Cattaneo System (M0, M1). We define

r := m0 −M0 and q := m1 −M1.

¿From the moment equations (10), (11) and from the Cattaneo system (17) it
follows that

rt +∇ · q = 0, (29)

qt + µq +
s2

n
∇r = ∇ · (m2(u)−m2(p)), (30)

r(0, .) = 0, q(0, .) = 0. (31)

Integration of the first equation (29) gives d
dt

∫
rdx = 0, hence due to the initial

conditions (31) it follows that∫

Rn

(m0 −M0)(t, x)dx = 0. (32)

Integration of the second equation (30) gives d
dt

∫
qdx = −µ

∫
qdx then from the

initial conditions (31) it follows that∫

Rn

(m1 −M1)(t, x)dx = 0. (33)

We aim to estimate r and q, in terms of m2(u)−m2(p). For this we define another
energy

es(r, q) :=
1
2

∫

Rn

r2 +
n

s2
q2 dx, (34)
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which is the L2- norm in space, where the speed s appears as a parameter.

Lemma 3.4. Solutions (r, q) of (29)-(31) satisfy the energy estimate

es(r(t, .), q(t, .)) ≤ n2

2µs2

n∑

i,j=1

∫ t

0

∫

Rn

e−µ(t−ϑ)
(
∂j(mij(u)−mij(p))

)2

dxdϑ.

Proof: We differentiate the energy with respect to time. With Young’s inequal-
ity we get
d

dt
es(r, q) =

∫
rrt +

n

s2
q · qt dx

=
∫
−r∇ · q +

n

s2
q ·

(
−µq − s2

n
∇r +∇ · (m2(u)−m2(p))

)
dx

= −µ

∫
n

s2
q2 dx +

∫
n

s2
q · (∇ · (m2(u)−m2(p)))dx

≤ −µ

∫
n

s2
q2 dx +

µ

2

∫
n

s2
q2 dx +

n

2µ

n∑

i,j=1

∫
n

s2

(
∂i(mji(u)−mji(p))

)2

dx

≤ −µ es(r, q) +
n2

2µs2

n∑

i,j=1

∫ (
∂i(mji(u)−mji(p))

)2

dx.

With Gronwall’s Lemma the assertion follows.

Lemma 3.5. For all (t, x) ∈ [0,∞)× Rn and all i, j = 1, . . . , n we have

|(m2(u)−m2(p))(t, x)|2 ≤ bns2|m0(t, x)|,
|Dα (m2(u)−m2(p))(t, x)|2 ≤ bns2|Dα m0(t, x)|,

where Dα denotes partial derivative with respect to α ∈ {t, x1, . . . , xn} and the
constant bn is given in (37).

Proof: Remember that mij(u) = s2

n δij m0 = s2

n δij

∫
V

p(t, x, v)dv, hence we can
write

mij(u)−mij(p) =
∫

Bij
n,vp(t, x, v)dv,

with the n× n matrix

Bn,v :=
s2

n
In − vvT ,

with entries

bij := Bij
n,v =

s2

n
δij − vivj .

If i = j then bii = s2

n − (vi)2. Since s = |v| ≥ (vi)2 we have s2

n − s2 ≤ bii ≤ s2

n .
Hence

|bii| ≤ s2, for n = 1, and |bii| ≤ s2 n− 1
n

, for n ≥ 2. (35)

If i 6= j then bij = −vivj . Since − 1
2 ((vi)2 + (vj)2) ≤ vivj ≤ 1

2 ((vi)2 + (vj)2) it
follows that

|bij | ≤ s2

2
. (36)

For now we denote the vector-norms in Rn by |.|2 and |.|∞. Then we have for n ≥ 2
that

|Bn,v|2 ≤
√

n|Bn,v|∞ ≤ √
n(n− 1)

n + 2
2n

s2 =: bns2 (37)
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and the same estimate |Bn,v| ≤ bns2 with bn = 1 for n = 1. Then for each vector
ζ ∈ Rn we have

|(m2(u)−m2(p))(t, x)ζ|2 =
∣∣∣∣
∫

Bn,vζp dv

∣∣∣∣
2

≤ bns2

∣∣∣∣ζ
∫

V

p(t, x, v)dv

∣∣∣∣
2

= bns2|m0(t, x)| |ζ|2.
The same lines apply for Dα(m2(u)−m2(p)).

Together with Lemma 3.4 we arrive at the following result:

Theorem 3.6. The solution (r, q) of (29)-(31) satisfies for each t ≥ 0

es(r(t, .), q(t, .)) ≤ n2b2
n

s2

2µ
‖∇xm0‖2L2([0,t]×Rn). (38)

Remark 3.7. 1. Here the L2 norm of the differences in the first two moments
is estimated by the norm of ∇m0. If the gradient of m0 is small, we obtain a
good approximation. Some experimental setups for bacteria are designed for
shallow gradients (see e.g. Chen et al. [8]). Patlak [29] derived the classical
PKS-model for chemosensitive movement under the assumption, that on an
average distance traveled by particles between turns, the change in particle
distribution – hence ‖∇m0‖ – is small.

2. In contrast to parabolic approximations the estimate (38) is valid for all times
t ≥ 0. This motivates us to use the Cattaneo model for short time periods
and parabolic models for longer times periods and for asymptotics (see also
[9]).

4. The Nonlinear Case: Reaction Transport Equations. Here we consider
the nonlinear reaction transport equation:

pt + v · ∇p = µ
(m0

ω
− p

)
+ f(v, p, m0), (39)

where f describes birth, death and interaction of particles. We choose f such that
the reaction transport equation (39) admits a solution semigroup in L2(Rn × V ).
This certainly is the case if f is continuous and linearly bounded in p. Again we
formulate the equations for the first moments m0, m1 and m2.

m0
t +∇ ·m1 = g

m1
t +∇ ·m2 = −µm1 + h

with the v-moments of f

g(t, x) =
∫

V

f(v, p,m0) dv, h(t, x) =
∫

V

v f(v, p, m0) dv.

To find an appropriate expression for m2, we again minimize the L2(V )-norm with
the same constraints as in the previous sections. Hence we continue with the min-
imum given in (15). Again the second moment of the minimizer umin is given by
(16) and a semilinear Cattaneo system follows

M0
t +∇ ·M1 = G

M1
t + s2

n ∇M0 = −µM1 + H,
(40)
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where now

G(t, x) =
∫

V

f(v, U,M0) dv, H(t, x) =
∫

V

v f(v, U,M0) dv,

with

U =
1
ω

(
M0 +

n

s2
(v ·M1)

)
.

In case of reactions, which are independent of the actual velocity, f = f(m0), we
have

H =
∫

V

vf(M0)dv = 0 and G =
∫

V

f(M0)dv = ω f(M0).

Then a semilinear Cattaneo system follows which has been studied qualitatively in
[15]:

M0
t +∇ ·M1 = ωf(M0)

M1
t + s2

n ∇M0 = −µM1.
(41)

5. Transport Equations for Chemosensitive Movement. The two indepen-
dent parameters in the general velocity jump process (1) are the turning rate µ and
the distribution kernel T , which describe the probability of changing from veloc-
ity v′ to velocity v. In the case of bacterial chemotaxis bacteria can significantly
change their turning rate in response to external stimuli, but they do not change
their turn angle distribution ([5]). Hence we modify the turning rate to derive a
model for chemosensitive movement. As in the 1-D model (see the review [17]), the
turning rate should depend on the velocity v, on the concentration of the external
signal S, and on its gradient ∇S

µ = µ(v, S,∇S).

It is, however, clear that bacteria are too small to measure concentration gradients
along their body axis. They measure gradients while moving through them. Then
the turning rate depends not directly on ∇S but on the directional derivative

δvS := St + v · ∇S.

This assumption has also been used by Alt [2] and by Grünbaum [11] (To see that
δvS is the correct term consider a Taylor series expansion of the difference in the
signal concentrations at (x, t) and at (x + v∆t, t + ∆t) for a small time increment
∆t). If the chemical concentration equilibrates fast compared to the movement of
the species then S(t, x) would be close to equilibrium in each time step and we can
assume δvS = v · ∇S. This quasi-steady state assumption for the signal has been
used e.g. by Jäger and Luckhaus [21] for the PKS-model. Here we continue to
consider the full characteristic derivative δvS. It will turn out that in the parabolic
scaling the St-term is of lower order and it vanishes for the parabolic limit equation.
We assume

µ = µ(S, δvS). (42)

We choose a kernel K(v, v′) in such a way that the total particle number is pre-
served. This can be achieved with K(v, v′) = µ(S, δv′S)T (v, v′) with

∫
V

T (v, v′)dv =
1. Then the transport equation for chemosensitive movement reads

pt + v · ∇p = −µ(S, δvS) p(v) +
∫

V

µ(S, δv′S) T (v, v′) p(v′)dv′. (43)

Restricted to 1-D with two speeds ±s the 1-D model considered in [17] follows.
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To become more specific and to have an explicit prototype we consider

µ(S, δvS) = µ0(1− α(S)δvS) (44)

with some constant µ0 > 0 and an appropriate function α(S). We will write α
instead of α(S) throughout the following calculations. If we assume moreover that
T (v, v′) = 1/ω, then a prototype model for chemosensitive movement reads

pt + v · ∇p = −µ0(1− αδvS) p(v) +
µ0

ω

∫

V

(1− αδv′S) p(v′) dv′. (45)

5.1. A Cattaneo Model for Chemosensitive Movement. Using the notation
of the moments m0 and m1 we can write (45) equivalently as

pt +v ·∇p = −µ0 (1− α(St + v · ∇S)) p(v)+
µ0

ω

(
m0 − αm0St − αm1 · ∇S

)
. (46)

To derive the equations for the first two moments we integrate (46) and obtain

m0
t +∇ ·m1 = 0. (47)

Multiplication of (46) with v and integration gives

m1
t +∇ ·m2 = −µ0(1− αSt)m1 + µ0α∇S · m2. (48)

Again with (16) the corresponding Cattaneo system for chemosensitive movement
reads

M0
t +∇ ·M1 = 0

M1
t + s2

n ∇M0 = −µ0(1− αSt)M1 + s2

n µ0α∇S M0.
(49)

To obtain a parabolic limit we divide the second equation of (49) by µ0 and consider
the limit of

µ0, s →∞, α → 0,
s2

µ0n
→ D < ∞, µ0α → χ < ∞.

Note that χ depends on S via α(S). We divide the second equation of (49) by µ0

and in the above limit the St-term vanishes. Formally, the second equation of (49)
becomes

M1 = −D∇M0 + Dχ(S)M0∇S. (50)

Hence the limiting equation is the Patlak-Keller-Segel model:

M0
t = D∇(∇M0 − χ(S)M0∇S). (51)

Remark 5.1. 1. The prototype chemotaxis model (45) leads to the well-known
Keller-Segel model in two steps: First closure of the first two-moment equa-
tions to get the Cattaneo approximation (49), and then passing to the para-
bolic limit for fast speeds and large turning rates.

2. As shown by Patlak [29] or Alt [2] and also in [20] one can directly scale the
transport equation to derive the parabolic limit (51). If we use the expression
for M1 in (50) to calculate the minimizer u given in (15) we arrive at an
ad hoc assumption which was made by Patlak or Alt. In the framework of
moment closure the assumption of Patlak and Alt can be justified a posteriori.
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5.2. A Chemotaxis Model with Density Control. In [28] a parabolic chemo-
taxis model with density control mechanism is introduced and investigated. The
density control leads to the effect that at high population densities the chemotaxis
is turned off and pure diffusion dominates. Solutions exist globally and no blow-
up occurs. The model in [28] can be constructed from a transport equation via a
corresponding Cattaneo approximation. We consider a turning rate of the form

µ(S, δvS) := µ0

(
1− n

s2
β(m0)χ(S)δvS

)
,

where β(m0) is a density dependent sensitivity. The function β is assumed to have
a zero at some m∗ > 0 and β(m) > 0 for 0 < m < m∗ (see the details in [28]).
With turning kernel T (v, v′) := ω−1µ(S, δv′S) the moment closure procedure leads
to a Cattaneo model for chemosensitive movement with density control

M0
t +∇ ·M1 = 0

M1
t + s2

n ∇M0 = −µ0

(
1− n

s2 β(M0)χ(S)St

)
M1 + β(M0)χ(S)M0∇S.

(52)

The parabolic limit of this equation is the model which was studied in [28]. The
Cattaneo model for chemosensitive movement (52) was used in [9] to model aggrega-
tions in Dictyostelium discoideum, in Eschirichia coli, and Salmonella typhimurium.
In [9] also a second-order numerical scheme is given.

6. Discussion. The Cattaneo model was introduced in 1948 by C. Cattaneo into
heat transport theory. It was later used to model heat transport with finite speed.
Since the early 1990’s the Cattaneo model was discussed related to biological ap-
plications. In one space dimension the Cattaneo model is equivalent to a transport
equation. But this is not true for 2 or more space dimensions. Even worse - in
two or more dimensions there is no random walk which would lead directly to the
Cattaneo model (the result in [26] is not convincing). It appears that kinetic mod-
els and Cattaneo models in higher dimensions are two types of models for similar
processes and it was long unclear how these models were related.

With the moment closure procedure presented here a relation is established.
The Cattaneo model is a closed moment system of a kinetic equation. We find that
the negative L2 norm is an entropy and we describe an algorithm to derive the
Cattaneo model. In addition, the closure method is used to derive the “correct”
boundary conditions for the Cattaneo model. Moreover we show that the Cattaneo
approximation is good for shallow gradients.

Since the closure problem is well known in transport theory there are a large
number of arguments based on expansions, projections, scaling properties, or logical
insight to close the first two-moment equations for m0 and m1. Here, minimizing
an appropriate energy motivates the choice of the approximation to the second
moment m2(p). This method is directly generalizable to equations for arbitrarily
high moments (m0,m1, . . . , mk). We will present this in another paper [18].

The Cattaneo approximation developed here gives a new model for applications
which can be used to understand the behavior of biological systems for short times
without using the full transport equation. It is well known that at large times
the transport equation and the Cattaneo system behave as their parabolic limit.
This explains the success of reaction diffusion equations in mathematical biology.
However, there is no doubt that for small or intermediate values of time the diffusion
model is inaccurate. For those time ranges the Cattaneo approximation helps to
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understand the dynamic behavior of the biological system. The relevant parameters
of the Cattaneo approximation can be estimated directly from experiments.

6.1. Memory Effects. Gurtin and Pipkin ([12]) show that the Cattaneo system
appears if the medium under consideration “remembers” its history with exponen-
tially decay backwards in time. This interpretation can be extended to the following
fact:

Lemma 6.1. The Cattaneo system (17) is the minimizing flux of the exponentially
weighted Dirichlet integral

J(u) :=
D

2τ

∫ t

0

∫

Ω

e−
1
τ (t−s) |∇u|2dxds.

Proof: The minimizing flux of J is given by the solution of

ut = −∇j

with

j =
D

τ

∫ t

0

e−
1
τ (t−s)∇u ds.

Hence j satisfies the Cattaneo law:

τjt = −j + D∇u.

6.2. Numerical Simulations. For illustration purposes we show some numeri-
cal simulations of the Cattaneo model for chemosensitive movement with density
control (52).

In Figures 1 and 2 we consider an interval of length l = 1 with homogeneous
Neumann boundary conditions (22) and we assume that the species move with
constant speed γ = 0.2. The turning rates µ± are density dependent as discussed
in Section 5.2:

µ±(S,∇S, u+ + u−) =
(

γ2

2D
∓ β(u+ + u−)χ(S)∇S

)+

,

with effective diffusion coefficient D = 0.036. The superscript + indicates to take
the positive part. The density-sensitivity function β and the chemotactic sensitiv-
ity χ are given as β(u) = 1 − u and χ(S) = 1/(1 + S). The parameters for the
signal equation are of the form τ = 1, α = 4 · 10−6 and the reproduction term is
f(S, u+ + u−) = −aS + u+ + u−. For simulations we use a Godunov-scheme (see
also [17]). In Fig. 1 we show the long-time behavior in absence of signal degra-
dation (a = 0), whereas in Fig. 2 we assume that there is a small decay rate of
a = 0.001. The initial conditions in both runs are random perturbations of 0.3% of
the constant level u± = 0.3 and S is assumed to be initially constant at a low level
of S0 = 0.5.

The simulation in Fig. 1 shows transient patterns, which eventually decays to
the homogeneous steady state. This is in good agreement with observations on
bacteria as shown by Tyson et al. [36]. The second simulation (with decay of S)
shows the same initial patterns, which eventually coarsen, and a global pattern
remains. The transient behavior in Fig.1 can be explained by a linear stability
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Figure 1. Long-time evolution of the total particle density u =
u+ +u− in a time-logarithmic plot without degradation of S (left)
and with degradation of S (right).
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Figure 2. Typical time evolution. Particle density shown for a)
t = 1, b) t = 150, and c) t = 500.

analysis of homogeneous solutions. For a 6= 0 a stationary homogeneous solution
(ū+, ū−, S̄) with ū+ = ū− is linearly unstable, if

γ(π2α + a) < 2ū+β(2ū+)χ(S̄). (53)

The chemotactic sensitivity χ(S) has been chosen to converge to 0 as S →∞. Hence
in the beginning of the simulation of Fig.1 the homogeneous solution is linearly un-
stable, whereas later, when S increases drastically, the chemotaxis term fades out,
the diffusion dominates, and the homogeneous steady state becomes linearly stable.

In two space dimensions we developed a numerical scheme for the Cattaneo model
for chemosensitive movement (52) in [9]. The algorithm is based on a Lax-Wendroff
scheme. Here a typical time evolution is shown for randomly chosen initial data
with constant χ and β = 1− u:

In Figure 2 one clearly observes merging local maxima and coarsening of the pat-
tern. The dynamics of these patterns and the underlying bifurcations are currently
being investigated [31].
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