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A characteristic feature of tumor invasion is the destruction of the healthy tissue sur-
rounding it. Open space is generated, which invasive tumor cells can move into. One
such mechanism is the urokinase plasminogen system (uPS), which is found in many
processes of tissue reorganization. Lolas, Chaplain and collaborators have developed a
series of mathematical models for the uPS and tumor invasion. These models are based
upon degradation of the extracellular material through plasmid plus chemotaxis and
haptotaxis. In this paper we consider the uPS invasion models in one-space dimension
and we identify a condition under which this cancer invasion model converges to a
chemotaxis model with logistic growth. This condition assumes that the density of the

extracellular material is not too large. Our result shows that the complicated spatio-
temporal patterns, which were observed by Lolas and Chaplain et al. are organized by
the chaotic attractor of the logistic chemotaxis system. Our methods are based on energy
estimates, where, for convergence, we needed to find lower estimates in Lγ for 0 < γ < 1.
This is a new method for these types of PDE.
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1. Introduction

Tumor development and progression is a highly complex process characterized by
the accumulation of various hallmark features including abnormal growth, genetic
instabilities, interactions with the micro-environment and immune system, invasion
and metastasis.5 The latter in particular, invasion and metastasis, is associated with
a grave prognosis for the patient. Mathematical modeling of cancer has emerged
into a large discipline, with models developed to describe these many facets of
cancer development, aiming to shed fresh impetus on tumor formation, progression
and treatment.

In this paper we focus on a specific model for tumor invasion, developed by
Chaplain and coworkers over a series of papers2–4 and based on the urokinase plas-
minogen system. The urokinase plasminogen system is considered as a prototypical
chemical network playing a key role in many biological processes where significant
remodeling of the extracellular matrix (ECM) occurs, for example wound healing,
embryonic development and cancer invasion. A key component is plasmin, which
degrades the ECM and permits cancer cells to break free from the main tumor
mass and invade new areas. Five of the major players in the urokinase plasminogen
system are the urokinase plasminogen activator uPA, the urokinase plasminogen
receptor uPAR, the plasminogen activator inhibitor PAI-1, plasmin and the ECM
material vitronectin VN, the latter a glue-like substance found in the ECM. uPA
activates plasminogen, which creates plasmin, a proteolytic enzyme which is able
to degrade ECM. Invasive cancer cells are equipped with uPA receptors, uPAR,
which both bind to focal adhesion points, thereby anchoring the cell to the ECM
(in particular to VN), as well as binding uPA and stimulating the local release of
plasmin at the leading edge of the moving cell. The plasmin degrades ECM at the
leading edge, creating the space for a cell to move into. The inhibitor PAI-1 inhibits
plasmin production and, in high enough concentrations, can halt ECM degradation.
In low concentrations, however, it can facilitate cell movement through detaching
the cell-ECM adhesions at the cell rear, thereby releasing the brakes and allow-
ing movement forward. A more detailed description of the above described uPA
dynamics can be found in Ref. 3.

The above dynamics were incorporated by Chaplain and Lolas3 into a reaction–
advection–diffusion equation system composed of five variables: an equation for
the cancer cells that describes their growth, random, chemotactic and haptotactic
movement and variables for the ECM, uPA, PAI-1 and plasmin. In simulations a
front of cells invading into the ECM was observed, followed by complex spatio-
temporal dynamics suggested to arise from “the complex interplay between prolifer-
ative effects – cancer cell proliferation and matrix remodelling – and gradient driven
migration (chemotaxis and haptotaxis)” (Chaplain and Lolas,4 p. 1726). Chaplain
and Lolas argue that there is a conceptual similarity between the irregular patterns
from the model and certain forms of in vivo tumor morphology, which can be irreg-
ular in shape and form with tumor-free regions separating tumor micro-colonies.
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The origin of the complex dynamics is the motivation for the present study where,
in fact, we find that they are fundamentally driven by cell proliferation and chemo-
taxis with ECM remodeling and haptotaxis playing only a minor role. In Ref. 4 a
subsystem composed of three equations was studied in more depth, given in (1.1)
below and focusing on the dynamics between cancer cells, u(x, t), uPA, v(x, t) and
the ECM, w(x, t). Chaplain and Lolas study the invasion patterns, but they do not
explore complex spatio-temporal patterns for this model; here we will show that this
three-component model also possesses spatio-temporal dynamics. Andasari et al.2

study the original five-component model in greater detail, computing the unsta-
ble modes and determining a relationship between model parameters and observed
patterns.

The patterns shown by the models described above bear a close superficial
resemblance to the spatio-temporal chaos found for chemotaxis models by Painter
and Hillen,12 suggesting a close correlation between the models. Here we will demon-
strate that the three-component model does in fact, in an appropriate sense, con-
verge to the chemotaxis model with logistic growth studied by Painter and Hillen12

under certain conditions and, since the chemotaxis model with logistic growth has a
compact global attractor,11,1 we can conclude that this attractor is the organizing
center for the complex dynamics of the three-component urokinase plasminogen
system. While we suspect that the same mechanisms are the driving force behind
the complex dynamics of the five-component system of Lolas and Chaplain,3 a
rigorous proof has not yet been obtained.

1.1. The models

In the spatially one-dimensional framework, the three-component urokinase plas-
minogen invasion model from Lolas and Chaplain (which we call the cancer invasion
model, for short) is given as


ut = D1uxx − χ(uvx)x − ξ(uwx)x + ru − µu2 − λuw, x ∈ Ω, t > 0,

vt = D2vxx − av + bu, x ∈ Ω, t > 0,

wt = −ρvw, x ∈ Ω, t > 0,

ux(x, t) = vx(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

where Ω is a bounded real interval. The parameters D1, D2, χ, ξ, r, µ, a, b and ρ are
supposed to be positive and λ to be non-negative. The variables (u, v, w) describe
the densities or concentrations of tumor cells, uPA and ECM, respectively. The
initial data u0 ∈ C0(Ω̄), v0 ∈ W 1,∞(Ω) and w0 ∈ C1(Ω̄) are prescribed non-negative
functions.

It is noted that the original model by Chaplain and Lolas3 has an additional
term to describe the remodeling of the healthy tissue; in that case the equation for
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w reads

wt = −ρvw + µ2w(1 − w),

with some µ2 > 0. In their simulation examples the value for µ2 is one to two orders
of magnitude smaller than ρ and, for our study, we have assumed that there is no
regeneration of ECM, i.e. µ2 = 0. This assumption is crucial for our results and
allows us to show that system (1.1) can have chaotic dynamics. We perform some
simulations for nonzero µ2 later, showing that at least for small µ2 the dynamics
are essentially the same. However a rigorous analytical result for the case of µ2 �= 0
is left for future investigations.

The associated chemotaxis model with logistic growth reads


Ut = D1Uxx − χ(UVx)x + rU − µU2, x ∈ Ω, t > 0,

Vt = D2Vxx − aV + bU, x ∈ Ω, t > 0,

Ux(x, t) = Vx(x, t) = 0, x ∈ ∂Ω, t > 0,

(1.2)

with corresponding initial conditions for U and V . An overview about chemotaxis
modeling with PDEs can be found in Ref. 6.

In Fig. 1 we show simulations of these models (1.1) and (1.2) for the parameter
choices D1 = D2 = λ = r = µ = a = b = ρ = 1 and ξ = 10, with varying values
of χ. In the first row (a) we choose χ = 5 and in the second row (b) χ = 15. The
first three frames (a1)–(a3) and (b1)–(b3) show the solution (u, v, w) of the cancer
invasion model (1.1) and frames (a4), (a5) and (b4), (b5) show the solution (U, V )
of the chemotaxis model (1.2). For the plasminogen model (a1)–(a3) and (b1)–(b3),
we see an invasion front which degrades the ECM, leaving either a stationary (case
(a)) or evolving (case (b)) pattern of cancer cell micro-aggregates in its wake. The
patterns of the corresponding chemotaxis model in (a4), (a5) and (b4), (b5) are
basically identical to those that eventually arise from the cancer invasion model
despite the distinct initial behavior. Painter and Hillen12 studied these patterns for
the chemotaxis model in detail and identified a mechanism of merging and emerging
of local peaks, showing that for certain regions of parameter space the dynamics
are chaotic. Consequently we expect the same to be true for the cancer invasion
model.

1.2. Main results

The current literature provides only a few results on the qualitative behavior in
models of type (1.1). This is in sharp contrast to the chemotaxis-growth system
(1.2) and its n-dimensional analogue; indeed, it is known that solutions to the latter
remain bounded when either n ≤ 2,11 or when n ≥ 3 and µ is large.20 In the case
where n = 2 more detailed information is available on their dynamics, including the
existence of global and exponential attractors and their dimensions.11,10 The crucial
mathematical novelty in (1.1) consists of the interaction with the non-diffusive ECM
component w. As observed in previous studies on haptotaxis-only systems, this may
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(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

Fig. 1. (Color online) Numerical simulations comparing the spatio-temporal evolution of the
plasminogen model (1.1) with the chemotaxis model (1.2). Each frame plots the space (horizontal)–
time (vertical) density map, using the color scale at the top of each frame. The parameter values
are D1 = D2 = λ = r = µ = a = b = ρ = 1 and ξ = 10, with χ = 5 in the first row (a), and
χ = 15 in the second row (b). Figures (a1)–(a3) and (b1)–(b3) show the cancer invasion model

(1.1) plotting the cell density u in (a1), (b1), the chemoattractant v in (a2), (b2) and the ECM w
in (a3), (b3). Figures (a4), (a5) and (b4), (b5) show the corresponding behavior of the chemotaxis
model (1.2) for the cell density u in (a4), (b4) and the chemoattractant v in (a5), (b5). The initial
conditions were set at u0(x) = v0(x) = exp(−x2) and w0(x) = 1 − u0(x) for the cancer model,
and u0(x) = 1, v(x, 0) = 1+ε(x) (where ε(x) denotes a small random spatial perturbation) for the
chemotaxis model. Numerical simulations were performed as described at the start of Sec. 6 on
the spatial domain [0, 100] with a spatial discretization of ∆x = 0.05 and error tolerances of 10−8.

carry with it numerous technical obstacles in not only the existence theory, but also
the qualitative study of solutions.9,8,17 Accordingly, analytical investigations into
the three-component system (1.1) have concentrated to date on the global existence
of solutions. Indeed, solutions are known to be global in time when either n ≤ 2,
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or when n = 3 and µ and λ are large enough. This has recently been shown in a
series of papers which also address some variants involving nonlinear cell diffusion,
as suggested in Ref. 3 (see also Refs. 13, 15, 14, 16 and the references therein).

The first objective of the present paper is to address the boundedness question
for (1.1). Our main result in this direction is the following.

Theorem 1.1. Let Ω ⊂ R be an open bounded interval. Suppose that D1, D2, ρ, a

and µ are positive, and that χ, ξ, r, λ and b are non-negative. Then for any non-
negative u0 ∈ C0(Ω̄), v0 ∈ W 1,∞(Ω) and w0 ∈ C1(Ω̄) satisfying w0x = 0 on ∂Ω, the
corresponding solution (u, v, w) of (1.1) is bounded in Ω × (0,∞).

Let us mention here that, as it stands, our proof appears to apply only to space
dimension one. Thus, the boundedness question in the higher-dimensional version
of (1.1) has to be left as an open problem at present.

Secondly, we shall address the question as to whether, and in which sense, the
third solution component w decays for large times. In that case the tumor would
invade the healthy tissue and completely degrade the ECM. A linear analysis of
homogeneous steady states (see Sec. 5.1) shows that the tumor can only invade if

λw∗ < r,

where w∗ denotes the ECM density in healthy tissue. This condition is made more
precise in our second result.

Theorem 1.2. Let λ ≥ 0 and assume that u0 �≡ 0 and

λ‖w0‖L∞(Ω) ≤ r. (1.3)

Then there exists θ > 0 with the property that for all q ∈ [2,∞) one can find C > 0
such that

‖w(·, t)‖W 1,q(Ω) ≤ Ce−θt for all t > 0.

Hence, in this case, all ECM is degraded and the solution of the cancer invasion
model (1.1) asymptotically behaves as if the term w in (1.1) was absent, that is, like
a solution of the pure chemotaxis system (1.2). As shown numerically by Painter and
Hillen,12 the chemotaxis model (1.2) can show chaotic dynamics. Hence in certain
parameter ranges, the solutions depend sensitively on the initial conditions and we
cannot assume that two solutions converge. Consequently, convergence of a single
solution of the cancer invasion model (1.1) to a specific solution of the chemotaxis
model (1.2) cannot be expected. However, we obtain convergence in a more global
sense, which we describe through the corresponding solution operators. We can
apply the variation-of-constants formula in order to represent the solution of the
chemotaxis model (1.2) by using two nonlinear operators Φ1 and Φ2 according to

U(x, t) = eD1(t−t0)∆U(x, t0) −
∫ t

t0

eD1(t−s)∆{χ(UVx)x − rU + µU2}(·, s)ds

=: Φ1(x, t; U, V, t0)
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and

V (x, t) = eD2(t−t0)∆V (x, t0) +
∫ t

t0

eD2(t−s)∆{bU − aV }(·, s)ds

=: Φ2(x, t; U, V, t0)

for arbitrary t0 ≥ 0 and all (x, t) ∈ Ω × (t0,∞). Using this notation, we can write
our convergence result as follows.

Corollary 1.3. Let λ ≥ 0 and u0 �≡ 0, and suppose that (1.3) holds. Then there
exist C > 0 and θ > 0 such that

sup
t>t0

‖u(·, t) − Φ1(·, t; u, v, t0)‖L∞(Ω) ≤ Ce−θt0 (1.4)

and

sup
t>t0

‖v(·, t) − Φ2(·, t; u, v, t0)‖L∞(Ω) = 0 (1.5)

for all t0 > 0.

Let us also remark that the appearance of the smallness condition (1.3) is not of
a purely technical nature. Indeed, a simple counterexample shows that it cannot be
relaxed (see Proposition 5.1). However, convergence can be observed numerically,
even in cases where condition (1.3) is not true. In fact, as a by-product of our
analysis we can identify a dichotomy. Namely, either the cancer invasion model
converges to the chemotaxis model, or the total mass of cells vanishes in the large
time limit.

Theorem 1.4. Let λ ≥ 0 and let (u, v, w) denote the solution of (1.1). Assume
that (u, v, w) does not converge to a solution of the chemotaxis model in the sense
of Corollary 1.3. Then

lim inf
t→∞ ‖u(·, t)‖L1(Ω) = 0.

This result shows that all non-trivial dynamics are covered by the chemotaxis
model. It is an open challenge, however, to clarify whether or not in this case we
also have lim supt→∞ ‖u(·, t)‖L1(Ω) = 0.

2. Preliminaries

Let us first recall that by means of standard arguments involving the contrac-
tion mapping principle, one can show that (1.1) possesses a uniquely determined
global-in-time classical solution (u, v, w) (cf. Refs. 13–15). Moreover, thanks to the
parabolic comparison principle we know that u and v inherit non-negativity from
their respective initial data, whereas the inequality w ≥ 0 immediately results upon
an explicit integration of the third equation in (1.1).
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We recall now a well-known property of systems of type (1.1) with a logistic
source exhibiting a quadratic decay with respect to u in the first equation.

Lemma 2.1. There exists C > 0 such that∫
Ω

u(x, t)dx ≤ C for all t ≥ 0 (2.1)

and ∫ t+1

t

∫
Ω

u2(x, s)dxds ≤ C for all t ≥ 0. (2.2)

Proof. On integration of the first equation in (1.1) we obtain

d

dt

∫
Ω

u = r

∫
Ω

u − µ

∫
Ω

u2 − λ

∫
Ω

uw

≤ r

∫
Ω

u − µ

∫
Ω

u2 for all t > 0, (2.3)

because u and w are non-negative. Since
∫
Ω u2 ≥ 1

|Ω| (
∫
Ω u)2 by Hölder’s inequality,

we see that

d

dt

∫
Ω

u ≤
(

r − µ

|Ω|
∫

Ω

u

)
·
∫

Ω

u for all t > 0,

and thus obtain from an ODE comparison argument that∫
Ω

u ≤ max
{∫

Ω

u0,
r|Ω|
µ

}
for all t ≥ 0. (2.4)

Now integrating (2.3) in time yields∫
Ω

u(x, t + 1)dx + µ

∫ t+1

t

∫
Ω

u2 ≤
∫

Ω

u(x, t)dx + r

∫ t+1

t

∫
Ω

u for all t ≥ 0,

which in conjunction with (2.4) proves (2.1) and (2.2).

Secondly, standard smoothing estimates provide the following regularity prop-
erty of v.

Lemma 2.2. For all q ∈ [2,∞) there exists C > 0 such that

‖vx(·, t)‖Lq(Ω)

≤ C ·
{
e−at +

∫ t

0

[1 + (t − s)−α] · e−a(t−s) · ‖u(·, s)‖L1(Ω)ds

}
for all t > 0,

(2.5)

where α := 1 − 1
2q ∈ (0, 1).
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Proof. Applying the variation-of-constants formula to the second equation in
(1.1) and recalling standard smoothing estimates for the Neumann heat semigroup
(eτ∆)τ≥0 (see Lemma 1.3 in Ref. 19, for instance), we see that

‖vx(·, t)‖Lq(Ω) =
∥∥∥∥e−at(eD2t∆v0)x + b

∫ t

0

e−a(t−s)(eD2(t−s)∆u(·, s)ds)x

∥∥∥∥
Lq(Ω)

≤ c1e
−at‖v0x‖Lq(Ω)

+ c2

∫ t

0

e−a(t−s)(1 + (t − s)−
1
2− 1

2 (1− 1
q ))‖u(·, s)‖L1(Ω)ds

for all t ≥ 0 and some c1 > 0 and c2 > 0, which implies (2.5).

Combined with Lemma 2.1, this provides a bound for v in L∞((0,∞); W 1,q(Ω))
for arbitrarily large q.

Corollary 2.3. For all q ∈ [2,∞) we can find C > 0 fulfilling

‖v(·, t)‖W 1,q(Ω) ≤ C for all t > 0. (2.6)

Proof. According to Lemma 2.1 there exists c1 > 0 such that

‖u(·, t)‖L1(Ω) ≤ c1 for all t > 0. (2.7)

Inserted into (2.5), this shows that given q ∈ [2,∞), with α = 1 − 1
2q and some

c2 > 0 we have

‖vx(·, t)‖Lq(Ω) ≤ c2 ·
{

e−at +
∫ t

0

[1 + (t − s)−α] · e−a(t−s) · c1ds

}

≤ c2 ·
{

1 + c1

∫ ∞

0

(1 + σ−α) · e−aσdσ

}
for all t > 0. (2.8)

Moreover, integrating the second equation in (1.1) in space we see that (2.7)
implies boundedness of v in L∞((0,∞); L1(Ω)), which in conjunction with (2.8)
proves (2.6).

3. Boundedness

3.1. Pointwise lower bound for v

In order to derive estimates for w, in view of the third equation in (1.1) it seems
favorable to study lower bounds for v. As a preparation, we state a pointwise
estimate from below for Neumann heat semigroup (eσ∆)σ≥0 in Ω.

Lemma 3.1. Let D > 0. Then there exists Γ0 > 0 such that for all non-negative
z ∈ C0(Ω̄) we have

(eDτ∆z)(x) ≥ Γ0 ·
∫

Ω

z for all x ∈ Ω and each τ ≥ 1. (3.1)
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Proof. Since for τ ≥ 1 we have eDτ∆z = eD(τ−1)∆(eD∆z) and since eD(τ−1)∆ is
order preserving because of the maximum principle, we may assume that τ = 1.

Let us first prove (3.1) for all

z ∈ S := {ϕ ∈ C∞
0 (R) |ϕ ≥ 0, suppϕ ⊂ Ω̄, and there exists x0 ∈ Ω such that

ϕ(x0 + y) = ϕ(x0 − y) and ϕx(x0 + y) ≤ 0 for all y > 0}.
For such z, namely, we know that

eDt∆z ≥ eDt∆C z in Ω for all t ≥ 0, (3.2)

where u := eDt∆Cz denotes the solution of the Cauchy problem{
ut = Duxx, x ∈ R, t > 0,

u(x, 0) = z(x), x ∈ R.

Indeed, since u is non-negative and symmetric with respect to some x0 ∈ Ω and
satisfies ux ≤ 0 in (x0,∞) × (0,∞) by the maximum principle, it follows that
∂u
∂ν ≤ 0 on ∂Ω × (0,∞), and hence again by the maximum principle we see that
u ≤ u := eDt∆z in Ω × (0,∞), because u solves the same PDE as u but satisfies
∂u
∂ν = 0 on ∂Ω × (0,∞).

Now given z ∈ S, using the explicit representation formula for eD∆C z along
with the fact that supp z ⊂ Ω, we can estimate

(eD∆C z)(x) =
1√
4πD

∫ b

a

e−
(x−y)2

4D · z(y)dy

≥ 1√
4πD

· e− (b−a)2

4D ·
∫ b

a

z(y)dy for all x ∈ Ω.

In view of (3.2), this proves that for some Γ0 > 0 we have

(eD∆z)(x) ≥ Γ0 ·
∫

Ω

z for all x ∈ Ω whenever z ∈ S.

However, if z ∈ C0(Ω̄) is an arbitrary non-trivial non-negative function, then for all
ε > 0, by a density argument we can pick N ∈ N, c1, . . . , cN > 0 and ϕ1, . . . , ϕN ∈ S

such that

z + ε ≥
N∑

k=1

ckϕk ≥ z − ε in Ω.

Thus, by linearity,

eD∆z ≥
N∑

k=1

ck · eD∆ϕk − ε ≥ Γ0 ·
N∑

k=1

ck ·
∫

Ω

ϕk − ε ≥ Γ0 ·
∫

Ω

z − Γ0ε|Ω| − ε in Ω,

which in the limit ε ↘ 0 yields the desired inequality.
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With the above statement at hand, we can derive a lower bound for v that will
be convenient for our purpose.

Lemma 3.2. There exists Γ > 0 such that∫ t

0

v(x, s)ds ≥ Γ ·
∫ t−2

0

∫
Ω

u(y, s)dyds for all x ∈ Ω and t ≥ 2. (3.3)

Proof. By means of the variation-of-constants formula, v is represented accord-
ing to

v(·, t) = e−ateD2t∆v0 + b

∫ t

0

e−a(t−s)eD2(t−s)∆u(·, s)ds for t ≥ 0,

where clearly e−ateD2t∆v0 ≥ 0 in Ω, for v0 ≥ 0. By Lemma 3.1, for some Γ0 > 0
we have

eD2(t−s)∆u(·, s) ≥ Γ0 ·
∫

Ω

u(·, s) in Ω whenever t − s ≥ 1,

so that for t ≥ 1 we obtain

v(·, t) ≥ b

∫ t−1

0

e−a(t−s)eD2(t−s)∆u(·, s)ds

≥ bΓ0 ·
∫ t−1

0

e−a(t−s) ·
∫

Ω

u(·, s)ds.

Hence an integration in time shows that∫ t

1

v(x, s)ds ≥ bΓ0 ·
∫ t

1

∫ s−1

0

e−a(s−σ) ·
∫

Ω

u(·, σ)dσds for all x ∈ Ω and t ≥ 1.

(3.4)

Here, Fubini’s theorem yields

bΓ0 ·
∫ t

1

∫ s−1

0

e−a(s−σ) ·
∫

Ω

u(·, σ)dσds

= bΓ0 ·
∫ t−1

0

(∫ t

σ+1

e−a(s−σ)ds

)
·
∫

Ω

u(·, σ)dσ

=
bΓ0

a
·
∫ t−1

0

(e−a − e−a(t−σ)) ·
∫

Ω

u(·, σ)dσ (3.5)

for all t ≥ 1. Now if t−σ ≥ 2 then e−a − e−a(t−σ) ≥ e−a − e−2a, so that in the case
t ≥ 2 we can estimate

bΓ0

a
·
∫ t−1

0

(e−a − e−a(t−σ)) ·
∫

Ω

u(·, σ)dσ

≥ bΓ0

a
· (e−a − e−2a) ·

∫ t−2

0

∫
Ω

u(x, σ)dxdσ. (3.6)

Thus, from (3.4)–(3.6) we infer that (3.3) holds if we let Γ := bΓ0
a · (e−a − e−2a).
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At the cost of a subtractive constant, the upper limit in the time integral on
the right of (3.3) can easily be modified conveniently.

Corollary 3.3. With Γ as in Lemma 3.2, we can choose C > 0 such that∫ t

0

v(x, s)ds ≥ Γ ·
∫ t

0

∫
Ω

u(y, s)dyds − C for all x ∈ Ω and t ≥ 0.

Proof. Since
∫
Ω u(·, t) ≤ c1 for all t ≥ 0 and some c1 > 0, when t ≥ 2 using

Lemma 3.2 we obtain

Γ
∫ t

0

∫
Ω

u ≤
∫ t

0

v(x, s)ds + Γ
∫ t

t−2

∫
Ω

u ≤
∫ t

0

v(x, s)ds + 2c1Γ for all x ∈ Ω,

whereas in the case t < 2 we trivially have
∫ t

0
v(x, s)ds ≥ 0 for all x ∈ Ω and hence

Γ
∫ t

0

∫
Ω

u ≤ c1Γt ≤
∫ t

0

v(x, s)ds + 2c1Γ for all x ∈ Ω.

This proves the claim upon the choice C := 2c1Γ.

3.2. An estimate for w

A crucial step towards our boundedness proof will be provided by the following
lemma.

Lemma 3.4. Let q ∈ [2,∞). Then there exists C > 0 such that

‖w(·, t)‖W 1,q(Ω) ≤ C e−ρΓ·R t
0

R
Ω u ·

(
1 +

∫ t

0

∫
Ω

u

)
for all t ≥ 0, (3.7)

where Γ is as in Corollary 3.3.

Proof. Integrating wt = −ρvw gives

w(x, t) = w0(x) · e−ρ
R t
0 v(x,s)ds for x ∈ Ω and t > 0, (3.8)

so that since Corollary 3.3 implies

e−
R

t
0 v(x,s)ds ≤ c1 e−Γ

R
t
0

R
Ω u(y,s)dyds for all x ∈ Ω and t ≥ 0, (3.9)

with some c1 > 0, we see that

‖w(·, t)‖L∞(Ω) ≤ c1‖w0‖L∞(Ω) · e−ρΓ
R

t
0

R
Ω u(y,s)dyds for all t ≥ 0. (3.10)

Moreover, differentiating (3.8) yields

wx(x, t) = w0x(x) · e−ρ
R t
0 v(x,s)ds − ρw0(x) · e−ρ

R t
0 v(x,s)ds ·

∫ t

0

vx(x, s)ds

=: z1(x, t) + z2(x, t) for x ∈ Ω and t ≥ 0. (3.11)
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Here, from (3.9) we obtain

|z1(x, t)| ≤ |w0x(x)| · e−ρ
R t
0 v(x,s)ds

≤ c1|w0x(x)| · e−ρΓ
R t
0

R
Ω u(y,s)dyds for all x ∈ Ω and t ≥ 0,

whence

‖z1(·, t)‖Lq(Ω) ≤ c1‖w0x‖Lq(Ω) · e−ρΓ
R

t
0

R
Ω u(y,s)dyds for all t ≥ 0. (3.12)

As to z2, we argue by duality and estimate, writing q′ := q
q−1 and again using (3.9),

‖z2(·, t)‖Lq(Ω) = sup
ϕ∈C∞

0 (Ω),‖ϕ‖
Lq′ (Ω)

≤1

∣∣∣∣
∫

Ω

z2(x, t)ϕ(x)dx

∣∣∣∣
= sup

ϕ∈C∞
0 (Ω),‖ϕ‖

Lq′ (Ω)
≤1

∣∣∣∣ρ
∫

Ω

w0(x) · e−ρ
R

t
0 v(x,s)ds

·
∫ t

0

vx(x, s)ds · ϕ(x)dx

∣∣∣∣
≤ c1ρ‖w0‖L∞(Ω) · e−ρΓ

R
t
0

R
Ω u(y,s)dyds

· sup
ϕ∈C∞

0 (Ω),‖ϕ‖
Lq′ (Ω)

≤1

∫
Ω

∫ t

0

|vx(x, s)| · |ϕ(x)|dsdx

≤ c1ρ‖w0‖L∞(Ω) · e−ρΓ
R t
0

R
Ω u(y,s)dyds

· sup
ϕ∈C∞

0 (Ω),‖ϕ‖
Lq′ (Ω)

≤1

∫ t

0

‖vx(·, s)‖Lq(Ω) · ‖ϕ‖Lq′ (Ω)ds

≤ c1ρ‖w0‖L∞(Ω) · e−ρΓ
R t
0

R
Ω u(y,s)dyds ·

∫ t

0

‖vx(·, s)‖Lq(Ω)ds

(3.13)

for all t ≥ 0. Now from Lemma 2.2 we know that there exists c2 > 0 such that∫ t

0

‖vx(·, s)‖Lq(Ω)ds

≤ c2

∫ t

0

{
e−as +

∫ s

0

[1 + (s − σ)−α] · e−a(s−σ) · ‖u(·, σ)‖L1(Ω)dσ

}
ds

for all t ≥ 0, where α = 1− 1
2q . Since

∫ t

0
e−asds ≤ 1

a for all t ≥ 0, and since Fubini’s
theorem entails that∫ t

0

∫ s

0

[1 + (s − σ)−α] · e−a(s−σ) · ‖u(·, σ)‖L1(Ω)dσds

=
∫ t

0

(∫ t

σ

[1 + (s − σ)−α] · e−a(s−σ)ds

)
· ‖u(·, σ)‖L1(Ω)dσ
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=
∫ t

0

(∫ t−σ

0

[1 + θ−α] · e−aθdθ

)
· ‖u(·, σ)‖L1(Ω)dσ

≤
(∫ ∞

0

[1 + θ−α] · e−aθdθ

)
·
∫ t

0

‖u(·, σ)‖L1(Ω)dσ for all t ≥ 0,

we thus infer that∫ t

0

‖vx(·, s)‖Lq(Ω)ds ≤ c2 ·
{

1
a

+
(∫ ∞

0

[1 + θ−α] · e−aθdθ

)
·
∫ t

0

∫
Ω

u(x, σ)dxdσ

}

for all t ≥ 0. In conjunction with (3.13), (3.11), (3.12) and (3.10), this finally
establishes (3.7).

As a consequence of Lemma 3.4, without any further assumption we obtain
boundedness of w in L∞((0,∞); W 1,q(Ω)) for any finite q.

Corollary 3.5. Let q ∈ [2,∞). Then there exists c > 0 such that

‖w(·, t)‖W 1,q(Ω) ≤ c for all t ≥ 0.

Proof. In view of the elementary inequality

z · e−ρΓz ≤ 1
ρΓe

for all z ≥ 0,

taking C as provided by Lemma 3.4, from (3.7) we immediately obtain

‖w(·, t)‖W 1,q(Ω) ≤ C ·
(

1 +
1

ρΓe

)
for all t ≥ 0

and conclude.

3.3. Proof of Theorem 1.1

We can now prove our main result on boundedness in (1.1).

Proof of Theorem 1.1. In view of Corollaries 2.3 and 3.5 we only need to show
that there exists C > 0 such that

u(x, t) ≤ C for all x ∈ Ω and t > 0. (3.14)

To this end, we first observe that according to Lemma 2.1 there exists c1 > 0 such
that for each integer k ≥ 2 we can pick tk ∈ (k − 2, k − 1) with the property

‖u(·, tk)‖L2(Ω) ≤ c1 for all k ≥ 2. (3.15)

We now let

Mk := max
t∈[tk,tk+3]

(t − tk)
1
4 · ‖u(·, t)‖L∞(Ω), k ≥ 2
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and claim that there exists c2 > 0 satisfying

Mk ≤ c2 for all k ≥ 2. (3.16)

For this purpose, we apply the variation-of-constants formula to the first equation
in (1.1) to see that

u(·, t) = eD1(t−tk)∆u(·, tk) − χ

∫ t

tk

eD1(t−s)∆(uvx)x(·, s)ds

− ξ

∫ t

tk

eD1(t−s)∆(uwx)x(·, s)ds

+
∫ t

tk

eD1(t−s)∆f(u(·, s), w(·, s))ds for all t ≥ tk, (3.17)

where

f(û, ŵ) := rû − µû2 − λûŵ for û ≥ 0 and ŵ ≥ 0.

Using well-known smoothing estimates for the Neumann heat semigroup, we find
c3 > 0 fulfilling

‖eD1(t−tk)∆u(·, tk)‖L∞(Ω) ≤ c3(t − tk)−
1
4 · ‖u(·, tk)‖L2(Ω)

≤ c1c3(t − tk)−
1
4 for all t > tk (3.18)

in view of (3.15). Next, since evidently

f(û, ŵ) ≤ r2

4µ
for all û ≥ 0 and ŵ ≥ 0,

the order-preserving property of (eτ∆)τ≥0 implies the one-sided pointwise inequality∫ t

tk

eD1(t−s)∆f(u(·, s)w(·, s))ds ≤ r2

2µ
· (t − tk) in Ω for all t > tk, (3.19)

because eτ∆ leaves constants unchanged.
In order to estimate the second and the third term on the right of (3.17), we

pick any p ∈ (1, 2) and let q := p
p−1 and κ := pq+p−q

q . We then have

κ = 2 − 2
p
∈ (0, 1) (3.20)

and q > p, and in particular Corollaries 2.3 and 3.5 provide positive constants c4

and c5 such that

‖vx(·, t)‖Lq(Ω) ≤ c4 for all t ≥ 0 (3.21)

and

‖wx(·, t)‖Lq(Ω) ≤ c5 for all t ≥ 0. (3.22)
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Again according to known smoothing estimates involving a result from Ref. 19, for
some c6 > 0 we have

‖eτ∆ϕx‖L∞(Ω) ≤ c6τ
− 1

2− 1
2p · ‖ϕ‖Lp(Ω) for all τ ∈ (0, 3D1), (3.23)

whenever ϕ ∈ C1(Ω̄). We thereby obtain∥∥∥∥−χ

∫ t

tk

eD1(t−s)∆(uvx)x(·, s)ds

∥∥∥∥
L∞(Ω)

≤ c6χ · D− 1
2− 1

2p

1

·
∫ t

tk

(t − s)−
1
2− 1

2p ‖u(·, s)vx(·, s)‖Lp(Ω)ds for all t ∈ (tk, tk + 3). (3.24)

Here, in view of the Hölder inequality we have

‖u(·, s)vx(·, s)‖Lp(Ω) ≤ ‖u(·, s)‖
L

pq
q−p (Ω)

· ‖vx(·, s)‖Lq(Ω)

≤ ‖u(·, s)‖κ
L∞(Ω) · ‖u(·, s)‖1−κ

L1(Ω) · ‖vx(·, s)‖Lq(Ω) for all s ≥ 0,

so that using (3.21) and the boundedness of u in L∞((0,∞); L1(Ω)) asserted by
Lemma 2.1, we see that

‖u(·, s)vx(·, s)‖Lp(Ω) ≤ c7‖u(·, s)‖κ
L∞(Ω)

≤ c7 · (s − tk)−
κ
4 · Mκ

k for all s ∈ (tk, tk + 3),

with some c7 > 0. Inserted into (3.24), this yields c8 > 0 such that∥∥∥∥−χ

∫ t

tk

eD1(t−s)∆(uvx)x(·, s)ds

∥∥∥∥
L∞(Ω)

≤ c8M
κ
k ·

∫ t

tk

(t − s)−
1
2− 1

2p · (s − tk)−
κ
4 ds

= c8M
κ
k ·

∫ 1

0

(1 − σ)−
1
2− 1

2p · σ−κ
4 dσ

=: c9M
κ
k for all t ∈ (tk, tk + 3), (3.25)

because 1
2 + 1

2p + κ
4 = 1 by (3.20).

Quite a similar reasoning based on (3.22) shows that there exists c10 > 0 such
that∥∥∥∥−ξ

∫ t

tk

eD1(t−s)∆(uwx)x(·, s)ds

∥∥∥∥
L∞(Ω)

≤ c10M
κ
k for all t ∈ (tk, tk + 3). (3.26)

We now collect (3.18), (3.19), (3.25) and (3.26) to obtain from (3.17) and the non-
negativity of u that

(t − tk)
1
4 · ‖u(·, t)‖L∞(Ω) ≤ c11 + c12M

κ
k for all t ∈ (tk, tk + 3),
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with some c11 > 0 and c12 > 0. Since κ ∈ (0, 1), we can employ Young’s inequality
here to derive from this the existence of c13 > 0 fulfilling

(t − tk)
1
4 · ‖u(·, t)‖L∞(Ω) ≤ 1

2
Mk + c13 for all t ∈ (tk, tk + 3).

This entails

Mk ≤ 1
2
Mk + c13

and hence

Mk ≤ 2c13 for all k ≥ 2.

This proves that

‖u(·, t)‖L∞(Ω) ≤ 2c13 for all t ∈ (tk + 1, tk + 3) and each k ≥ 2,

as the fact that tk ∈ (k − 2, k − 1) implies that (tk + 1, tk + 3) ⊃ [k, k + 1] for all
k ≥ 2, we conclude that

‖u(·, t)‖L∞(Ω) ≤ 2c13 for all t ≥ 2.

In view of the evident boundedness of u in Ω× (0, 2), this leads to (3.14) and thus
completes the proof.

4. Decay of w and Asymptotic Behavior

Our next goal is to prove that under the smallness assumption (1.3), w(·, t) decays
exponentially as t → ∞, where in view of our final purpose (cf. Corollary 4.4) it
seems favorable to make sure that this convergence takes place at least in W 1,q(Ω)
for some q > 1. In fact, we shall assert a result of this type in the space W 1,q(Ω)
for any q < ∞.

The following preparation for this results from a straightforward combination
of Ehrling’s lemma with the Poincaré inequality, whence its proof may be omitted
here.

Lemma 4.1. Let p ∈ (2,∞). Then for all ε > 0 there exists K(ε) > 0 such that

‖z‖Lp(Ω) ≤ ε‖zx‖2
L2(Ω) + K(ε) · ‖z‖2

L2(Ω) for all z ∈ W 1,2(Ω).

In view of Lemma 3.4, as our only task towards the desired decay result, it
remains to ensure that

∫ t

0

∫
Ω u becomes conveniently large for large t. We note that

without any proliferation terms in the first equation in (1.1), that is, under the
assumption r = µ = λ = 0, simply integrating this equation in space would yield∫
Ω

u(·, t) ≡ ∫
Ω

u0, which for non-trivial u0 would imply
∫ t

0

∫
Ω

u → ∞ as t → ∞.
However, in the present setting we suspect that the evolution of the total mass
might be more involved, and accordingly it does not seem trivial to exclude the
possibility that

∫
Ω

u(·, t) might even decay as t → ∞. However, we can rule out the
latter type of behavior under the additional assumption that λw ≤ r in Ω. We shall
see in Proposition 5.1 below that this cannot be relaxed.
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Our technique to derive this lower bound appears to be new in this context:
In order to obtain a positive lower bound for

∫
Ω

u(·, t) for all t > 0, we deduce
a differential inequality for the seminorm of u(·, t) in Lγ(Ω) for some positive γ

which is smaller than one. Unlike the case when γ > 1, in a corresponding testing
procedure the term stemming from self-diffusion now has a favorable sign in respect
of preventing decay (cf. (4.6) below).

Lemma 4.2. Suppose that u0 �≡ 0, that λ ≥ 0, and that

λ · ‖w0‖L∞(Ω) ≤ r. (4.1)

Then there exist γ ∈ (0, 1) and c > 0 such that∫
Ω

uγ(x, t)dx ≥ c for all t ∈ [0,∞).

Proof. Since v > 0 in Ω̄ × (0,∞) by the strong maximum principle, upon a small
time shift if necessary we may assume that

η := r − λ · ‖w0‖L∞(Ω) > 0. (4.2)

Let us fix any q ∈ (2,∞) and then apply Corollaries 2.3 and 3.5 to obtain constants
c1 > 0 and c2 > 0 such that

‖vx(·, t)‖Lq(Ω) ≤ c1 for all t > 0 (4.3)

and

‖wx(·, t)‖Lq(Ω) ≤ c2 for all t > 0. (4.4)

With K(·) as provided by Lemma 4.1, we now pick γ ∈ (0, 1) sufficiently close to 1
fulfilling {

χ2c2
1 · K

(
D2

1

4χ2c2
1

)
+ ξ2c2

2 · K
(

D2
1

4ξ2c2
2

)}
· 2(1 − γ)

D1
<

η

2
. (4.5)

Testing the first equation in (1.1) by uγ−1 we then obtain

1
γ

d

dt

∫
Ω

uγ = D1(1 − γ)
∫

Ω

uγ−2u2
x − χ(1 − γ)

∫
Ω

uγ−1uxvx − ξ(1 − γ)
∫

Ω

uγ−1uxwx

+ r

∫
Ω

uγ − µ

∫
Ω

uγ+1 − λ

∫
Ω

uγw for all t > 0. (4.6)

Here, Young’s inequality gives∣∣∣∣−χ(1 − γ)
∫

Ω

uγ−1uxvx

∣∣∣∣ ≤ D1(1 − γ)
8

·
∫

Ω

uγ−2u2
x +

2χ2(1 − γ)
D1

·
∫

Ω

uγv2
x, (4.7)
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and Hölder’s inequality along with (4.3) yields

2χ2(1 − γ)
D1

·
∫

Ω

uγv2
x ≤ 2χ2(1 − γ)

D1
·
(∫

Ω

u
qγ

q−2

) q−2
q

·
(∫

Ω

|vx|q
) 2

q

≤ 2χ2c2
1(1 − γ)
D1

·
(∫

Ω

u
qγ

q−2

) q−2
q

. (4.8)

We apply Lemma 4.1 to z := u
γ
2 to estimate(∫

Ω

u
qγ

q−2

) q−2
q

= ‖u γ
2 ‖2

L
2q

q−2 (Ω)

≤ D2
1

4χ2c2
1

‖(u γ
2 )x‖2

L2(Ω) + K

(
D2

1

4χ2c2
1

)
· ‖u γ

2 ‖2
L2(Ω)

=
D2

1γ
2

16χ2c2
1

·
∫

Ω

uγ−2u2
x + K

(
D2

1

4χ2c2
1

)
·
∫

Ω

uγ

and thus infer from (4.7) and (4.8) that∣∣∣∣−χ(1 − γ)
∫

Ω

uγ−1uxvx

∣∣∣∣ ≤ D1(1 − γ)
8

· (1 + γ2) ·
∫

Ω

uγ−2u2
x

+
2χ2c2

1(1 − γ)
D1

· K
(

D2
1

4χ2c2
1

)
·
∫

Ω

uγ . (4.9)

By the same arguments relying on (4.4) rather than on (4.3), we see that∣∣∣∣−ξ(1 − γ)
∫

Ω

uγ−1uxwx

∣∣∣∣ ≤ D1(1 − γ)
8

· (1 + γ2) ·
∫

Ω

uγ−2u2
x

+
2ξ2c2

2(1 − γ)
D1

· K
(

D2
1

4ξ2c2
2

)
·
∫

Ω

uγ . (4.10)

Next, in order to estimate the second last term in (4.6) we invoke the Gagliardo–
Nirenberg inequality to find some c3 > 0 such that

µ

∫
Ω

uγ+1 = µ‖u γ
2 ‖

2(γ+1)
γ

L
2(γ+1)

γ (Ω)

≤ c3 ·
(
‖(u γ

2 )x‖
2(γ+1)

γ ·d
L2(Ω) · ‖u γ

2 ‖
2(γ+1)

γ ·(1−d)

L2(Ω) + ‖u γ
2 ‖

2(γ+1)
γ

L2(Ω)

)
,

where

− γ

2(γ + 1)
=

(
1 − 1

2

)
d − 1

2
(1 − d) = d − 1

2
,

that is,

d =
1

2(γ + 1)
.
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Therefore,

µ

∫
Ω

uγ+1 ≤ c3 ·
(
‖(u γ

2 )x‖
1
γ

L2(Ω) · ‖u
γ
2 ‖

2γ+1
γ

L2(Ω) + ‖u γ
2 ‖

2(γ+1)
γ

L2(Ω)

)
,

so that an application of Young’s inequality yields c4 > 0 such that

µ

∫
Ω

uγ+1 ≤ D1(1 − γ)
2

·
∫

Ω

uγ−2u2
x + c4 · ‖u

γ
2 ‖

2(2γ+1)
2γ−1

L2(Ω) + c3 · ‖u
γ
2 ‖

2(γ+1)
γ

L2(Ω)

=
D1(1 − γ)

2
·
∫

Ω

uγ−2u2
x + c4 ·

(∫
Ω

uγ

) 2γ+1
2γ−1

+ c3 ·
(∫

Ω

uγ

) γ+1
γ

.

(4.11)

Finally, using that wt ≤ 0, from (4.2) we gain the inequality

λ

∫
Ω

uγw ≤ λ

∫
Ω

uγw0 ≤ (r − η) ·
∫

Ω

uγ , (4.12)

whence collecting (4.6), (4.9), (4.10), (4.11) and (4.12) we obtain

1
γ

d

dt

∫
Ω

uγ ≥
{

D1(1 − γ) − D1(1 − γ)
8

· (1 + γ2) − D1(1 − γ)
8

· (1 + γ2)

− D1(1 − γ)
2

}
·
∫

Ω

uγ−2u2
x +

{
r − 2χ2c2

1(1 − γ)
D1

· K
(

D2
1

4χ2c2
1

)

− 2ξ2c2
2(1 − γ)
D1

· K
(

D2
1

4ξ2c2
2

)
− (r − η)

}
·
∫

Ω

uγ

− c4 ·
(∫

Ω

uγ

) 2γ+1
2γ−1

− c3 ·
(∫

Ω

uγ

) γ+1
γ

for all t > 0.

In view of (4.5) and the fact that γ < 1, this shows that y(t) :=
∫
Ω

uγ(x, t) satisfies

1
γ

y′(t) ≥ η

2
y(t) − c4y

κ1(t) − c3y
κ2(t) for all t > 0,

where κ1 := 2γ+1
2γ−1 and κ2 := γ+1

γ . Since both κ1 > 1 and κ2 > 1, an ODE compar-
ison shows that

y(t) ≥ c5 := min{y(0), ys} for all t > 0,

where ys is the unique positive solution of η
2ys − c4y

κ1
s − c3y

κ2
s = 0. Since c5 is

positive in view of the fact that u0 �≡ 0, the proof is complete.

On an application of Hölder’s inequality, from Lemma 4.2 we immediately obtain
the following.
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Corollary 4.3. Let λ ≥ 0, and assume that u0 �≡ 0 and

λ‖w0‖L∞(Ω) ≤ r.

Then there exists c > 0 such that∫
Ω

u(x, t)dx ≥ c for all t ∈ [0,∞). (4.13)

Proof. According to Lemma 4.2, let us choose γ ∈ (0, 1) and c1 > 0 in such a
way that

∫
Ω

uγ(x, t)dx ≥ c1 for all t ≥ 0. Since γ < 1, the Hölder inequality then
says that

∫
Ω uγ ≤ |Ω|1−γ(

∫
Ω u)γ , whereupon we infer that (4.13) holds if we let

c := c
1
γ

1 |Ω|1− 1
γ , for instance.

4.1. Proof of Theorem 1.2

We are now ready to establish our main result on decay of the ECM.

Proof of Theorem 1.2. Given q ∈ [2,∞), Lemma 3.4 yields c1 > 0 and Γ > 0
such that

‖w(·, t)‖W 1,q(Ω) ≤ c1e
−Γ

R
t
0

R
Ω u ·

(
1 +

∫ t

0

∫
Ω

u

)
for all t ≥ 0,

which implies that for some c2 > 0 we have

‖w(·, t)‖W 1,q(Ω) ≤ c2e
−Γ

2

R
t
0

R
Ω u for all t ≥ 0, (4.14)

because (1 + z)e−Γz ≤ (1 + 2
Γe) · e−

Γ
2 z for all z ≥ 0. With c > 0 as given by

Corollary 4.3, we therefore obtain

‖w(·, t)‖W 1,q(Ω) ≤ c2e
−Γ

2 ct for all t ≥ 0,

which proves the assertion.

4.2. Proof of Corollary 1.3 and Theorem 1.4

The proof of Corollary 1.3 will result directly from the following.

Lemma 4.4. Let λ ≥ 0 and u0 �≡ 0, and suppose that (1.3) holds. Then there exist
C > 0 and θ > 0 such that

sup
t>t0

∥∥∥∥u(·, t) − eD1(t−t0)∆u0 −
∫ t

t0

eD1(t−s)∆{χ(uvx)x(·, s) + ru(·, s)

−µu2(·, s)}ds

∥∥∥∥
L∞(Ω)

≤ Ce−θt0 for all t0 ≥ 0. (4.15)

Proof. According to Theorems 1.1 and 1.2, there exist c1 > 0 and θ > 0 such that

‖u(·, t)‖L∞(Ω)≤ c1 and ‖w(·, t)‖L∞(Ω) + ‖wx(·, t)‖L2(Ω)≤ c1e
−θt for all t > 0.

(4.16)
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Now by the variation-of-constants formula applied to the first equation in (1.1), for
all t0 ≥ 0 and each t > t0 we have

u(·, t) − eD1(t−t0)∆u0 −
∫ t

t0

eD1(t−s)∆{−χ(u(·, s)vx(·, s))x + ru(·, s) − µu2(·, s)}ds

= −ξ

∫ t

t0

eD1(t−s)∆(u(·, s)wx(·, s))xds − λ

∫ t

t0

eD1(t−s)∆u(·, s)w(·, s)ds

=: I1(t) + I2(t). (4.17)

Here, the smoothing action of the heat semigroup (cf. (3.23)) along with (4.16)
ensures that for some c2 > 0 the inequality

‖I1(t)‖L∞(Ω) ≤ c2

∫ t

t0

(1 + (t − s)−
3
4 )‖u(·, s)wx(·, s)‖L2(Ω)ds

≤ c2
1c2

∫ t

t0

(1 + (t − s)−
3
4 )e−θsds (4.18)

is valid for all t > t0. Thus, for large t we have

‖I1(t)‖L∞(Ω) ≤ c2
1c2 ·

{
2

∫ t−1

t0

e−θsds + 2e−θt0

∫ t

t−1

(t − s)−
3
4 ds

}

≤ c2
1c2 ·

{
2
θ
e−θt0 + 8e−θt0

}
for all t ≥ t0 + 1, (4.19)

whereas for t close to t0 we can estimate

‖I1(t)‖L∞(Ω) ≤ c2
1c2e

−θt0 ·
∫ t

t0

(1 + (t − s)−
3
4 )ds

= c2
1c2e

−θt0 · (t − t0 + 4(t − t0)
1
4 )

≤ 5c2
1c2e

−θt0 for all t ∈ (t0, t0 + 1). (4.20)

Moreover, by the maximum principle and (4.16),

‖I2(t)‖L∞(Ω) ≤ λ

∫ t

t0

‖u(·, s)w(·, s)‖L∞(Ω)ds

≤ λc2
1

∫ t

t0

e−θsds

≤ λc2
1

1
θ
e−θt0 for all t > t0. (4.21)
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Combining (4.17)–(4.21), we immediately arrive at

sup
t>t0

∥∥∥∥u(·, t) − eD1(t−t0)∆u0 −
∫ t

t0

eD1(t−s)∆{χ(uvx)x(·, s) + ru(·, s)

−µu2(·, s)}ds

∥∥∥∥
L∞(Ω)

≤ Ce−θt0 for all t0 ≥ 0. (4.22)

Proof of Corollary 1.3. The estimate for u is an immediate consequence of
Lemma 4.4. The statement concerning v is evident, since the equations for v in the
cancer invasion model (1.1) and in the chemotaxis model (1.2) are identical, hence
they have the same solution operator Φ2.

Proof of Theorem 1.4. Let us assume that (u, v, w) does not behave as stated
in Corollary 1.3 but

lim inf
t→∞ ‖u(·, t)‖L1(Ω) > 0. (4.23)

Then the above arguments, starting from (4.14), apply to guarantee that the con-
clusion of Theorem 1.2 is still valid. We therefore can fully carry over the proof
of Lemma 4.4 and hence of Corollary 1.3 to infer that (u, v, w) satisfies (1.4) and
(1.5), contrary to the hypothesis.

5. Linearization and Sharpness of the Condition for Decay

5.1. Linear analysis

In this section we perform a linear analysis of model (1.1). We will show that
assumption (1.3) is necessary for the tumor to invade, which, of course, is the
interesting case.

The spatially homogeneous steady states for model (1.1) are

P1(0, 0, 0), P2

(
r

µ
,

br

aµ
, 0

)
, P3(0, 0, w∗), w∗ > 0,

where P3 denotes a continuum of homogeneous steady states.
We assume that (ū, v̄, w̄) is a given homogeneous steady state, then the lin-

earization of (1.1) in (ū, v̄, w̄) is given by

ut = D1uxx − χūvxx − ξūwxx + ru − 2µūu − λūw − λuw̄, (5.1)

vt = D2vxx − av + bu, (5.2)

wt = −ρv̄w − ρvw̄. (5.3)

Our spatial domain Ω is an open, bounded interval in R
n. Hence there exist a

family of eigenvalues and eigenfunctions of the Laplacian on Ω equipped with the
appropriate boundary conditions. The eigenvalues are countable and we denote
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them by −νk, where νk ≥ 0. The corresponding eigenfunctions are denoted by
ϕk(x).

If we linearize in P1 and apply Fourier transform then we obtain the following
Jacobians: At P1(0, 0, 0) we have

J(0, 0, 0) =



−νkD1 + r 0 0

b −νkD2 − a 0

0 0 0


,

hence the eigenvalues are λ1 = −νkD1 + r, λ2 = 0 and λ3 = −νkD2 − a. If, for
example, we study a domain with homogeneous Neumann boundary conditions (or
a periodic domain), then ν1 = 0 is the leading eigenvalue of the Laplacian and the
steady state P1 has an unstable eigenvalue λ1 = r > 0; that is, a tumor is starting
to grow. The eigenvalue λ2 = 0 is an indication of the continuum of steady states
expressed in P3.

If we linearize in P3(0, 0, w∗) we obtain a Jacobian of

J(0, 0, w∗) =



−νkD1 + r − λw∗ 0 0

b −νkD2 − a 0

0 −ρw∗ 0




and the eigenvalues are λ1 = −νkD1 + r − λw∗, λ2 = 0 and λ3 = −νkD2 − a. For
the tumor to be able to invade the healthy tissue, we need λ1 > 0 at least for small
k. This gives a necessary condition for tumor invasion of

r > λw∗.

Without this condition, the tumor would not invade the healthy tissue.

5.2. A counterexample involving large w0

By using flat solutions as counterexamples, we can show that the smallness condi-
tion (1.3) in fact cannot be relaxed.

Proposition 5.1. Suppose that λ > 0. Then for all ε > 0 there exist positive
smooth functions u0, v0 and w0 such that

λ‖w0‖L∞(Ω) ≤ r + ε, (5.4)

but such that the corresponding solution (u, v, w) of (1.1) satisfies

w(x, t) >
r

λ
for all x ∈ Ω and t > 0. (5.5)

In particular, u0, v0 and w0 can be chosen to be spatially constant.

Proof. We fix α ∈ (0, a) such that 2α ≤ ε, and let

w0(x) :=
r + 2α

λ
, x ∈ Ω̄.
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It is then possible to choose δ > 0 small enough such that

w0 · e−ρ·(1+ b
a−α )· δ

α ≥ r + α

λ
in Ω̄, (5.6)

and pick any constant functions u0 and v0 satisfying

0 < u0 < δ and 0 < v0 < δ in Ω̄. (5.7)

We now let (u, v, w) denote the solution of (1.1) emanating from (u0, v0, w0) and
note that clearly (u, v, w) ≡ (u(t), v(t), w(t)) is spatially constant for all times and
thus actually satisfies the ODE system


ut = ru − µu2 − λuw, t > 0,

vt = −av + bu, t > 0,

wt = −ρvw, t > 0.

(5.8)

By (5.7), the number

T := sup{T̃ > 0 |u(t) ≤ δe−αt for all t ∈ [0, T̃ )} ≤ ∞
is well-defined and positive. According to (5.7) and the second equation in (5.8),
for t ∈ (0, T ) we have

v(t) = v0e
−at + b

∫ t

0

e−a(t−s)u(s)ds

≤ δe−at + bδ

∫ t

0

e−a(t−s)e−αsds

= δe−at +
bδ

a − α
(e−αt − e−at)

≤ δe−at +
bδ

a − α
e−αt

≤
(

1 +
b

a − α

)
· δe−αt for all t ∈ (0, T ),

because α < a. Now the third equation in (5.8) shows that

w(t) = w0 · e−ρ
R t
0 v(s)ds

≥ w0 · e−ρ(1+ b
a−α )δ·R t

0 e−αs

ds

≥ w0 · e−ρ(1+ b
a−α )· δ

α for all t ∈ (0, T ),

which in view of (5.6) yields

w(t) ≥ r + α

λ
for all t ∈ (0, T ). (5.9)

Inserted into the first equation in (5.8), this implies that

ut ≤ (r − λw) · u

≤
(

r − λ · r + α

λ

)
· u

= −αu for all t ∈ (0, T ),
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and hence entails

u(t) ≤ u0 · e−αt for all t ∈ (0, T ).

Since u0 < δ, this proves that the alternative T < ∞ is impossible, and that
according to (5.9), the inequality w(t) ≥ r+α

λ is actually valid for all t > 0, which
proves the claim.

6. Numerical Investigations

In this section we perform a series of numerical investigations aimed at both vali-
dating the theoretical results of previous sections as well as exploring further system
properties. We begin by validating the key restriction on the size of the initial matrix
density, (1.3) of Theorem 1.2, for convergence of the cancer invasion model to the
chemotaxis growth model. Note that the direct consequence is that w(x, t) → 0
as t → ∞, with the cell population replacing the matrix and correlating to tumor
expansion.

The numerical scheme adopts a Method of Lines approach in which the equa-
tions are first discretized in space on a uniform mesh (of spacing ∆x), and the
subsequent system of ODEs are then integrated in time. Discretization of the dif-
fusion terms is performed with a central differencing scheme, while the advective
term is discretized using a high-order upwinding scheme with flux-limiting imposed
to maintain positivity (e.g. see Ref. 7). We use the rowmap stiff-systems integra-
tor18 to integrate the ODEs. Except where specified, we set error tolerances of 10−8

in rowmap. Verification of the scheme has been performed through varying ∆x,
error tolerances and using an independent (fully explicit) time-stepping scheme for
a representative set of numerics. The qualitative behavior of the system has also
been independently confirmed using the matlab internal PDE solver (pdepe).

6.1. Uniform initial matrix densities

In Fig. 2 we plot two simulations for the same cell/chemoattractant initial condi-
tions (u0(x) = v0(x) = 0.001e−x2

) but different (constant) initial matrix densities.
In (a) we set w(x, 0) = 0.975 and, under the parameter set in Fig. 1(b), we have
r = λ = 1 and hence ‖w0‖L∞(Ω) < r

λ . Consequently, the conditions of Theorem 1.2
are satisfied and we expect convergence with the chemotaxis model. Simulations
clearly indicate this: the cell population grows and expands throughout the domain,
degrading and replacing the matrix. In (b) we now set w(x, 0) = 1.025 and (1.3)
of Theorem 1.2 is not satisfied. While a degree of matrix degradation occurs in the
vicinity of the initial cell mass, the degradation is insufficient to allow the popu-
lation to grow further. Instead the cell population collapses to zero and no tumor
expansion is observed.

We next provide a more rigorous test of Theorem 1.2 by examining its validity
over a wider spectrum of initial conditions. To this end, we consider the following
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Initial cell mass

0 0.0001 1 1.025

Initial cell mass

(a) (b)

Fig. 2. Two numerical simulations illustrating the validity of the inequality (1.3) in Theorem 1.2.
(a) Space-time density maps showing (left) u(x, t) and (right) w(x, t), with density scales above

each frame. Initially w(x, 0) = 0.975, u(x, 0) = 0.001 e−x2
. Condition (1.3) is satisfied and the

matrix is degraded everywhere. The behavior evolves to that of the logistic growth chemotaxis
model (with spatio-temporal patterning for the parameter set under investigation). (b) Space-
time density maps showing (left) u(x, t) and (right) w(x, t) for w(x, 0) = 1.025, u(x, 0) = v(x, 0) =

0.001e−x2
. Here (1.3) is not met. Instead, the cell density evolves to zero and the matrix density

remains above 1. Parameters, numerical code and discretization details are as in Fig. 1(b), with
simulations performed on a domain [0, 100].

two sets:

u0(x) = u∗, v0(x) = u∗(1 + ε(x)), w0(x) = w∗, (IC1)

u0(x) = u∗e−x2
, v0(x) = u∗e−x2

, w0(x) = w∗, (IC2)

where u∗ and w∗ are constants and ε(x) denotes a small (1%) spatially random
perturbation.

In Fig. 3 we plot the results of a numerical sweep across u∗ − w∗ parameter
space for each set of initial conditions. At each value of u∗ we iterate w∗ in steps
of 0.01 up to w∗ = 5 and determine whether the solution converges to the logistic
growth chemotaxis model (i.e. w(x, t) → 0) or whether the cell population is wiped
out (u(x, t) → 0). We augment this plot with the constant line indicating r

λ from
the restriction (1.3). We note that the validity of Theorem 1.2 is always upheld:
for initial conditions lying on/below the line w∗ = r

λ we observe convergence with
the chemotaxis model. We further note, however, that while for small u∗ the bound
provides a good approximation for when tumor growth will take place, for larger u∗

it loses its predictive potential. In this region the initial cell population is sufficiently
large that significant matrix degradation takes place, resulting in w(x, t) decreasing
below r

λ in some regions of the domain. The cell density subsequently increases in
these regions, fuelling further matrix degradation. The eventual result is complete
matrix degradation and convergence to the logistic growth model. These results
echo our estimates in Lemma 3.4, which shows that a large enough

∫
Ω

u will still
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10
–6

10
–5

10
–4

10
–3

10
–2

10
–1

0.5

1

1.5

2
IC1
IC2
Theorem 1.2

u 0

w 0

u*

w*

Fig. 3. Numerical simulations evaluating the validity of Theorem 1.2 under varying initial con-
ditions, see text for details. Each of the lines mark the borders between regions in which the
solution converges to the chemotaxis model (i.e. w(x, t) → 0) or whether the cell population is
wiped out (u(x, t) → 0). Solid line with circles — (IC1); dashed line with squares — (IC2); dot-
dashed line — inequality (1.3) in Theorem 1.2. For all initial conditions, the inequality holds true:
provided w∗ ≤ 1

`
= r

λ

´
we have w(x, t) → 0. For all simulations, model parameters and numerical

details are as in Fig. 1(b), solved for x ∈ [0, 25].

lead to matrix degradation, even if (1.3) is not satisfied. However, it is impossible
to derive an exact condition such that

∫
Ω u will remain large enough for sufficiently

long to lead to full matrix degradation.

6.2. Varying initial matrix densities

While Theorem 1.2 provides an indication on the matrix density for which we
expect convergence to the chemotaxis model, the dependence on infx∈Ω w0(x) is less
apparent. We investigate this here through opposite numerical simulations under
varying initial matrix density. Specifically, we choose w0(x) to be of the form

w0(x) =
w− + w+

2
+

w+ − w−

2
tanh c(x∗ − x). (6.1)

The above defines a smooth step from w+ to w− centered around x = x∗, where
we choose the center of the domain x∗ = 50 in our numerical experiments. Clearly,
for sufficiently large c, ‖w0‖L∞(Ω) 
 w+ and infx∈Ω w0(x) 
 w−. In all simulations
we use the parameter set from Fig. 1(b) and hence r

λ = 1.

We begin by considering u0(x) and v0(x) as in (IC1) with u∗ = 0.001. In Fig. 4(a)
we set w− = 1.05 and w+ = 1.5 and hence ‖w0‖L∞(Ω) > infx∈Ω w0(x) > 1. Clearly
inequality (1.3) is not met and we cannot definitively expect convergence. Simu-
lations here reveal decay of the cell population to zero with the matrix density
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0 0.001

(a) (b)

0.010

Initial cell mass Initial cell mass

(c) (d)

Fig. 4. Numerical simulations under varying initial matrix density. In each of (a)–(d) we plot the
space-time density map of (left) u(x, t) and (right) w(x, t), with density scales above each frame.
Initial matrix density as given in (6.1) with c = 1, x∗ = 50 and (a) w+ = 1.5, w− = 1.05; (b)
w+ = 1.5, w− = 0.95; (c) w+ = 1.2, w− = 1.01; (d) w+ = 1.2, w− = 0.6. Initially cells are either
distributed uniformly, as in (a)–(b), or are concentrated at the x = 0 boundary (c)–(d), see text

for details. For all simulations, model parameters and numerical details are as in Fig. 1(b), solved
for x ∈ [0, 100].

remaining above 1 for all x. In Fig. 4(b) we now set w− = 0.95 and w+ = 1.5, i.e.
‖w0‖L∞(Ω) > 1 > infx∈Ω w0(x). While (1.3) is still not satisfied, in the region of
low matrix density the cell population grows, fuelling further matrix degradation.
The cells simultaneously move into and degrade the region of higher matrix density,
eventually resulting in w → 0 and convergence to the chemotaxis model.

We examine similar simulations for an initially concentrated cell mass in the
region of higher matrix density, taking u0(x) and v0(x) from (IC2) with u∗ = 0.1.
For Fig. 4(c) we set w− = 1.01 and w+ = 1.2. As in Fig. 4(a), the cell density
drops to zero and the matrix density is not sufficiently degraded to allow tumor
expansion to occur. For Fig. 4(d) we set w− = 0.6 and w+ = 1.2. While matrix
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is not sufficiently degraded in the region of higher matrix density, here the cell
dispersal terms allow transport of a small fraction into the lower matrix density
region. In this region, w < 1 and the cell population begins to grow and degrade
the matrix. Eventually we observe tumor expansion and convergence to the logistic
growth chemotaxis model.

In summary, these and further simulations (data not shown) suggest that (1.3)
is only a sufficient condition for convergence. While it provides a valid restric-
tion on the initial matrix density for tumor expansion and convergence to the
chemotaxis model there are also numerous cases where (1.3) is not true and we
still get convergence. In particular, the simulations indicate that for situations
in which λ infx∈Ω w0(x) < r

λ , but λ‖w0‖L∞(Ω) > r we also observe convergence.
Furthermore, as indicated in Fig. 3 it is even possible to observe convergence for
infx∈Ω λw0(x) > r, provided the initial cell population is sufficiently large.

6.3. Sensitivity to initial data

A key observation in Ref. 12 was a sensitivity dependence to initial conditions for
certain classes of irregular spatio-temporal patterns, a finding suggested to indicate
spatio-temporal chaos in the chemotaxis model. We demonstrate the extension of
this property to the tumor invasion model in Fig. 5. In (a) simulations are initiated
according to (IC2) under u∗ = 0.01 and w∗ = 1; as expected from the above
findings, we observe degradation of the matrix and convergence to spatio-temporal
patterning. In (b) we apply a small (0.1%) random spatial perturbation to the

(a) (b) (c)

Fig. 5. Simulations demonstrating sensitivity dependency to initial conditions, see text for

details. For all simulations, model parameters and numerical details are as in Fig. 1(b), solved for
x ∈ [0, 100].
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initial condition for u0(x). In the initial tumor invasion phase, the behavior is
almost identical. However, following convergence to spatio-temporal irregularity we
eventually observe divergence of the solutions, illustrated in the difference of the
solutions in (c).

6.4. Incorporating matrix regeneration

In the model studied here only matrix degradation was considered, however in many
instances the matrix may undergo repair as a part of the normal physiological
response to damage. The models of Chaplain and coworkers have accounted for
matrix repair through additional terms incorporated into the equation for w in
(1.1). Permitting matrix repair significantly complicates the derivation of conditions
for which matrix degrades to zero. We investigate this case numerically, modifying

(a) (b) (c) (d)

Fig. 6. Numerical simulations of the cancer invasion model (1.1) under inclusion of matrix regen-
eration. Specifically, the equation for w is augmented on the right-hand side with an additional
term µ2w(1 − w). Each frame plots the space-time density map for (top rows) cell density u and
(bottom rows) matrix density w. The parameter values are as in Fig. 1(b) with, for the additional

terms, (a) µ2 = 0; (b) µ2 = 0.1; (c) µ2 = 0.2 and (d) µ2 = 1.0. Initial conditions and all other
numerical details as for simulations of the cancer invasion model are as in Fig. 1(b).
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the equation for w in (1.1) to

wt = µ2w(1 − w) − ρvw,

as considered in Refs. 3 and 4. In these illustrative simulations we increase the values
of µ2, corresponding to an increasingly rapid matrix repair response. In Fig. 6 we
compare results from simulations for the above kinetics. For µ2 close to zero similar
behavior is observed to system (1.1), although for all values µ2 > 0 investigated it is
noted that the matrix does not (over the timescale of numerics) completely degrade
to zero and the rate of tumor invasion is delayed. For larger values of µ2 the matrix
repair exerts an increasingly strong impact on the dynamics, and eventual loss of
pattern formation.

7. Conclusions

The models of Chaplain et al.3,4,2 have been designed to model the degradation
and infiltration of a healthy ECM-dominated tissue by an invasive cancerous popu-
lation through haptotactic and chemotactic guided migration. The original model3

was developed according to the principle interactions involved in the urokinase
plasminogen system and consists of five coupled nonlinear partial differential equa-
tions, while the model analyzed in the present paper was based on a reduced system
of three partial differential equations studied in Ref. 4. The models clearly show
tumor invasion into healthy tissue, followed in certain regions of parameter space
by complicated spatio-temporal patterning. The principal aim of the current paper
is to determine the origin of these complicated dynamics. Noting the similarity
in behavior between the tumor invasion model and a simpler chemotaxis model,
shown in Ref. 12 to exhibit spatio-temporal chaos, we derived conditions under
which the two models converge. Thus, at least for low levels of ECM regeneration,
we conclude that the organizing center for these spatial patterns is a chemotaxis
model with logistic reproduction terms. While we should note that the aim of the
present paper has been focused towards a deeper analytical understanding of a
model rather than application dominated, it is worth highlighting that these spa-
tial patterns qualitatively replicate the complicated morphologies of certain forms
of invasive tumor. Identifying such spatio-temporal dynamics of tumor morphology
in vitro and in vivo would be extremely interesting.

It is worth stressing that a merely superficial examination of the third equation
of (1.1)

wt = −ρwv

immediately suggests that w collapses to zero and results in the chemotaxis system,
suggesting that the results here could be construed as somewhat obvious in nature.
However, the key point is that such blind intuition can be misleading and that
there are clear cases, identified numerically and analytically, where convergence
does not occur. In fact we have only identified a sufficient condition (1.3) under
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which convergence occurs and our numerical simulations reveal clearly that this
condition is not optimal. If (1.3) is not satisfied, then solutions might or might not
converge. Lemma 3.4 gives an indication that for large enough

∫
Ω

u convergence
can be expected. The simulations also show a dichotomy; in all cases studied, we
either obtain convergence towards the chemotaxis model, or convergence of u to
zero. In Theorem 1.4 we could at least show that lim inft→∞ ‖u(·, t)‖L1(Ω) is zero,
if there is no convergence.

To obtain our results, we needed to make certain assumptions. Our estimates
are strictly one-dimensional, and a corresponding result in higher dimensions would
be desirable. Secondly, and crucially from a biological perspective, we have had to
remove the self-renewal term for the ECM. Simulations suggest that with ECM
remodeling, we still observe the same dynamics provided the repair rate is not too
strong and a detailed analysis of this case is left for future work. We also note that
the present paper highlights the non-trivial task of scratching deeper under the
surface of models being developed to describe complicated dynamics. As biological
models become more involved, incorporating more components and characteristics
of in vivo tissues, it will become increasingly important to find the scenarios under
which their behavior can be understood in terms of simpler and more established
systems.
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