
European Journal of Applied Mathematics
http://journals.cambridge.org/EJM

Additional services for European Journal of Applied 
Mathematics:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Anisotropic diffusion in oriented environments can lead to 
singularity formation

THOMAS HILLEN, KEVIN J. PAINTER and MICHAEL WINKLER

European Journal of Applied Mathematics / FirstView Article / February 2013, pp 1 ­ 43
DOI: 10.1017/S0956792512000447, Published online: 20 December 2012

Link to this article: http://journals.cambridge.org/abstract_S0956792512000447

How to cite this article:
THOMAS HILLEN, KEVIN J. PAINTER and MICHAEL WINKLER Anisotropic diffusion in oriented 
environments can lead to singularity formation. European Journal of Applied Mathematics, 
Available on CJO 2012 doi:10.1017/S0956792512000447

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/EJM, IP address: 193.0.96.15 on 14 Feb 2013



Euro. Jnl of Applied Mathematics: page 1 of 43 c© Cambridge University Press 2012

doi:10.1017/S0956792512000447
1

Anisotropic diffusion in oriented environments can
lead to singularity formation

THOMAS HILLEN1, KEVIN J. PAINTER2 and MICHAEL WINKLER3

1Centre for Mathematical Biology, Department of Mathematical and Statistical Sciences,

University of Alberta, Canada

email : thillen@ualberta.ca
2Department of Mathematics and Maxwell Institute for Mathematical Sciences,

Heriot-Watt University, Edinburgh, UK

email : K.Painter@hw.ac.uk
3Institut für Mathematik, Universität Paderborn, Germany

email : michael.winkler@math.uni-paderborn.de

(Received 3 April 2012; revised 13 November 2012; accepted 14 November 2012)

We consider an anisotropic diffusion equation of the form ut = ∇∇(D(x)u) in two dimensions,

which arises in various applications, including the modelling of wolf movement along seismic

lines and the invasive spread of certain brain tumours along white matter neural fibre tracts.

We consider a degenerate case, where the diffusion tensor D(x) has a zero-eigenvalue for

certain values of x. Based on a regularisation procedure and various pointwise and integral

a priori estimates, we establish the global existence of very weak solutions to the degenerate

limit problem. Moreover, we show that in the large time limit these solutions approach profiles

that exhibit a Dirac-type mass concentration phenomenon on the boundary of the region in

which diffusion is degenerate, which is quite surprising for a linear diffusion equation. The

results are illustrated by numerical examples.

Key words: Anisotropic diffusion; Degenerate diffusion; Large time behaviour; Singularity

formation; Pattern formation

1 Introduction

In this paper we consider a linear parabolic equation of the form

ut = ∇∇(D(x)u) (1.1)

on a bounded domain in �n with homogeneous Neumann boundary conditions. The dif-

fusion coefficient D(x) = (Dij(x))i,j is an n-dimensional tensor which describes anisotropic

diffusion in different directions of the environment. We use the notation

∇∇(Du) =

n∑
i,j=1

∂

∂xi

∂

∂xj
(Dij(x)u(x)).

Here we assume that D(x) is positive semi-definite, and we show an example where model

(1.1) has solutions that converge to Dirac-type singularities as t → ∞.
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Figure 1. Left: Schematic of high anisotropy on the path between y = a and y = b, and isotropic

diffusion off the path. Middle: Diffusion coefficients for the degenerate problem (1.4) are smooth

approximations of the values that are indicated in this figure. Right: Construction of the smooth

domain Ωk , which is used for the smooth approximation in problem (3.2).

This problem arises in the modelling of individual movement in strongly anisotropic

environments. Two examples, both under current investigation, are the patterns of wolf

movement [13, 18] and the invasive spread of gliomas (a certain class of brain tumour)

[2,4,9]. In the former, wolves in Northern Canada have been observed to exploit the linear

roads and seismic lines cut into the forest by oil exploration companies to increase their

hunting range. This presents a significant threat to caribou populations, and strategies to

reduce the impact of these lines are required. In the latter, glioma cells are believed to

follow the aligned fibre tracts in white matter, facilitating the invasive spread into healthy

tissue. Predicting the pattern of glioma growth promises the design of more efficient

treatment strategies [5, 14].

A common feature to these and other problems is the directional guidance provided by

roads, seismic lines or white matter tracts. Mathematically these linear features present

a highly anisotropic environment, where individuals preferentially move along these

features [13]. Here we focus on an idealised stretch of road or white matter tract:

oriented horizontally and embedded in an otherwise homogeneous tissue, as illustrated in

Figure 1 (left). We specifically consider the singular case of individuals that never escape a

linear feature once entered. Although degenerate, we argue that this model offers a good

explanation of overshooting, which we observe in numerical simulations. In Figure 2 we

show a numerical simulation, where in the aligned region, the diffusion in the y-direction

is close to zero. We see clearly the formation of highly concentrated aggregates along

the lines y = a and y = b. We will prove in Theorem 1.2 that for ε → 0 these solutions

approach δ-singularities. The details of the simulations are given in Section 6.

Models of the form (1.1) have been derived from detailed transport equations for the

movement of wolf, or cells, respectively (see Section 1.1 and [11,13]). Usually, anisotropic

diffusion is associated with a term in divergence form,1

ut = ∇(D(x)∇u). (1.2)

Equation (1.2) obeys the maximum principle, and steady states under homogeneous

Neumann boundary conditions are constant solutions. The maximum principle does not

1 Note that (1.1) is also in divergence form, however, the term ‘divergence form’ is usually

associated with (1.2).



Anisotropic diffusion in oriented environments can lead to singularity formation 3

Figure 2. (Colour online) Simulation of the anisotropic diffusion model, system (1.4) together with

u0(x, y) = 1 and smooth diffusion coefficients given in (6.1). Time evolution showing solutions using

ε = 0.001, a = 0.9 and b = 1.1. The population accumulates into two extremely concentrated ridges

at the interface between the isotropic and aligned regions, with negligible subsequent movement

within simulation timescales. Simulations are performed as described in Section 6.

apply to (1.1) and non-constant steady states are typical for (1.1) (see [13]). This can easily

be understood in the one-dimensional situation: Considering ut = (d(x)u)xx, d(x) > 0 and

defining v(x, t) := d(x)u(x, t), we see that v solves vt = d(x)vxx, which is a standard

diffusion equation. Hence, v satisfies a maximum principle and, under homogeneous

boundary conditions, v has constant steady states, e.g. v̄(x) ≡ c. The corresponding steady

state for u is then a heterogeneous solution given by ū(x) = c
d(x)

.

In this paper, we go one step further and show that in a certain degenerate limit

case, equations of the form (1.1) when posed in bounded two-dimensional domains under

no-flux boundary conditions can give rise to solutions that exhibit δ-singularities in the

long time limit as t → ∞. The model below characterises a typical piece of a road (or

white matter track), and the singular behaviour describes individuals which get trapped

at the side of the road.

1.1 Model derivations

The classical anisotropic diffusion model (1.2) follows directly from the assumption that

the particle flux is a linear transformation of the particle gradient (like a Fourier law,

or a Fick law) of the form J = −D∇u. The flux of the fully anisotropic model (1.1) is

J = −∇ · (Du), i.e. the divergence of a matrix quantity, and a direct physical interpretation

is uncertain. There are, however, biological models which naturally lead to the forms such

as (1.1) and we briefly discuss three such models:

(i) Transport equations: We have extensively worked on the modelling of cell (or

organism) movement with transport equations (see [10–13, 21, 23]): this work is the

main motivation for the present study of (1.1). The transport equation is a mesoscopic

model for movement, treating cell density as a continuum and based on individual

movement parameters such as speeds, direction of movement, turning rates and turning

angles. Developing a full theory of transport equations for cell movement (see, for

example, [10–13,21,23]) is outside the scope of the current paper and we simply summarise

the major steps.
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Our principal application has been the movement of individuals in a heterogeneous

environment that contains directional information, e.g. collagen fibres in tissue, neural

fibre tracks in the brain, roads or seismic lines in forests or the slope of the terrain. The

directional information can be encoded in a directional distribution q(t, x, θ), θ ∈ �n−1,∫
q(t, x, θ)dθ = 1, q � 0, and individuals moving in such an environment are modelled

through their density p(t, x, v) that satisfies the transport equation

pt + v · ∇p = μ

(
q̃

∫
pdv − p

)
,

where v ∈ V and V is a bounded set of possible cell velocities. The parameter μ describes

the turning rate and q̃ denotes the distribution q lifted to the space V (q̃(t, x, v) =

βq(t, x, v/||v||), where β is chosen such that
∫
V
q̃(t, x, v)dv = 1). As shown in detail

in [11, 13], a parabolic scaling of the form τ = ε2t, ξ = εx leads, in the limit ε → 0, to the

fully anisotropic diffusion model (1.1) and a convergence result for the isotropic case is

given in [12]. For example, if q is symmetric (q(t, x,−v) = q(t, x, v)), then

D =
1

μ

∫
V

vvT q̃(t, x, v)dv,

i.e. the diffusion tensor is the variance–covariance matrix of the underlying fibre network

distribution (see [11, 13]). The formulation of a diffusion tensor from the underlying

network structure allows one to directly connect the impact of environmental structure on

the movement paths of a typical individual to diffusion-type models: for example, in [13]

we employed this formulation to connect a network of seismic lines in boreal forest to

the spread of wolves, while in [24] we connected brain-imaging data to diffusion models

for anisotropic invasion of gliomas. For further details on the employment of anisotropic

diffusion models in brain tumour spread, see the references in [14, 15, 19, 24].

(ii) Random walks: A random walk on a one-dimensional equidistant grid can be

described through a master equation for the density u(x, t) of stochastic independent

random walkers as follows:

d

dt
ui = T+

i−1ui−1 + T−
i+1ui+1 − (T+

i + T−
i )ui,

where ui = u(xi, t) and T±
i Δt are the transitional probabilities for a jump to the right (+)

or left (−) per unit of time Δt. The choice of

T±
i = (Δx)−2T (xi) (1.3)

leads in the limit of Δx → 0 to the fully heterogeneous model (in 1 – D) [20, 22]:

ut = (Tu)xx.

Other choices of T±
i lead to other diffusion models. For example, T±

i = (Δx)−2T (xi±1/2)

leads to the physical form of ut = (Tux)x. The choice of (1.3) is a natural choice, for
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example to model a ‘myopic walker’ that jumps according to information at its current

location, and hence the model of the form (1.1) is a natural candidate for heterogeneous

and anisotropic diffusion.

(iii) Ideal free distribution: The ideal free distribution refers to a spatial distribution of

species in heterogeneous landscapes, where each individual has the same fitness [6,7]. Given

a spatially heterogeneous landscape, as described by a non-constant carrying capacity μ(x),

the concept of an ideal free distribution requires the existence of a heterogeneous steady

state proportional to μ(x). Cosner and Cantrel [6, 7], Lewis [17] and others have studied

the forms of reaction–diffusion models that support the ideal free distribution, showing

that a choice of D(x) = μ(x)−1 and

ut = (D(x)u)xx + αu(μ(x) − u)

has this capacity. Again, the diffusion part has the form (1.1).

The above examples provide a number of motivating reasons for a deeper understanding

of models of the form (1.1). In the following section we describe the degenerate limit

problem studied in this paper, along with a regularisation through which we shall obtain

solutions for the degenerate problem when the regularisation parameter approaches zero.

We next list our main results, the first of which ensures stabilisation of the above solutions

to certain limit profiles in the large time limit (Theorem 1.1); secondly, Theorem 1.2 then

shows that when reduced to a spatially one-dimensional framework on integration with

respect to one of the two space variables, this convergence involves δ singularities in the

long time asymptotics. The proofs of the main results are based on a priori estimates

which will be provided in Section 3. These will be used to show global existence in the

degenerate limit problem (Section 4), and to characterise the large time behaviour of

solutions to both the regularised and the degenerate problems (Section 5). In Section 6

we show some typical numerical simulations that support our results.

1.2 The model

We consider the initial-boundary value problem

⎧⎪⎨
⎪⎩
ut = (d1(y)u)xx + (d2(y)u)yy (x, y) ∈ Ω, t > 0,

((d1(y)u)x, (d2(y)u)y)) · ν = 0 (x, y) ∈ ∂Ω, t > 0,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

(1.4)

in the two-dimensional rectangle Ω := (0, Lx) × (0, Ly) with Lx > 0 and Ly > 0, where ν

denotes the outward normal vector field on ∂Ω.

The coefficient functions d1 and d2 are supposed to be smooth approximations of the

prototypical choices

d1,prot(y) =

{
1 if y ∈ [a, b],
1
2

if y ∈ [0, Ly] \ [a, b],
and d2,prot(y) =

{
0 if y ∈ [a, b],
1
2

if y ∈ [0, Ly] \ [a, b],

(1.5)
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where 0 < a < b < Ly , as shown in Figure 1 (middle). More precisely, we shall assume

that there exist a, b ∈ (0, Ly) such that a < b and

⎧⎪⎨
⎪⎩
d1 ∈ C0([0, Ly]) is positive in [0, Ly], and that

d2 ∈ C2([0, Ly]) is positive in [0, Ly] \ [a, b] and

d2 ≡ 0 in [a, b].

(1.6)

As for the initial data, we shall assume that

u0 ∈ C0(Ω̄) is non-negative. (1.7)

Observe that according to (1.6) the diffusion in (1.4) is degenerate throughout the sub-

domain Ωab := (0, Lx) × (a, b) of Ω. Not only for technical reasons, but also in order

to compare the respective solution properties, we shall study (1.4) along with certain

regularised problems with non-degenerate diffusion. For this purpose, we suppose that

we are given two families (d1ε)ε∈(0,1) and (d2ε)ε∈(0,1) of functions d1ε, d2ε ∈ C∞([0, Ly]) such

that ⎧⎪⎨
⎪⎩
ε � d2ε � d2 + 1 in [0, Ly] for all ε ∈ (0, 1),

d2ε ≡ ε in [a, b] for all ε ∈ (0, 1) and

(d1ε, d2ε) → (d1, d2) in C0([0, Ly]) × C2([0, Ly]) as ε ↘ 0.

(1.8)

For instance, if both d1 and d2 are smooth in [0, Ly], this is consistent with the choices

d1ε ≡ d1 and d2ε ≡ d2 + ε. For ε ∈ (0, 1) we then consider the problem

⎧⎪⎨
⎪⎩
uεt = (d1ε(y)uε)xx + (d2ε(y)uε)yy (x, y) ∈ Ω, t > 0,

((d1ε(y)uε)x, (d2ε(y)uε)y)) · ν = 0 (x, y) ∈ ∂Ω, t > 0,

uε(x, y, 0) = u0(x, y) (x, y) ∈ Ω,

(1.9)

with u0 as before. For later reference we call (1.9) the uε-problem. Since (1.9) is a linear

uniformly parabolic problem in a bounded domain with Lipschitz boundary, various

standard approaches may be applied to see that (1.9) indeed is solvable in a natural weak

sense. In order to be able to deal with smooth functions, we prefer a method based on

smooth approximations of Ω (cf. (3.2) and Lemma 4.1).

We shall then see that indeed some globally defined generalised solution u of (1.4)

can be obtained as the limit of the above solutions uε along an appropriate sequence of

numbers ε = εj ↘ 0 in the sense specified in (4.5) (cf. Definition 2.1).

1.3 Main results

The main results of this paper characterise the large time behaviour of this solution.

Firstly, we show that outside the closure of the alignment domain Ωab = (0, Lx) × (a, b)

the solution converges to zero and inside Ωab it converges to a steady state which is

independent of x.
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Theorem 1.1 Let u denote the global very weak solution determined by (4.5) below, and let

Ωab = (0, Lx) × (a, b).

(i) We have

u(·, t) → 0 in L2
loc(Ω̄ \ Ω̄ab) as t → ∞. (1.10)

(ii) The solution satisfies

u(x, y, t) ⇀ u0(y) in L2
loc([0, Lx] × (a, b)) as t → ∞, (1.11)

where u0 ∈ C0([a, b]) is the function defined by

u0(y) :=
1

Lx

∫ Lx

0

u0(x, y)dx, y ∈ [a, b]. (1.12)

Since u enjoys a natural mass conservation property (see Corollary 4.3), (1.10) and (1.11)

entail that a mass concentration must occur at the horizontal boundaries (0, Lx)× {a} and

(0, Lx) × {b} of Ωab. Since one can show that u(·, t) is bounded in L∞(Ω) for each finite t

(Proposition 4.2), this happens only in the limit t → ∞. Indeed, we have the following.

Theorem 1.2 Let u denote the global very weak solution of (1.4) given by (4.5), and set

U(y, t) :=

∫ Lx

0

u(x, y, t)dx, y ∈ [0, Ly], t > 0, (1.13)

and

U0(y) :=

∫ Lx

0

u0(x, y)dx, y ∈ [0, Ly]. (1.14)

Then in the sense of Borel measures over [0, Ly] we have

U(y, t)
�
⇀ χ(a,b)(y) ·U0(y) + m1 · δ(y − a) + m2 · δ(y − b) as t → ∞, (1.15)

where χ(a,b) is the characteristic function of (a, b), δ denotes the one-dimensional Dirac meas-

ure and

m1 :=

∫ a

0

∫ Lx

0

u0(x, y)dxdy and m2 :=

∫ Ly

b

∫ Lx

0

u0(x, y)dxdy.

The above type of behaviour is in sharp contrast to the asymptotics in each of the

regularised problems (1.9), since for ε > 0 the solution converges to an x-independent

steady state.

Proposition 1.3 For all ε ∈ (0, 1), the weak solution uε of (1.9) constructed in Lemma 4.1

satisfies

uε(·, t) → uε∞ in L2(Ω) as t → ∞, (1.16)
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where

uε∞(x, y) :=
Aε

d2ε(y)
, (x, y) ∈ Ω, with Aε :=

∫
Ω
u0

Lx ·
∫ Ly

0
1

d2ε(y)
dy
. (1.17)

Taking the limit of ε ↘ 0 in (1.17) we directly see that the asymptotic profiles of the

solutions of the uε-problem (1.9) approach a step-type distribution

uε∞(x, y) →
{ ∫

Ω
u0

Lx·(b−a) if y ∈ (a, b),

0 if y ∈ (0, Ly) \ [a, b],

a.e. in Ω, which is different from (1.15) and no extreme mass concentration phenomenon

occurs.

Before going into details, let us finally mention that in view of our choice (1.6) of

the diffusion tensor, investigating the dynamics in (1.4) and (1.9) partially reduces, after

integration, to studying the corresponding one-dimensional initial-boundary value problem

⎧⎪⎨
⎪⎩
Ut =

(
d2(y)U

)
yy
, y ∈ (0, Ly), t > 0,

Uy = 0, y ∈ {0, Ly}, t > 0,

U(y, 0) = U0(y), y ∈ (0, Ly),

(1.18)

formally satisfied by the function U defined in (1.13), with U0 as in (1.14). Accordingly,

our analysis on (1.4) will in many places reflect the distinctiveness of the direction of the

spatial variable y. In particular, it will turn out that U in fact is a very weak solution of

(1.13) in an appropriate sense (see Proposition 4.4), and that this solution in fact is unique

within a certain function class (cf. Proposition 4.5).

Of course, one-dimensional parabolic problems with prescribed spatially fixed degen-

eracies have been studied quite thoroughly in the literature, yielding expected [3] and

unexpected results [8]. An important peculiarity of the problem considered here, however,

is that the diffusivity is supposed to vanish in a spatial region which has positive meas-

ure, and which does not touch the boundary parts where y ∈ {0, Ly}. Correspondingly,

phenomena like the somewhat counterintuitive observations made in Theorem 1.2 and

Proposition 1.3 apparently have not been detected before in any related context.

2 Very weak solutions

To be able to include the mass concentration phenomenon in our solution theory, and to

be able to pass to the appropriate limits for ε ↘ 0, we define very weak solutions for the

degenerate problem (1.4).

Definition 2.1 Let T ∈ (0,∞]. By a very weak solution of (1.4) in Ω × (0, T ) we mean a

function u ∈ L1
loc(Ω̄ × [0, T )) which satisfies

−
∫ T

0

∫
Ω

uϕt =

∫
Ω

u0ϕ(·, 0) +

∫ T

0

∫
Ω

{
d1(y)uϕxx + d2(y)uϕyy

}
(2.1)
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for all ϕ ∈ C∞
0 (Ω̄ × [0, T )) which are such that

(
d1(y)ϕx, d2(y)ϕy

)
· ν = 0 on ∂Ω × (0, T ).

In the case T = ∞ we also call u a global very weak solution of (1.4).

2.1 Conservation properties of arbitrary very weak solutions

Let us state some useful mass conservation properties of arbitrary very weak solutions

of (1.4), regardless of whether they can be approximated by solutions of regularised

uε-problem (1.9).

Lemma 2.1 Let T ∈ (0,∞] and u be a very weak solution of (1.4) in Ω × (0, T ). Then for

all y� ∈ [a, b] there exists a null set N ⊂ (0, T ) such that

∫ y�

0

∫ Lx

0

u(x, y, t)dxdy =

∫ y�

0

∫ Lx

0

u0(x, y)dxdy for all t ∈ (0, T ) \N (2.2)

and ∫ Ly

y�

∫ Lx

0

u(x, y, t)dxdy =

∫ Ly

y�

∫ Lx

0

u0(x, y)dxdy for all t ∈ (0, T ) \N. (2.3)

Proof Given y� ∈ [a, b], we introduce

z(t) :=

∫ y�

0

∫ Lx

0

u(x, y, t)dxdy, t ∈ (0, T ). (2.4)

Then clearly z ∈ L1
loc([0, T )), and hence almost every point in (0, T ) is a Lebesgue point

of z. Therefore, there exists a null set N ⊂ (0, T ) such that

1

h

∫ t0+h

t0

z(t)dt → z(t0) as h ↘ 0 for all t0 ∈ (0, T ) \N. (2.5)

In order to use this in an appropriate way, we fix t0 ∈ (0, T ) \ N and h > 0 such that

t0 + h < T , and pick sequences (χj)j∈� ⊂ C∞
0 ([0, Ly)) and (ψj)j∈� ⊂ C∞

0 ([0, T )) such that

χj ≡ 1 in [0, a] and χj ≡ 0 in [b, Ly] for all j ∈ �,

and such that

χj → χ in L2((0, Ly)) and ψj → ψ in W 1,2((0, T )) as j → ∞, (2.6)

where

χ(y) :=

{
1 if y ∈ [0, y�],

0 if y ∈ (y�, Ly],
(2.7)

and

ψ(t) :=

⎧⎪⎨
⎪⎩

1 if t ∈ [0, t0],

− 1
h
(t− t0) + 1 if t ∈ (t0, t0 + h],

0 if t ∈ (t0 + h, T ).

(2.8)
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We now choose ϕj with ϕj(x, y, t) := χj(y)ψj(t), (x, y, t) ∈ Ω̄ × [0, T ), as a test function in

(2.1), which is possible since evidently
∂ϕj
∂ν

= 0 on ∂Ω × (0,∞). We thus obtain

−
∫ T

0

∫
Ω

u(x, y, t)χj(y)ψjtd(x, y)dt=

∫
Ω

u0(x, y)χj(y)d(x, y)

+

∫ T

0

∫
Ω

d2(y)u(x, y, t) · χjyy(y) · ψj(t)d(x, y)dt,

because ϕjxx ≡ 0. Here the last term vanishes due to the fact that supp χjyy ⊂ (a, b) and

d2 ≡ 0 in (a, b). But thereupon (2.6) allows us to take j → ∞ to gain

−
∫ T

0

∫
Ω

u(x, y, t)χ(y)ψt(t)d(x, y)dt =

∫
Ω

u0(x, y)χ(y)d(x, y),

which in view of (2.7), (2.8) and (2.4) is equivalent to saying that

1

h

∫ t0+h

t0

z(t)dt=
1

h

∫ t0+h

t0

∫ y�

0

∫ Lx

0

u(x, y, t)dxdydt

= −
∫ T

0

∫
Ω

u(x, y, t)χ(y)ψt(t)d(x, y)dt

=

∫ y�

0

∫ Lx

0

u0(x, y)dxdy

holds for all h > 0 with t0 + h < T . In view of (2.5), this shows that indeed (2.2) is valid

for all t0 ∈ (0, T ) \N. The proof of (2.3) can be run in quite a similar way. �

An immediate consequence is that the total mass is conserved in the following sense.

Corollary 2.2 Let T ∈ (0,∞] and u be any very weak solution of (1.4) in Ω× (0, T ). Then∫
Ω

u(·, t) =

∫
Ω

u0 for a.e. t ∈ (0, T ). (2.9)

Proof We only need to fix an arbitrary y� ∈ [a, b] and add the resulting identities (2.2)

and (2.3). �

In the alignment domain Ωab = (0, Lx) × (a, b) where formally no diffusion occurs in the

direction of the variable y, more detailed information is available.

Lemma 2.3 Let u be a very weak solution of (1.4) in Ω× (0, T ) for some T ∈ (0,∞]. Then

there exists a null set N� ⊂ (a, b) with the property that for all y ∈ (a, b) \N� one can find

a null set N�(y) ⊂ (0, T ) such that

∫ Lx

0

u(x, y, t)dx =

∫ Lx

0

u0(x, y)dx for all t ∈ (0, T ) \N�(y). (2.10)
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Proof Since u ∈ L1
loc(Ω̄×[0, T )), the function z defined on (0, Ly) by z(y) :=

∫ Lx
0
u(x, y, t)dx,

y ∈ (0, Ly), belongs to L1((0, Ly)) for all t ∈ (0, T ) \N1, where |N1| = 0. Taking N ⊂ (0, T )

as provided by Lemma 2.1 and letting N2 := N1 ∪N, twice applying (2.2) we infer that

1

h

∫ y�+h

y�

∫ Lx

0

u(x, y, t)dxdy =
1

h

∫ y�+h

y�

∫ Lx

0

u0(x, y)dxdy

for all t ∈ (0, T ) \N2, any y� ∈ [a, b] and each h ∈ (0, b− y�). (2.11)

Now by definition of N1, for each t ∈ (0, T ) \N2 ⊂ (0, T ) \N1 we know that almost every

point in (0, Ly) is a Lebesgue point of z as defined above; that is, for any such t we can

find a null set N2(t) ⊂ (a, b) such that

1

h

∫ y�+h

y�

∫ Lx

0

u(x, y, t)dxdy →
∫ Lx

0

u(x, y�, t)dx as h ↘ 0 for all y� ∈ (a, b) \N2(t).

Since by continuity we have

1

h

∫ y�+h

y�

∫ Lx

0

u0(x, y)dxdy →
∫ Lx

0

u0(x, y�)dx for all y� ∈ (0, Ly),

we thus obtain from (2.11) that

∫ Lx

0

u(x, y, t)dx =

∫ Lx

0

u0(x, y)dx for all t ∈ (0, T ) \N2 and any y ∈ (a, b) \N2(t).

(2.12)

Now by the Fubini–Tonelli theorem, the exceptional set

N̂ := ((0, Ly) ×N2) ∪ {(y, t) ∈ (a, b) × (0, T ) | t ∈ (0, T ) \N2 and y ∈ N2(t)}

has measure zero in (a, b) × (0, T ) and can be rewritten in the form

N̂ = (N� × (0, T )) ∪ {(y, t) ∈ (a, b) × (0, T ) | y ∈ (a, b) \N� and t ∈ N�(y)}

with certain null sets N� ⊂ (a, b) and N�(y) ⊂ (0, T ) for y ∈ (a, b) \ N�. Therefore, (2.12)

is equivalent to (2.10). �

For later use, let us state the following immediate consequence of the above lemma.

Corollary 2.4 Let T ∈ (0,∞] and u be a very weak solution of (1.4) in Ω × (0, T ). Then

there exists a null set N� ⊂ (a, b) such that whenever t0 ∈ (0, T ) is such that t0 + 1 < T , we

have ∫ t0+1

t0

∫ Lx

0

u(x, y, t)dxdt =

∫ Lx

0

u0(x, y)dx for all y ∈ (a, b) \N�. (2.13)

Proof We only need to integrate (2.10) over t ∈ (t0, t0 + 1). �
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3 A priori estimates

In our arguments below it will be convenient to deal with smooth solutions, which (1.9)

does not necessarily possess in view of the fact that the rectangle Ω only has Lipschitz

boundary. We therefore approximate solutions of uε-problem (1.9) as follows: As shown

in Figure 1 (right) we fix a sequence (Ωk)k∈� of bounded domains Ωk ⊂ �2 with smooth

boundary such that

(0, Lx) ×
(a
k
, Ly − Ly − b

k

)
⊂ Ωk ⊂ Ω for all k ∈ �, (3.1)

and consider the problems⎧⎪⎨
⎪⎩
uεkt = (d1ε(y)uεk)xx + (d2ε(y)uεk)yy (x, y) ∈ Ωk, t > 0,

((d1ε(y)uεk)x, (d2ε(y)uεk)y)) · ν = 0 (x, y) ∈ ∂Ωk, t > 0,

uεk(x, y, 0) = u0(x, y), (x, y) ∈ Ωk.

(3.2)

For later reference we call (3.2) the uεk-problem. Parabolic theory ( [16]) ensures that

for each fixed ε ∈ (0, 1) and k ∈ �, (3.2) admits a global classical solution uεk ∈
C0(Ω̄k × [0,∞)) ∩ C2,1(Ω̄k × (0,∞)). We shall see in Lemma 4.1 that these solutions

approach a weak solution of the uε-problem (1.9) for k → ∞. In order to prepare this,

and to collect some useful properties that will be inherited by uε and eventually also by

u, let us collect some a priori estimates for the solutions of the uεk-problem (3.2).

3.1 Pointwise a priori estimates

In this section we will apply parabolic comparison arguments to derive some pointwise

estimates for the solutions of (3.2). For convenience in presentation, let us introduce the

functions vεk defined by

vεk(x, y, t) := d2ε(y) · uεk(x, y, t), (x, y, t) ∈ Ωk × (0,∞). (3.3)

It can then easily be checked that vεk satisfies

vεkt = d1ε(y)vεkxx + d2ε(y)vεkyy, (x, y, t) ∈ Ωk × (0,∞), (3.4)

along with the boundary conditions

(d1ε(y)

d2ε(y)
vεkx, vεky

)
· ν = 0 on ∂Ωk. (3.5)

The first observation that can readily be made is that vεk is non-negative and bounded

from above by an ε-dependent constant. Restated in the original variable this reads as

follows.

Lemma 3.1 For all ε ∈ (0, 1) and each k ∈ �, the solution of (3.2) satisfies

0 � uεk(x, y, t) �
(‖d2‖L∞((0,Ly)) + 1) · ‖u0‖L∞(Ω)

d2ε(y)
for all (x, y, t) ∈ Ωk × (0,∞). (3.6)
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Proof First, since vεk(·, 0) = u0 is non-negative by assumption (1.7), in view of (3.4) and

(3.5) the parabolic maximum principle ensures that vεk � 0 in Ωk×(0,∞). Since (1.8) entails

that d2ε > 0 in (0, Ly) for each fixed ε ∈ (0, 1), this implies the left inequality in (3.6). To

see the right one, we let v(x, y, t) := (‖d2‖L∞((0,Ly)) + 1) · ‖u0‖L∞(Ω) for (x, y, t) ∈ Ωk × (0,∞).

Then clearly v is a solution of (3.4) and (3.5) which dominates vεk initially because, thanks

to (1.8), we have

vεk(x, y, 0) = d2ε(y)u0(x, y) � (d2(y) + 1)u0(x, y) � v(x, y, 0) for all (x, y) ∈ Ωk.

Therefore, the comparison principle states that vεk � v in Ωk × (0,∞), which is equivalent

to the right inequality in (3.6). �

At the points where d2 vanishes, the upper estimate in (3.6) breaks down in the limit ε ↘ 0.

An ε-independent bound can be derived by using more complicated comparison functions.

Lemma 3.2 There exist C > 0, λ > 0 and k0 ∈ � such that for any ε ∈ (0, 1) and all

k � k0, the solution of (3.2) satisfies

uεk(x, y, t) � Ceλt for all (x, y, t) ∈ Ωk × (0,∞). (3.7)

Proof We fix an arbitrary number η ∈ (0,min{a, Ly − b}) and then can choose a non-

negative χ ∈ C2([0, Ly]) with the properties 0 � χ � 1 in [0, Ly], χ ≡ 1 in K :=

[0, η] ∪ [Ly − η, Ly] and χ ≡ 0 in [a, b]. Then,

φε(y) := χ(y) + (1 − χ(y)) · d2ε(y) and φ̃ε(y) :=
φε(y)

d2ε(y)
, y ∈ [0, Ly],

define two non-negative functions belonging to C2([0, Ly]). Clearly, φε ≡ 1 in K so that

in particular

∇φε ≡ 0 in K. (3.8)

Moreover, using that 0 � χ � 1 we see that

φ̃ε(y) � c1 := sup
ε∈(0,1)

∥∥∥ 1

d2ε

∥∥∥
L∞(supp χ)

+ 1 for all y ∈ [0, Ly] and ε ∈ (0, 1), (3.9)

where c1 is finite because d2 is positive in supp χ and d2ε → d2 uniformly in supp χ by

(1.8). On the other hand, being a convex combination of 1
d2ε(y)

and 1, φ̃ε(y) satisfies

φ̃ε(y) � min
{ 1

d2ε(y)
, 1

}
� c2 :=

1

‖d2‖L∞((0,Ly)) + 1
for all y ∈ [0, Ly] and ε ∈ (0, 1),

(3.10)

again in view of (1.6). As a final preparation, we observe that for all ε ∈ (0, 1),

|φεyy| = |(1 − d2ε)χyy − 2χyd2εy + (1 − χ)d2εyy|
� c3 := (‖d2‖L∞((0,Ly)) + 1)‖χyy‖L∞((0,Ly))

+2 sup
ε∈(0,1)

‖d2εy‖L∞((0,Ly))‖χy‖L∞((0,Ly)) + sup
ε∈(0,1)

‖d2εyy‖L∞((0,Ly)) (3.11)
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holds throughout (0, Ly), where we note that c3 is finite due to the fact that (d2ε)ε∈(0,1) is

bounded in C2([0, Ly]) by (1.8).

We now introduce

vε(x, y, t) := Bφε(y) · eλt, (x, y, t) ∈ Ω̄k × [0,∞),

with

B :=
‖u0‖L∞(Ω)

c2
and λ :=

c3

c2
.

Then at t = 0 we have

vε(x, y, 0) = Bd2ε(y)φ̃ε(y) � c2Bd2ε(y) � ‖u0‖L∞(Ω) · d2ε(y) � d2ε(y) · u0(x, y) = vεk(x, y, 0)

for all (x, y) ∈ Ωk by (3.10), whereas (3.8) and (3.1) entail that ∇vε ≡ 0 on ∂Ωk × (0,∞) for

all k > k1 := max{ a
η
,
Ly−b
η

}. Furthermore,

I := vεt − d1(y)vεxx − d2ε(y)vεyy

= λBφεe
λt − d2ε · Beλt · φεyy

= Bd2εe
λt · {λφ̃ε − φεyy} in Ωk × (0,∞)

so that using (3.10) and (3.11) and the definition of λ we obtain

I � Bd2εe
λt · {λc2 − c3} � 0 in Ωk × (0,∞).

The comparison principle thus entails that vε � vεk in Ωk × (0,∞), which after division by

d2ε means that

uεk(x, y, t) � Bφ̃ε(y)e
λt for all (x, y, t) ∈ Ωk × (0,∞).

In light of (3.9), (3.7) thus holds if we let C := Bc1 and take any integer k0 � k1. �

3.2 Entropy estimates

We next derive appropriate integral estimates, the first family of which will involve powers

of uεk , whereas the second will be related to spatial derivatives thereof. Following common

practice in PDE analysis, we will call the former entropy estimates and the latter energy

estimates without having a particular physical concept in mind.

The following basic statement will be applied twice in the sequel: First, it will be the

source of the entropy estimate in Lemma 3.4 and thereby entail the space-time integrability

property (5.10), which will be useful in deriving the stabilisation result outside Ωab in

Theorem 1.1 (i). On the other hand, an appropriate choice of the function ϕε appearing

below will enable us to obtain bounds for uε and uεx inside Ωab (cf. Lemmas 3.6 and

5.4).
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Lemma 3.3 Let ε ∈ (0, 1) and suppose that ϕε ∈ C1([0, Ly]) is positive and such that

ϕε(y) = d2ε(y) for all y ∈ [0, Ly] \ (a, b). (3.12)

Then for any p > 1 and each k ∈ �, the solution of the uεk-problem (3.2) satisfies

d

dt

∫
Ωk

ϕp−1
ε (y)upεk + p(p− 1)

∫
Ωk

d1ε(y)ϕ
p−1
ε (y)up−2

εk u2
εkx

+ p(p− 1)ε

∫
Ωab

ϕp−1
ε (y)up−2

εk u2
εky + p(p− 1)

∫
Ωk\Ωab

(d2ε(y)uεk)
p−2(d2ε(y)uεk)

2
y

= −p(p− 1)ε

∫
Ωab

ϕp−2
ε (y)ϕεy(y)u

p−1
εk uεky for all t > 0. (3.13)

Proof Since ϕε ∈ C1([a, b]) and ϕε > 0, we may choose (ϕεuεk)
p−1 as a test function in

(3.2) to obtain

1

p

d

dt

∫
Ωk

ϕp−1
ε u

p
εk =

∫
Ωk

ϕp−1
ε u

p−1
εk ·

{
(d1εuεk)xx + (d2εuεk)yy

}

= −
∫
Ωk

(ϕp−1
ε u

p−1
εk )x(d1εuεk)x −

∫
Ωk

(ϕp−1
ε u

p−1
εk )y(d2εuεk)y

=: −I1 − I2 for all t > 0. (3.14)

Since both ϕε and d1ε depend on y only, we compute

I1 =

∫
Ωk

d1εϕ
p−1
ε (up−1

εk )xuεkx = (p− 1)

∫
Ωk

d1εϕ
p−1
ε u

p−2
εk u2

εkx. (3.15)

As for I2, we use (3.12) and our assumption that d2ε ≡ ε in (a, b) in splitting

I2 =

∫
Ωk\Ωab

(dp−1
2ε u

p−1
εk )y(d2εuεk)y + ε

∫
Ωab

(ϕp−1
ε u

p−1
εk )yuεky =: I21 + I22, (3.16)

where clearly

I21 = (p− 1)

∫
Ωk\Ωab

(d2εuεk)
p−2(d2εuεk)

2
y (3.17)

and

I22 = (p− 1)ε

∫
Ωab

ϕp−1
ε u

p−2
εk u2

εky + (p− 1)ε

∫
Ωab

ϕp−2
ε ϕεyu

p−1
εk uεky.

Combining this with (3.14)–(3.17) and multiplying by p, we arrive at (3.13). �

Lemma 3.4 For all ε ∈ (0, 1) and any k ∈ �, the solution of (1.9) satisfies∫
Ωk

d2ε(y)u
2
εk(x, y, t)d(x, y) + 2

∫ t

0

∫
Ωk

d1ε(y)d2ε(y)u
2
εkx + 2

∫ t

0

∫
Ωk

(d2ε(y)uεk)
2
y

�

∫
Ωk

d2ε(y)u
2
0(x, y)d(x, y) for all t > 0. (3.18)
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In particular, writing C := supε∈(0,1)

∫
Ω
d2ε(y)u0(x, y)d(x, y) < ∞, we have

∫ ∞

0

∫
Ωk

d1ε(y)d2ε(y)u
2
εkx +

∫ ∞

0

∫
Ωk

(d2ε(y)uεk)
2
y � C for all ε ∈ (0, 1) and k ∈ �. (3.19)

Proof We apply Lemma 3.3 to p := 2 and ϕε ≡ d2ε. Then ϕεy ≡ 0 in [a, b], and hence

(3.18) directly results upon integrating (3.13) in time. The consequence (3.19) is immediate,

where C indeed is finite according to (1.8). �

We next plan to apply Lemma 3.3 to differently chosen ϕε. To this end, we let

Θ(y) := sin
π(y − a)

b− a
, y ∈ (a, b). (3.20)

Then a simple but useful observation is the following.

Lemma 3.5 Let Θ be as in (3.20). Then for all δ > 0 we have the inequality

Θ2(y)Θ2
y (y)

(Θ2(y) + δ)2
�

π2

4(b− a)2δ
for all y ∈ (a, b). (3.21)

Proof Obviously, |Θy(y)| = | π
b−a cos π(y−a)

b−a | � π
b−a for all y ∈ (a, b). Next, it can easily be

checked that ψ(ξ) := ξ
ξ2+δ

, ξ � 0, attains its maximum at ξ0 :=
√
δ with ψ(ξ0) = 1

2
√
δ
.

Therefore,

Θ2(y)Θ2
y (y)

(Θ2(y) + δ)2
�

( π

b− a

)2

·
( 1

2
√
δ

)2

,

which implies (3.21). �

Using this function appropriately, we shall obtain another entropy-like estimate as follows.

Lemma 3.6 Let Θ be as in (3.20). Then there exists β > 0 such that for any p � 2 and

each ε ∈ (0, 1) and k ∈ �, the solution of (3.2) satisfies∫
Ωab

(
Θ2(y) + ε

p−1
p

)p
u
p
εk(x, y, t)d(x, y)

+ p(p− 1)

∫ t

0

∫
Ωab

d1ε(y)
(
Θ2(y) + ε

p−1
p

)p
u
p−2
εk u2

εkx

+
p(p− 1)ε

2

∫ t

0

∫
Ωab

(
Θ2(y) + ε

p−1
p

)p
u
p−2
εk u2

εky

�

{∫
Ω\Ωab

d
p−1
2ε (y)up0(x, y)d(x, y)+

∫
Ωab

(
Θ2(y) + ε

p−1
p

)p
u
p
0(x, y)d(x, y)

}
· ep2βε

1
p t (3.22)

for all t > 0.
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Proof We let

ϕε(y) :=

{
d2ε(y) if y ∈ [0, Ly] \ (a, b),

(Θ2(y) + ε
p−1
p )

p
p−1 if y ∈ (a, b).

Then ϕε is positive and both ϕε and ϕεy are continuous in [0, Ly], and hence Lemma 3.3

applies to yield the identity (3.13). Its right-hand side can be estimated using Young’s

inequality according to

−p(p− 1)ε

∫
Ωab

ϕp−2
ε ϕεyu

p−1
εk uεky �

p(p− 1)ε

2

∫
Ωab

ϕp−1
ε u

p−2
εk u2

εky +
p(p− 1)ε

2

∫
Ωab

ϕp−3
ε ϕ2

εyu
p
εk.

(3.23)

Here we split ϕp−3
ε ϕ2

εyu
p
εk =

ϕ2
εy

ϕ2
ε

· (ϕp−1
ε u

p
εk) and compute in (a, b)

ϕ2
εy

ϕ2
ε

=

{
p
p−1

· 2ΘΘy · (Θ2 + ε
p−1
p )

p
p−1 −1

}2

(Θ2 + ε
p−1
p )

2p
p−1

=
4p2

(p− 1)2
·

Θ2Θ2
y

(Θ2 + ε
p−1
p )2

.

Using Lemma 3.5 and our assumption p � 2 we therefore find that

p(p− 1)ε

2
·
ϕ2
εy(y)

ϕ2
ε (y)

�
p(p− 1)ε

2
· 4p2

(p− 1)2
· π2

4(b− a)2ε
p−1
p

=
π2p3ε

1
p

2(b− a)2(p− 1)
� p2βε

1
p

for all y ∈ (a, b), where β := π2

(b−a)2 . Thus, inserting (3.23) into (3.13) and dropping

non-negative terms we obtain the inequality

d

dt

∫
Ωk

ϕp−1
ε (y)upεk + p(p− 1)

∫
Ωk

d1ε(y)ϕ
p−1
ε (y)up−2

εk u2
εkx +

p(p− 1)ε

2

∫
Ωab

ϕp−1
ε (y)up−2

εk u2
εky

� p2βε
1
p

∫
Ωab

ϕp−1
ε u

p
εk for all t > 0.

This says that writing z(t) :=
∫
Ωk
ϕp−1
ε u

p
εk and

f(t) := p(p− 1)

∫
Ωk

d1ε(y)ϕ
p−1
ε (y)up−2

εk u2
εkx +

p(p− 1)ε

2

∫
Ωab

ϕp−1
ε (y)up−2

εk u2
εky,

we have z′(t) + f(t) � γz(t) for all t > 0 with γ := p2βε
1
p . Since f � 0, this first yields

z(t) � z(0) · eγt and then upon another integration

z(t) − z(0) +

∫ t

0

f(s)ds � γ

∫ t

0

z(0)eγsds = z(0)eγt − z(0) for all t > 0.

Upon splitting the integrals into Ωk\Ωab and Ωab and dropping two positive integrals on

Ωk\Ωab, and in view of the definition of ϕε, we readily obtain (3.22). �
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3.3 Energy estimates

We proceed to derive integral estimates of energy-type, involving time derivatives of

uεk . Parallel to the previous section, we begin with a basic estimate containing a weight

function which is at our disposal and will be chosen in two different ways below.

Lemma 3.7 Given ε ∈ (0, 1), let ϕε ∈ C1([0, Ly]) be positive in [0, Ly] and such that

ϕε(y) = d2ε(y) for all y ∈ [0, Ly] \ (a, b). (3.24)

Then for all k ∈ �, the solution of (3.2) satisfies

∫
Ωk

ϕεu
2
εkt +

d

dt

{∫
Ωk

d1εϕεu
2
εkx + ε

∫
Ωab

ϕεu
2
εky +

∫
Ωk\Ωab

(
d2εuεk

)2

y

}

�
ε2

2

∫
Ωk

ϕ2
εy

ϕε
u2
εky. (3.25)

Proof Using ϕεuεkt as a test function for (1.9), we obtain

∫
Ωk

ϕεu
2
εkt = −

∫
Ωk

(d1εuεk)x(ϕεuεkt)x −
∫
Ωk

(d2εuεk)y(ϕεuεkt)y

= −
∫
Ωk

d1εϕεuεkxuεkxt − ε

∫
Ωab

uεky(ϕεuεkt)y −
∫
Ωk\Ωab

(d2εuεk)y(d2εuεk)yt

=: I1 + I2 + I3 for all t > 0, (3.26)

where we have used (3.24) and our assumption that d2ε ≡ ε in (a, b). Clearly,

I1 = −1

2

d

dt

∫
Ωk

d1εϕεu
2
εkx and I3 = −1

2

d

dt

∫
Ωk\Ωab

(d2εuεk)
2
y, (3.27)

and

I2 = −ε
∫
Ωab

ϕεuεkyuεkyt − ε

∫
Ωab

ϕεyuεkyuεkt

= − ε

2

d

dt

∫
Ωab

ϕεu
2
εky − ε

∫
Ωab

ϕεyuεkyuεkt. (3.28)

Here we use Young’s inequality to estimate

−ε
∫
Ωab

ϕεyuεkyuεkt �
1

2

∫
Ωab

ϕεu
2
εkt +

ε2

2

∫
Ωab

ϕ2
εy

ϕε
u2
εky, (3.29)

and collect (3.26)–(3.29) to complete the proof. �

A straightforward consequence is the natural energy inequality associated with (3.2).
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Lemma 3.8 For any ε ∈ (0, 1) and k ∈ �, the solution of (3.2) fulfils∫ t

t0

∫
Ωk

d2ε(y)u
2
εkt + Eεk(uεk(·, t)) � Eεk(uεk(·, t0)) whenever 0 < t0 < t, (3.30)

where we have set

Eεk(z) :=

∫
Ωk

d1ε(y)d2ε(y)z
2
x +

∫
Ωk

(d2ε(y)z)
2
y for z ∈ W 1,2(Ωk). (3.31)

Proof Choosing ϕε ≡ d2ε in Lemma 3.7, from (3.25) we obtain∫
Ωk

d2εu
2
εkt +

d

dt
Eεk(uεk(·, t)) � 0 for all t > 0,

because d2ε ≡ ε and hence ϕεy ≡ 0 in (a, b). An integration in time yields (3.30). �

A different and less standard energy-like estimate can be obtained by choosing ϕε in a

way similar to that in Lemma 3.6.

Lemma 3.9 Let q > 2 and

ϕε(y) :=

⎧⎨
⎩
d2ε(y) if y ∈ [0, Ly] \ (a, b),(
Θ2(y) + ε

2
q

) q
2

if y ∈ (a, b),
(3.32)

for ε ∈ (0, 1), with Θ as defined in (3.20). Then for all k ∈ � we have∫ t

t0

∫
Ωk

ϕε(y)u
2
εkt+Fεk(uεk(·, t)) � Fεk(uεk(·, t0)) · e

π2q2

8(b−a)2
·ε1− 2

q ·(t−t0) whenever 0 < t0 < t, (3.33)

where

Fεk(z) :=

∫
Ωk

d1ε(y)ϕε(y)z
2
x +

∫
Ωk\Ωab

(d2ε(y)z)
2
y + ε

∫
Ωab

ϕε(y)z
2
y for z ∈ W 1,2(Ωk). (3.34)

Proof By (3.32) and Lemma 3.5,

ϕ2
εy

ϕ2
ε

=
q2Θ2Θ2

y

(Θ2 + ε
2
q )2

� q2 · π2

4(b− a)2ε
2
q

in (a, b).

Therefore, the right-hand side in (3.25) can be estimated according to

ε2

2

∫
Ωab

ϕ2
εy

ϕε
u2
εky �

ε

2
· q2 · π2

4(b− a)2ε
2
q

·
(
ε

∫
Ωab

ϕεu
2
εky

)

�
π2q2ε1− 2

q

8(b− a)2
· Fεk(uεk).

Thus, (3.33) results upon an integration of (3.25). �
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4 Global existence

Let us now make sure that along suitable subsequences, the global solutions of the uεk-

problem (3.2) converge to global weak solutions of the uε-problem (1.9), and that the

latter approach some global very weak solution of the degenerate problem (1.4) as ε ↘ 0.

4.1 Global weak solutions in the non-degenerate problem

Lemma 4.1 Let ε ∈ (0, 1). Then there exists a sequence (kl)l∈� ⊂ � such that kl → ∞ as

l → ∞, and a non-negative function

uε ∈ L2
loc([0,∞);W 1,2(Ω)) ∩ C2,1(Ω × (0,∞)) (4.1)

such that

uεk ⇀ uε in L2
loc([0,∞);L2

loc(Ω)) and

uεk → uε ∈ C
2,1
loc (Ω × (0,∞))

(4.2)

as k = kl → ∞. The limit function uε is a global weak solution of (1.9) in the sense that

for all ϕ ∈ C∞
0 (Ω̄ × [0,∞)), the identity

−
∫ ∞

0

∫
Ω

uεϕt +

∫ ∞

0

∫
Ω

{(
d1ε(y)uε

)
x
ϕx +

(
d2ε(y)uε

)
y
ϕy

}
=

∫
Ω

u0ϕ(·, 0) (4.3)

is valid.

Proof We let χΩk denote the characteristic function of Ωk in Ω. Then from Lemma 3.1 we

know that (χΩkuεk)k∈� is bounded in L∞(Ω × [0,∞)), whereas Lemma 3.4 in conjunction

with the positivity of both d1ε and d2ε in [0, Ly] entails that (χΩk∇uεk)k∈� is bounded in

L2(Ω × (0,∞)). We therefore can pick a sequence of integers kl → ∞ and two functions

uε � 0 and z such that

χΩkuεk ⇀ uε in L2
loc(Ω̄ × [0,∞)) and

χΩk∇uεk ⇀ z in L2(Ω × (0,∞))
(4.4)

as k = kl → ∞. In order to identify z = ∇uε, given ψ ∈ C∞
0 (Ω × (0,∞)) we recall (3.1) to

find k1 ∈ � such that suppψ(·, t) ⊂ Ωk for all k � k1 and t � 0, and hence in fact we have∫ ∞

0

∫
Ω

zψ = lim
k=kl→∞

∫ ∞

0

∫
Ω

χΩk∇uεkψ = lim
k=kl→∞

∫ ∞

0

∫
Ω

∇uεkψ

= − lim
k=kl→∞

∫ ∞

0

∫
Ω

uεk∇ψ = − lim
k=kl→∞

∫ ∞

0

∫
Ω

χΩkuεk∇ψ = −
∫ ∞

0

∫
Ω

uε∇ψ

for any such ψ.

Moreover, since (3.2) is non-degenerate, interior parabolic Schauder estimates ( [16])

show that (uεk)k∈� is also bounded in C2+θ,1+ θ
2 (Ω × (0,∞)) for some θ > 0. Thanks to the

Arzelà–Ascoli theorem, we thus may pass to a subsequence if necessary to conclude that

indeed (4.2) and (4.1) hold.

To verify the claimed solution property of uε, we fix ϕ ∈ C∞
0 (Ω̄ × [0,∞)) and then have

ϕ ∈ C∞
0 (Ω̄k × [0,∞)) according to (3.1). We therefore may integrate by parts in (3.2) to
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find∫ ∞

0

∫
Ω

χΩkuεkϕt +

∫
Ωk

u0ϕ(·, 0)

=

∫ ∞

0

∫
Ω

{
d1ε(y) ·

(
χΩkuεkx

)
· ϕx + d2ε(y) ·

(
χΩkuεky

)
· ϕy + d2εy(y) ·

(
χΩkuε

)
· ϕy

}

for all k ∈ �. Here we use (4.4) to see that in the limit k = kl → ∞, the first term on

the left and each of the integrals on the right approach the respective terms containing uε
instead of uεk , whereas clearly

∫
Ωk
u0ϕ(·, 0) →

∫
Ω
u0ϕ(·, 0) as k → ∞. This establishes (3.2).

�

4.2 Global very weak solutions in the degenerate problem

Based on the pointwise estimate in Lemma 3.2, we can proceed to show that indeed the

above solutions uε approach a limit which satisfies (1.4) in the sense specified in Definition

2.1.

Theorem 4.2 There exists (εj)j∈� ⊂ (0, 1) such that εj ↘ 0 as j → ∞, and such that for

the weak solutions uε of (1.9) constructed in Lemma 4.1 we have

uε
�
⇀ u in L∞

loc(Ω̄ × [0,∞)) as ε = εj ↘ 0 (4.5)

with some non-negative global very weak solution u of (1.4). This solution satisfies

u(x, y, t) � Ceλt for a.e. (x, y, t) ∈ Ω × (0,∞) (4.6)

with some C > 0 and λ > 0. Moreover, u has the additional property

u ∈ C0
w-�([0,∞);L∞(Ω)); (4.7)

that is, upon a modification on a null set of times we can achieve that u is continuous on

[0,∞) as an L∞(Ω)-valued function with respect to the weak-� topology on L∞(Ω).

Proof Thanks to the Banach–Alaoglu theorem, the statement (4.5) is an immediate

consequence of (4.2) and the estimate in Lemma 3.2, whereupon (4.6) easily follows from

Lemma 3.2 and (4.2). Upon another integration by parts in (4.3), the integral identity (2.1)

results in a straightforward manner from (4.5).

To see (4.7), we fix T > 0 and observe that the given ϕ ∈ C∞
0 (Ω), z(ϕ)

εk (t) :=∫
Ωk
uεk(·, t)ϕ, t ∈ [0, T ], satisfies

∣∣∣(z(ϕ)
εk )′(t)

∣∣∣ =
∣∣∣ d
dt

∫
Ωk

uεkϕ
∣∣∣ =

∣∣∣∣
∫
Ωk

d1ε(y)uεkϕxx +

∫
Ωk

d2ε(y)uεkϕyy

∣∣∣∣ � c1(T )‖ϕ‖W 2,∞(Ω)

for all t ∈ (0, T ) with some c1(T ) > 0 independent of ε and k so that the family

(z(ϕ)
εk )ε∈(0,1),k∈� is bounded in C1([0, T ]). Thus, using the Arzelà–Ascoli theorem, for any

such ϕ we may extract subsequences (klm)m∈� of (kl)l∈� and (εji)i∈� of (εj)j∈� along
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which z
(ϕ)
εk converges in C0([0, T ]), and we can thereby introduce a time-dependent

functional f(t) on C∞
0 (Ω) by defining f(t)[ϕ] := limε=εji↘0 limk=klm→∞ z

(ϕ)
εk (t), t ∈ [0, T ], ϕ ∈

C∞
0 (Ω). Moreover, since we may use Lemma 3.2 to find c2(T ) > 0 such that |z(ϕ)

εk (t)| �
c2(T )‖ϕ‖L1(Ω) for all ϕ ∈ C∞

0 (Ω), it is obvious upon a density argument that f(t) can

be extended to an element ũ(t) of (L1(Ω))� ∼= L∞(Ω), where it is easy to see that still

t �→
∫
Ω
ũ(·, t)ϕ is continuous on [0, T ] for all ϕ ∈ L1(Ω). Now since for any ϕ ∈ C∞

0 (Ω)

and each ψ ∈ C∞
0 ((0, T )) we have

∫ T

0

f(t)[ϕ] · ψ(t)dt= lim
ε=εjk↘0

lim
k=klm→∞

∫ T

0

∫
Ωk

uεk(x, y, t)ϕ(x, y)ψ(t)d(x, y)dt

=

∫ T

0

∫
Ωk

u(x, y, t)ϕ(x, y)ψ(t)d(x, y)dt,

it follows that actually
∫
Ω
ũ(·, t)ϕ = f(t)[ϕ] =

∫
Ω
u(·, t)ϕ for all ϕ ∈ C∞

0 (Ω) and a.e. t ∈
(0, T ), which entails that ũ = u a.e. in Ω× (0, T ). This implies that rearranging u on a null

set of times we may indeed assume that (4.7) is valid. �

Using (4.7), for the particular solution constructed above we can sharpen the assertions

in (2.9) and (2.2) so as to hold for all times without any exceptional set. Inter alia this

will be helpful in the proof of Theorem 1.2.

Corollary 4.3 The solution u defined in (4.5) satisfies∫
Ω

u(·, t) =

∫
Ω

u0 for all t > 0, (4.8)

and moreover for each y� ∈ [a, b] we have

∫ y�

0

∫ Lx

0

u(x, y, t)dxdy =

∫ y�

0

∫ Lx

0

u0(x, y)dxdy for all t > 0. (4.9)

Proof Using Ω � (x, y) �→ ψ(x, y) = 1 as a test function in the weak continuity statement

(4.7), we see that (2.9) immediately implies (4.8) because the complement of a null set

in (0,∞) clearly is dense in (0,∞). Similarly, the choice ψ(x, y) = χ(0,y�)(y) with the

characteristic function χ(0,y�) of (0, y�) shows that (4.9) is a consequence of (2.2). �

4.3 Solution properties of U

In this section we briefly address the one-dimensional problem (1.18) and discuss in how

far the function U defined by (1.13) indeed is a solution thereof. Our main results say

that indeed U is a global very weak solution of (1.18), and that according to the above

regularity properties of u, this solution in fact belongs to a function class where solutions

are uniquely determined.

Proposition 4.4 Let U and U0 be as defined in (1.13) and (1.14) respectively. Then U is

a global very weak solution of (1.18) in the sense that U belongs to L1
loc([0, Ly] × [0,∞))
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and satisfies

−
∫ ∞

0

∫ Ly

0

UΦt =

∫ Ly

0

U0Φ(·, 0) +

∫ ∞

0

∫ Ly

0

d2(y)UΦyy (4.10)

for all Φ ∈ C∞
0 ([0, Ly] × [0,∞)) fulfilling Φy = 0 on {0, Ly} × (0,∞). Moreover, we have

U ∈ C0
w−�([0,∞);L∞((0, Ly))). (4.11)

Proof As shown in Theorem 4.2, u belongs to C0
w−�([0,∞);L∞(Ω)). Furthermore, u is

a very weak solution of (1.4) and by integration and choosing ϕ(x, y, t) := Φ(y, t) in

Definition 2.1 we obtain 4.10. �

Proposition 4.5 There exists at most one function in C0
w−�([0,∞);L∞((0, Ly))) which solves

(1.18) in the very weak sense specified in Proposition 4.4.

Proof We follow a duality argument which is well established in the analysis of degenerate

parabolic equations, also involving nonlinear diffusion [1]. Here due to linearity we only

need to show that if U0 ≡ 0 in (0, Ly) then U ≡ 0 in (0, Ly) × (0,∞), and this will be

accomplished in two steps.

Step 1. We first claim that for any t0 > 0 and each Φ ∈ C∞([0, Ly] × [0, t0]) satisfying

Φy = 0 on {0, Ly} × (0, t0), we have

∫ Ly

0

U(·, t0)Φ(·, t0) =

∫ t0

0

∫ Ly

0

{
Φt + d2(y)Φyy

}
·U. (4.12)

Indeed, given t0 > 0 and any such Φ, it is clear upon a standard approximation argument

that (4.10) continues to hold with Φ replaced by

Φδ(y, t) := χδ(t) · Φ(y, t), y ∈ [0, Ly], t � 0,

where

χδ(t) :=

⎧⎪⎨
⎪⎩

1, t ∈ [0, t0],
t0+δ−t
δ

, t ∈ (t0, t0 + δ),

0, t � t0 + δ,

for δ ∈ (0, 1). Therefore, (4.10) yields

−
∫ ∞

0

∫ Ly

0

χδUΦt +
1

δ

∫ t0+δ

t0

∫ Ly

0

UΦ =

∫ ∞

0

∫ Ly

0

χδ · d2(y)UΦyy, (4.13)

because U0 ≡ 0. Here we have

1

δ

∫ t0+δ

t0

∫ Ly

0

UΦ →
∫ Ly

0

U(·, t0)Φ(·, t0) as δ ↘ 0,

for U belongs to C0
w−�([0,∞);L∞((0, Ly))). Therefore, (4.12) is a consequence of (4.13).
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Step 2. We are now in the position to make sure that for any t0 > 0 and each

φ ∈ C∞
0 ((0, Ly)), the identity ∫ Ly

0

U(y, t0)φ(y)dy = 0 (4.14)

holds, which will evidently yield U ≡ 0.

For this purpose, we first fix a sequence (d2j)j∈� ⊂ C∞([0, Ly]) such that d2j > 0 in

[0, Ly] for each j ∈ � and

d2j − d2√
d2j

→ 0 in L2((0, Ly)) as j → ∞, (4.15)

which can easily be seen to be possible because d2 � 0. Now given φ ∈ C∞
0 ((0, Ly)), for

j ∈ � we consider ⎧⎪⎨
⎪⎩
Ψjt = d2j(y)Ψjyy, y ∈ (0, Ly), t > 0,

Ψjy = 0, y ∈ {0, Ly}, t > 0,

Ψj(y, 0) = φ(y), y ∈ (0, Ly),

(4.16)

which possesses a solution Ψj ∈ C∞([0, Ly] × [0,∞)) according to standard parabolic the-

ory, because d2j > 0 in [0, Ly] and φ vanishes near the boundary of (0, Ly). Consequently,

Φj(y, t) := Ψj(y, t0 − t), (y, t) ∈ [0, Ly] × [0, t0] satisfies the backward problem

⎧⎪⎨
⎪⎩
Φjt = −d2j(y)Φjyy, y ∈ (0, Ly), t ∈ (0, t0),

Φjy = 0, y ∈ {0, Ly}, t ∈ (0, t0),

Φj(y, t0) = φ(y), y ∈ (0, Ly),

and using Φj as a test function in (4.12) yields

∫ Ly

0

U(y, t0)φ(y)dy =

∫ t0

0

∫ Ly

0

{
(d2(y) − d2j(y))Φjyy

}
·U. (4.17)

In order to estimate the integral on the right, we multiply (4.16) by Ψjyy and integrate by

parts to obtain the energy inequality

1

2

d

dt

∫ Ly

0

Ψ 2
jy = −

∫ Ly

0

d2j(y)Ψ
2
jyy for all t > 0,

which upon a time integration shows that

∫ t0

0

∫ Ly

0

d2j(y)Ψ
2
jyy �

∫ Ly

0

φ2
y (4.18)

for all j ∈ �. Therefore, using the Cauchy–Schwarz inequality we find that∣∣∣∣
∫ t0

0

∫ Ly

0

{
(d2(y) − d2j(y))Φjyy

}
·U

∣∣∣∣
� ‖U‖L∞((0,Ly)×(0,t0)) ·

(∫ t0

0

∫ Ly

0

d2j(y)Φ
2
jyy

) 1
2

·
(∫ t0

0

∫ Ly

0

(d2j(y) − d2(y))
2

d2j(y)

) 1
2

→ 0 as j → ∞.
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Accordingly, (4.14) results from (4.17), (4.18) and (4.15) in the limit j → ∞. �

Remark Unfortunately, the corresponding uniqueness question for the two-dimensional

degenerate problem (1.4) has to be left open here. Indeed, it would be interesting to see

whether effects stemming from either the mere presence of a second independent variable

or from the non-smoothness of the spatial rectangle Ω may result in non-uniqueness

within our very weak solution concept in appropriate cases.

5 Large time behaviour

We now address the main topic of this paper by turning our attention to the large

time behaviour of our solutions to (1.4) and (1.9). As a general functional analytic

ingredient, let us recall a known observation which provides an elementary but highly

useful tool not only in several places in this paper but also in the description of large time

behaviour in many related evolution problems with dissipative structure (cf. [1] or [25], for

instance).

Lemma 5.1 Let n � 1, G ⊂ �n be measurable and φ = φ(ξ, t) ∈ C0([0,∞);L2(G)) be such

that ∫ ∞

1

∫
G

φ2
t (ξ, t)dξdt < ∞. (5.1)

Then for any sequence (tj)j∈� ⊂ (1,∞) such that tj → ∞ as j → ∞ we have

∫ tj+1

tj

∫
G

|φ(ξ, t) − φ(ξ, tj)|2dξdt → 0 as j → ∞. (5.2)

Proof Since φ(·, t) − φ(·, tj) =
∫ t
tj
φt(·, s)ds, using the Cauchy–Schwarz inequality we can

estimate

∫ tj+1

tj

∫
G

|φ(ξ, t) − φ(ξ, tj)|2dξdt�

∫ tj+1

tj

∫
G

(∫ t

tj

φ2
t (ξ, s)ds

)
· (t− tj)dξdt

�

(∫ ∞

tj

∫
G

φ2
t (ξ, s)dξds

)
·
(∫ tj+1

tj

(t− tj)dt

)

=
1

2

∫ ∞

tj

∫
G

φ2
t .

Therefore, (5.2) results from (5.1). �

The following statement on large time behaviour is basically well known and implicitly

contained in several arguments in the literature (see [1], for instance). We include proof

for the sake of completeness.
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Lemma 5.2 Let n � 1, G ⊂ �n be a bounded domain and φ = φ(ξ, t) ∈ C0([0,∞);L2(G))

satisfy ∫ ∞

1

∫
G

φ2
t < ∞ and

∫ ∞

1

∫
G

|∇φ|2 < ∞. (5.3)

Then the ω-limit set of φ in L2(G) exclusively consists of constants; that is, if (tj)j∈� ⊂ (1,∞)

and w ∈ L2(G) are such that tj → ∞ and φ(·, tj) → w in L2(G) as j → ∞, then there exists

c ∈ � such that w ≡ c a.e. in G.

Proof We let (tj)j∈� and w be as in the above hypothesis and abbreviate φ(t) :=
1

|G|
∫
G
φ(·, t) for t > 1. Then the Poincaré inequality provides CP > 0 such that

∫
G

|φ(·, t) − φ(t)|2 � CP

∫
G

|∇φ(·, t)|2 for all t > 1

so that using (5.3) we find that

I1(j) :=

∫ tj+1

tj

∫
G

|φ(·, t) − φ(t)|2 � CP

∫ ∞

tj

∫
G

|∇φ|2 → 0 as j → ∞. (5.4)

We now apply Lemma 5.1 twice to φ and φ to see that

I2(j) :=

∫ tj+1

tj

∫
G

|φ(·, t) − φ(·, tj)|2 → 0 as j → ∞ (5.5)

and

I3(j) :=

∫ tj+1

tj

∫
G

|φ(t) − φ(tj)|2 → 0 as j → ∞. (5.6)

Combining (5.4)–(5.6) and using our assumption that φ(·, tj) → w in L2(G) as j → ∞, we

infer that

‖φ(tj) − w‖L2(G) =

(∫ tj+1

tj

∫
G

|φ(tj) − w|2
) 1

2

�
√
I3(j) +

√
I1(j) +

√
I2(j) +

( ∫ tj+1

tj

∫
G

|φ(·, tj) − w|2
) 1

2

�
√
I3(j) +

√
I1(j) +

√
I2(j) + ‖φ(·, tj) − w‖L2(G)

→ 0 as j → ∞,

which, combined with the fact that G is connected, means that indeed w must coincide

with a constant a.e. in G. �

5.1 Large time behaviour in the regularised problem. Proof of Proposition 1.3

Without any further preparation, we can immediately pass to the proof of Proposition

1.3.
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Proof of Proposition 1.3 We apply Lemma 3.4 and recall (4.2) to obtain

∫ ∞

0

∫
Ω

{
d1ε(y)d2ε(y)u

2
εx +

(
d2ε(y)uε

)
y

}
< ∞.

Since d1ε

d2ε
is bounded in [0, Ly] for each fixed ε ∈ (0, 1), this entails that the function vε

defined by vε(x, y, t) := d2ε(y) · uε(x, y, t), (x, y, t) ∈ Ω × (0,∞) satisfies

∫ ∞

0

∫
Ω

|∇vε|2 < ∞. (5.7)

Similarly, Lemma 3.8 and (4.2) yield

∫ ∞

1

∫
Ω

d2ε(y)u
2
εt + sup

t>1

∫
Ω

{
d1ε(y)d2ε(y)u

2
εx +

(
d2ε(y)uε

)
y

}
< ∞

and thereby imply that

∫ ∞

1

∫
Ω

v2εt + sup
t>1

∫
Ω

|∇uε(·, t)‖ < ∞. (5.8)

In particular, the latter in conjunction with (3.6) shows that (uε(·, t))t>1 is bounded in

W 1,2(Ω) and hence relatively compact in L2(Ω). Now, in order to show that

vε(·, t) → Aε in L2(Ω) as t → ∞, (5.9)

let us assume on the contrary that this was false. Then we could find a sequence

(tj)j∈� ⊂ (1,∞) such that tj → ∞ as j → ∞ but lim infj→∞ ‖vε(·, tj) − Aε‖L2(Ω) > 0.

Extracting a subsequence, if necessary, we may assume that vε(·, tj) → w in L2(Ω) as

j → ∞, whereupon in view of (5.7) and (5.8), Lemma 5.2 applies to ensure that w ≡ A

in Ω for some constant A ∈ �. However, since by integration of (3.2) in space and using

(4.2) we know that
∫
Ω
uε(·, t) =

∫
Ω
u0 for all t > 0, this implies that

A

∫
Ω

1

d2ε(y)
=

∫
Ω

w

d2ε(y)
= lim

j→∞

∫
Ω

vε(·, tj)
d2ε(y)

= lim
j→∞

∫
Ω

uε(·, tj) =

∫
Ω

u0

and thereby identifies A = Aε. This contradicts our assumption on the distance of vε(·, tj)
to Aε and hence proves that actually (5.9) must be valid. Since d2ε is bounded from above

and below by positive constants throughout [0, Ly], (1.16) now results as a consequence

of (5.9). �

5.2 Estimates for u

In order to determine the large time behaviour in the degenerate problem (1.4) on the

basis of the estimates obtained so far, let us draw some consequences of the integral

estimates gained in Section 3 for the limit function u. We first exploit Lemma 3.4 in a

way convenient for our purposes.
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Lemma 5.3 Let u denote the function defined in (4.5). Then (x, y, t) �→ d2(y)u(x, y, t) be-

longs to L2
loc([0,∞);W 1,2(Ω)), and we have

∫ ∞

0

∫
Ω

|∇(d2(y)u)|2 < ∞. (5.10)

Proof According to (3.19) and the fact that d2ε

d1ε
is bounded in (0, Ly) uniformly with

respect to ε ∈ (0, 1) and k ∈ � by (1.8) and (1.6), (3.19) and (4.2) entail that (∇(d2εuε))ε∈(0,1)

is bounded in L2(Ω × (0,∞)). Hence, passing to a subsequence of (εj)j∈� in (4.5) we can

achieve that ∇(d2εuε) converges weakly in this space to some limit which can readily be

identified to coincide with ∇(d2u) a.e. in Ω × (0,∞). The pointwise bound in Lemma 3.1

along with (4.2) thus completes the proof. �

Taking ε ↘ 0 appropriately, we next obtain from Lemma 3.6 a bound for ux inside

the domain Ωab of degenerate diffusion. This will enable us to conclude that u becomes

homogeneous with respect to x as t → ∞ in Theorem 1.1 (ii). Apart from that, as a

by-product the above entropy estimate will also provide a weighted pointwise bound for

u in Ωab which might be of independent interest.

Lemma 5.4 The limit function defined in (4.5) lies in L∞
loc(Ωab × [0,∞)) and satisfies

u(x, y, t) �
C

(y − a)2(b− y)2
for a.e. (x, y, t) ∈ Ωab × (0,∞) (5.11)

with some C > 0. Moreover, ux belongs to L2((0,∞);L2
loc(Ωab)) with

∫ ∞

0

∫
Ωab

(y − a)4(b− y)4u2
x < ∞. (5.12)

Proof For fixed p � 2, (3.22) combined with (4.2) ensures that ((Θ2(y) + ε
p−1
p )uε)ε∈(0,1) is

bounded in L∞
loc([0,∞);Lp(Ωab)), and hence along a subsequence of the sequence (εj)j∈�

in (4.5) we have

(Θ2(y) + ε
p−1
p )uε

�
⇀ Θ2(y)u in L∞

loc([0,∞);Lp(Ωab)

by the Banach–Alaoglu theorem. We now let ε ↘ 0 along this sequence to see from

(3.22) and a well-known argument involving lower semi-continuity with respect to weak-�

convergence that

∫
Ωab

(Θ2(y)u)p �

∫
Ω\Ωab

1

d2(y)
(d2(y)u0)

p +

∫
Ωab

(Θ2(y)u0)
p for a.e. t > 0.
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Taking the pth root on both sides and using that (A+ B)
1
p � 2

1
p (A

1
p + B

1
p ) for A � 0 and

B � 0, from this we obtain that for a.e. t > 0,

‖Θ2(y)u(·, t)‖Lp(Ωab) � 2
1
p ·

{(∫
Ω\Ωab

1

d2(y)
(d2(y)u0)

p
) 1

p

+
(∫

Ωab

(Θ2(y)u0)
p
) 1

p

}
.

In the limit p → ∞ we thus infer that Θ2(y)u ∈ L∞(Ωab) for a.e. t > 0 with norm controlled

according to

‖Θ2(y)u(·, t)‖L∞(Ωab) � c1 := ‖d2(y)u0‖L∞(Ω\Ωab) + ‖Θ2(y)u0‖L∞(Ωab) for a.e. t > 0.

Now in view of the pointwise estimate Θ(y) � c2(y − a)(b − y), valid for all y ∈ (a, b)

with some positive constant c2, from this we conclude that (5.11) holds if we let C := c1
c22

.

To verify the statements involving the derivatives with respect to x, we fix p := 2 in

Lemma 3.6 to infer from (3.22) and the positivity of d1 in [0, Ly] that ((Θ2(y)+ε
1
2 )2uεx)ε∈(0,1)

is bounded in L2(Ωab × (0,∞)) and hence weakly convergent in this space along a suitable

subsequence of (εj)j∈�. Thus, the proof becomes complete upon the observation that the

corresponding limit must evidently coincide with Θ4(y)ux a.e. in Ωab × (0,∞). �

The most important outcome of the next lemma is that the time derivative of u decays

in a certain sense. In view of the weight function involved in the precise version (5.13)

of this statement, in conjunction with Lemma 5.3 this will be the main ingredient for the

proof of the large time asymptotics outside Ωab.

Lemma 5.5 Let v(x, y, t) := d2(y)u(x, y, t), (x, y, t) ∈ Ω × (0,∞), where u is the very weak

solution of (1.4) defined in (4.5). Then v belongs to C0((0,∞);L2(Ω))∩L∞
loc((0,∞);W 1,2(Ω))

with vt ∈ L2
loc((0,∞);L2(Ω)). Moreover, we have

∫ ∞

1

∫
Ω

(d2(y)u)
2
t < ∞, (5.13)

and there exists C > 0 such that∫
Ω

|∇(d2(y)u(·, t))|2 � C for all t > 1. (5.14)

Proof We let c1 denote the constant in (3.19) and then obtain from that inequality that

with Eεk as in Lemma 3.8 we have

∫ 1

0

Eεk(uεk(·, t))dt � c1 for all ε ∈ (0, 1) and k ∈ �.

Thus, for any τ ∈ (0, 1], each ε ∈ (0, 1) and all k ∈ � we can pick tεk ∈ (0, τ) such that

Eεk(uεk(·, tεk)) �
c1

τ
.
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Hence, (3.30) tells us that for all t > τ, ε ∈ (0, 1) and k ∈ �,

∫ t

τ

∫
Ωk

d2εu
2
εkt + Eεk(uεk(·t)) �

∫ t

tεk

∫
Ωk

d2εu
2
εkt + Eεk(uεk(·, t)) � Eεk(uεk(·, tεk)) �

c1

τ
. (5.15)

Now according to (1.6) and (1.8), (d2ε)ε∈(0,1) is bounded in L∞((0, Ly)) and (d1ε)ε∈(0,1) is

bounded from below by a positive constant in [0, Ly], whence we can find c2 > 0 and

c3 > 0 fulfilling

(d2εuεk)
2
t � c2d2εu

2
εkt and |∇(d2εuεk)|2 � c3

(
d1εd2εu

2
εkx + (d2εuεk)

2
y

)
in Ωk × (0,∞)

for all ε ∈ (0, 1) and k ∈ �. Consequently, (5.15) and (4.2) show that ((d2εuε)t)ε∈(0,1)

is bounded in L2(Ω × (τ,∞)), and that (∇(d2εuε))ε∈(0,1) is bounded in L∞((τ,∞);L2(Ω)).

According to the boundedness of (d2εuε)ε∈(0,1) in L∞(Ω × (0,∞)) as shown in Lemma 3.1,

the Arzelà-Ascoli theorem thus ensures that (d2εuε)ε∈(0,1) is relatively compact with respect

to the strong topology in C0
loc([τ,∞);L2(Ω)). Since τ ∈ (0, 1] was arbitrary, it is therefore

clear that along a suitable subsequence of (εj)j∈� we have

⎧⎪⎪⎨
⎪⎪⎩
d2ε(y)uε → d2(y)u in C0

loc((0,∞);L2(Ω)) and a.e. in Ω × (0,∞),

∇(d2ε(y)uε)
�
⇀ ∇(d2(y)u) in L∞

loc(0,∞);L2(Ω))

d2ε(y)uεt ⇀ d2(y)ut in L2
loc((0,∞);L2(Ω)).

Finally, choosing τ := 1 and taking limits in (5.15) we also obtain the inequalities∫ ∞

1

∫
Ω

(d2u)
2
t � c1c2 and

∫
Ω

|∇(d2u(·, t))|2 � c1c3 for all t > 1

and conclude the proof. �

Next, inside the domain of degenerate diffusion we shall rely on the following.

Lemma 5.6 The solution u of (1.4) defined through (4.5) belongs to C0((0,∞);L2
loc(Ωab))

and satisfies ∫ ∞

1

∫
Ωab

(y − a)4(b− y)4u2
t < ∞. (5.16)

Proof We let ϕε and Fεk be as in Lemma 3.9 with q := 4. We then recall the estimates

(3.19) from Lemma 3.4 and apply (3.22) in Lemma 3.6 to p := 2 to obtain c1 > 0 and

c2 > 0 such that

∫ 1

0

∫
Ωk

d1εd2εu
2
εkx +

∫ 1

0

∫
Ωk

(d2εuεk)
2
y � c1

and ∫ 1

0

∫
Ωab

d1ε(Θ
2 + ε

1
2 )2u2

εkx + ε

∫ 1

0

∫
Ωab

(Θ2 + ε
1
2 )2u2

εky � c2
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for all ε ∈ (0, 1) and k ∈ �, where we have used that u0 is bounded in Ω. Therefore,

∫ 1

0

Fεk(uεk(·, t))dt�

∫ 1

0

∫
Ωk

d1εd2εu
2
εkx +

∫ 1

0

∫
Ωab

d1ε(Θ
2 + ε

1
2 )2u2

εkx

+ε

∫ 1

0

∫
Ωab

(Θ2 + ε
1
2 )2u2

εky +

∫ 1

0

∫
Ωk

(d2εuεk)
2
y

� c1 + c2 for all ε ∈ (0, 1)

so that for all τ ∈ (0, 1], ε ∈ (0, 1) and k ∈ � we can pick tεk ∈ (0, τ) such that

Fεk(uεk(·, tεk)) �
c1 + c2

τ
.

Hence, (3.33) tells us that writing γ := 2π2

(b−a)2 we have

∫ t

τ

∫
Ωk

ϕεu
2
εkt �

∫ t

tεk

∫
Ωk

ϕεu
2
εkt + Fεk(uεk(·, t)) � Fεk(uεk(·, tεk)) · eγ·ε

1
2 (t−tεk)

� (c1 + c2) · eγε
1
2 t (5.17)

for all t > 1, each ε ∈ (0, 1) and any k ∈ �.

In light of (4.2), this shows that (ϕ
1
2
ε uεt)ε∈(0,1) is relatively compact in L2

loc([τ,∞);L2(Ω)),

which implies that (ϕ
1
2
ε uε)ε∈(0,1) is relatively compact in C0

loc([τ,∞);L2(Ω)). Since τ ∈ (0, 1]

was arbitrary, in view of (4.5) we thus clearly have ϕ
1
2
ε uεt ⇀ ϕ

1
2 ut in L2

loc((0,∞);L2(Ω))

and ϕ
1
2
ε uε → ϕ

1
2 u in C0

loc((0,∞);L2(Ω)) along some subsequence of (εj)j∈�, where

ϕ(y) :=

{
d2(y) if y ∈ [0, Ly] \ (a, b),

Θ4(y) if y ∈ (a, b).

Moreover, on specifying τ := 1 and taking limits in (5.17) we also gain that

∫ ∞

1

∫
Ω

ϕu2
t � c1 + c2

from which (5.16) follows, because Θ(y) � c3(y − a)(b − y) for all y ∈ (a, b) and some

c3 > 0. �

5.3 Large time behaviour in Ω \ Ωab. Proof of Theorem 1.1 (i)

We are now in the position to clarify the large time behaviour of u outside the domain

where diffusion becomes degenerate.

Proof of Theorem 1.1 (i) We write v(x, y, t) := d2(y)u(x, y, t) for (x, y, t) ∈ Ω × (0,∞)

and then obtain from Lemma 5.5 that∫ ∞

1

∫
Ω

v2t < ∞ (5.18)
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and ∫
Ω

|∇v(·, t)|2 � c1 for all t > 1 (5.19)

with some c1 > 0. Moreover, Lemma 5.3 ensures that∫ ∞

1

∫
Ω

|∇v|2 < ∞. (5.20)

Now from (5.19) and (4.8) we know that the semi-orbit (v(·, t))t>1 is bounded in W 1,2(Ω)

and hence relatively compact in L2(Ω). In view of a standard argument, in order to show

that

v(·, t) → 0 in L2(Ω) as t → ∞, (5.21)

it is thus sufficient to make sure that zero is the only element of the ω-limit set of v in

L2(Ω); that is, (5.21) will be established as soon as we have shown that{
whenever (tj)j∈� ⊂ (1,∞) and w ∈ L2(Ω) are such that tj → ∞
and v(·, tj) → w in L2(Ω) as j → ∞, then w ≡ 0 a.e. in Ω.

(5.22)

To prove the latter, given such (tj)j∈� and w we note that due to (5.18) and (5.20) we may

apply Lemma 5.2 to obtain c ∈ � such that w ≡ c a.e. in Ω. Since evidently v = d2(y)u ≡ 0

a.e. in Ωab × (0,∞), we must have w = limj→∞ v(·, tj) ≡ 0 a.e. in Ωab. This proves (5.21),

which in turn yields (1.10) in view of the fact that d2(y) > 0 for all y ∈ [0, Ly] \ [a, b]. �

5.4 Large time behaviour in Ωab. Proof of Theorem 1.1 (ii)

We next determine the large time behaviour of u inside Ωab.

Proof of Theorem 1.1 (ii) We need to show that for any numbers α and β such that

a < α < β < b we have

u(·, t) ⇀ u0 in L2(Ωαβ) as t → ∞, (5.23)

where Ωαβ := (0, Lx) × (α, β). To this end, we observe that as a particular consequence of

Lemma 5.4, the semi-orbit (u(·, t))t>0 is bounded in L2(Ωαβ) and hence relatively compact

with respect to weak convergence in L2(Ωαβ). Guided by the procedure in the proof of

Theorem 1.1 (i), we note that in order to prove (5.23), it is thus sufficient to show that{
if w ∈ L2(Ωαβ) and (tj)j∈� ⊂ (1,∞) are such that tj → ∞
and u(·, tj) ⇀ w in L2(Ωαβ) as j → ∞, then w(x, y) = u0(y) for a.e. (x, y) ∈ Ωαβ .

(5.24)

To see this, given (tj)j∈� and w as in (5.24), let us set

zj(x, y) :=

∫ tj+1

tj

u(x, y, t)dt, (x, y) ∈ Ωαβ, j ∈ �,

and carry out the rest of the proof in four steps.

Step 1. We first claim that

zj ⇀ w in L2(Ωαβ) as j → ∞. (5.25)



Anisotropic diffusion in oriented environments can lead to singularity formation 33

In fact, since
∫ ∞

1

∫
Ωαβ
u2
t < ∞ by Lemma 5.6, using the Cauchy–Schwarz inequality and

recalling Lemma 5.1, we obtain

∫
Ωαβ

|zj − u(·, tj)|2 =

∫
Ωαβ

∣∣∣∣
∫ tj+1

tj

(
u(x, y, t) − u(x, y, tj)

)
dt

∣∣∣∣
2

d(x, y)

�

∫
Ωαβ

∫ tj+1

tj

|u(x, y, t) − u(x, y, tj)|2dtd(x, y)

→ 0 as j → ∞.

Along with (5.24) this implies (5.25).

Step 2. We proceed to make sure that

zjx → 0 in L2(Ωαβ) as j → ∞. (5.26)

Indeed, as a consequence of Lemma 5.4 we have
∫ ∞

0

∫
Ωαβ
u2
x < ∞. Therefore, again invoking

the Cauchy–Schwarz inequality, we infer that

∫
Ωαβ

z2
jx =

∫
Ωαβ

∣∣∣∣
∫ tj+1

tj

ux(x, y, t)dt

∣∣∣∣
2

d(x, y) �

∫
Ωαβ

∫ tj+1

tj

u2
x(x, y, t)dtd(x, y) → 0

as j → ∞, as claimed.

Step 3. Let us next show that

zj → u0 in L2(Ωαβ) as j → ∞. (5.27)

For this purpose, we recall that the Poincaré inequality on the interval (0, Lx) provides

CP > 0 such that

∫ Lx

0

∣∣∣∣φ(x) − 1

Lx

∫ Lx

0

φ(ξ)dξ

∣∣∣∣
2

dx � Cp

∫ Lx

0

φ2
x(x)dx for all φ ∈ W 1,2((0, Lx)). (5.28)

We apply this to φ(x) := zj(x, y) for fixed y ∈ (α, β) \N� with the null set N� as given by

Corollary 2.4. Since this choice of y ensures that

1

Lx

∫ Lx

0

zj(x, y)dx = u0(y)

according to Corollary 2.4, (5.28) implies that

∫ Lx

0

|zj(x, y) − u0(y)|2dx � CP

∫ Lx

0

z2
jx(x, y)dx for all y ∈ (α, β) \N�.

Integrating this inequality over y ∈ (α, β) \N� and using |N�| = 0, we find that∫
Ωαβ

|zj(x, y) − u0(y)|2d(x, y) � CP

∫
Ωαβ

z2
jx(x, y)d(x, y) for all j ∈ �,

which combined with the outcome of Step 2 yields (5.27).
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Step 4. We conclude the proof by combining (5.25) with (5.27) to infer that indeed

w(x, y) must coincide with u0(y) for a.e. (x, y) ∈ Ωαβ , as desired. �

5.5 Convergence to Dirac measures. Proof of Theorem 1.2

Let us finally prove that in the sense claimed by Theorem 1.2, in the large time limit all

the mass initially present in (0, Lx) × (0, a) and (0, Lx) × (b, Ly) will concentrate on the

horizontal lines (0, Lx) × {a} and (0, Lx) × {b} respectively.

Proof of Theorem 1.2 We fix ϕ ∈ C0([0, Ly]) and claim that then for each η > 0 we

can pick t0 = t0(ϕ, η) > 0 such that

I(t) :=
∣∣∣ ∫ Ly

0

U(y, t)ϕ(y)dy −
∫ b

a

U0(y)ϕ(y)dy − m1 · ϕ(a) − m2 · ϕ(b)
∣∣∣ < η for all t > t0.

(5.29)

To see this, given η > 0 we choose μ ∈ (0,min{a, Ly − b, b−a
2

}) small enough such that

writing m := ‖u0‖L1(Ω) we have

sup
y∈(a−μ,a+μ)

|ϕ(y) − ϕ(a)| < η

9m
and sup

y∈(b−μ,b+μ)
|ϕ(y) − ϕ(b)| < η

9m
, (5.30)

as well as ∫ a+μ

a

∫ Lx

0

u0(x, y)dxdy <
η

9
and

∫ b

b−μ

∫ Lx

0

u0(x, y)dxdy <
η

9
, (5.31)

where we note that (5.30) is possible due to the continuity of ϕ. Next, thanks to Theorem

1.1 (i), we know that u(·, t) → 0 in L2
loc(Ω̄ \ Ω̄ab) as t → ∞, whence in particular we can

find t1 > 0 such that∫ a−μ

0

∫ Lx

0

u(x, y, t)dxdy <
η

9M
and

∫ Ly

b+μ

∫ Lx

0

u(x, y, t)dxdy <
η

9M
for all t > t1,

(5.32)

where M := ‖ϕ‖L∞(Ω). Moreover, Theorem 1.1 (ii) warrants that
∫ b−μ
a+μ

∫ Lx
0

(u(x, y, t) −
u0(x, y))ϕ(y)dxdy → 0 as t → ∞, whence for some t2 > 0 we have

∣∣∣ ∫ b−μ

a+μ

∫ Lx

0

u(x, y, t)ϕ(y)dxdy −
∫ b−μ

a+μ

∫ Lx

0

u0(x, y)ϕ(y)dxdy
∣∣∣ < η

9
for all t > t2. (5.33)

Then the expression on the left of (5.29) can be estimated according to

I(t) �
∣∣∣ ∫ a−μ

0

U(y, t)ϕ(y)dy
∣∣∣ +

∣∣∣ ∫ a+μ

a−μ
U(y, t) · [ϕ(y) − ϕ(a)]dy

∣∣∣
+

∣∣∣( ∫ a+μ

a−μ
U(y, t)dy − m1

)
· ϕ(a)

∣∣∣ +
∣∣∣ ∫ b−μ

a+μ

U(y, t)ϕ(y) −
∫ b−μ

a+μ

U0(y)ϕ(y)dy
∣∣∣

+
∣∣∣ ∫ b+μ

b−μ
U(y, t)[ϕ(y) − ϕ(b)]dy

∣∣∣ +
∣∣∣( ∫ b+μ

b−μ
U(y, t)dy − m2

)
· ϕ(b)

∣∣∣
+

∣∣∣ ∫ Ly

b+μ

U(y, t)ϕ(y)dy
∣∣∣

=: I1(t) + ...+ I7(t) for all t > 0. (5.34)
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Here by non-negativity of u and (5.32),

I1(t) =
∣∣∣ ∫ a−μ

0

∫ Lx

0

u(x, y, t)ϕ(y)dxdy
∣∣∣ � M ·

∫ a−μ

0

∫ Lx

0

u(x, y, t)dxdy <
η

9
for all t > t1

(5.35)

and similarly

I7(t) <
η

9
for all t > t1. (5.36)

Next, using (5.30) and (4.8) we can estimate

I2(t) =
∣∣∣ ∫ a+μ

a−μ

∫ Lx

0

u(x, y, t) · [ϕ(y) − ϕ(a)]dxdy
∣∣∣

� ‖u(·, t)‖L1(Ω) · sup
y∈(a−μ,a+μ)

|ϕ(y) − ϕ(a)| < η

9
for all t > 0, (5.37)

and by the same token we see that

I6(t) <
η

9
for all t > 0. (5.38)

We now further split

I3(t) =
∣∣∣( ∫ a+μ

0

U(y, t)dy − m1

)
· ϕ(a) −

( ∫ a−μ

0

U(y, t)
)

· ϕ(a)
∣∣∣

and recall (4.9) and (5.31), which state that
∫ a+μ

0 U(y, t)dy−m1 <
η
9

for all t > 0. Therefore,

again by (5.32) we obtain

I3(t) �
η

9
+

( ∫ a−μ

0

∫ Lx

0

u(x, y, t)dxdy
)

· |ϕ(a)| < 2η

9
for all t > t1, (5.39)

and in the same way it follows that

I5(t) <
2η

9
for all t > t1. (5.40)

Finally, (5.33) precisely says that

I4(t) �
η

9
for all t > t2.

In conjunction with (5.35)–(5.40), inserted into (5.32) this establishes (5.29) with t0 :=

max{t1, t2}, whereby the proof is completed. �

6 Numerical explorations

In this section we perform a numerical study of the initial-boundary value problem (1.4)

to both validate and extend the results of previous sections. We choose the following two

choices for d1,2: a smooth step

d1(y) =
2 + tanh y−a

ε
− tanh y−b

ε

4
, d2(y) =

2 − tanh y−a
ε

+ tanh y−b
ε

4
; (6.1)
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and the piecewise constant form

d1(y) =

{
1 − ε y ∈ [a, b]

0.5 y ∈ [0, Ly] \ [a, b]
, d2(y) =

{
ε y ∈ [a, b]

0.5 y ∈ [0, Ly] \ [a, b]
. (6.2)

Both of the above approach the prototypical form (1.5) in the limit ε → 0.

Numerical results were obtained via the Methods of Lines approach, with spatial terms

in equations (1.4) discretised using a second-order central difference scheme. The resulting

ordinary differential equations (ODEs) were solved using a variable time-stepping stiff

integrator. Spatial discretisation in both one and two dimensions has been performed with

a variable mesh, positioning a larger number of lattice points at the interface between the

aligned and isotropic regions to provide greater refinement in these areas. Accuracy of the

scheme has been examined through comparing against analytical steady state predictions,

performing simulations on both fixed and variable-spaced meshes of greater refinement

and employing distinct time integration schemes.

6.1 Quasi-one-dimensional simulations

We begin by considering a quasi-one-dimensional scenario in which u0(x, y) = 1. Figure 3

plots the time evolution of u for system (1.4) together with the smooth form (6.1) for

a = 0.9, b = 1.1 and (a) ε = 0.1, (b) ε = 0.001. For both values of ε alignment along the

strip acts to trap the population within this region, resulting in increased density.

In accordance with Proposition 1.3, we see in Figure 3(a) that for larger values of ε

the population quickly evolves to a non-uniform steady state distribution in which the

maximum density lies along the centre of the aligned region. For comparison, the final

frame in Figure 3(a) plots the analytically determined steady state solution obtained by

setting ut = 0: we observe negligible difference with the computed solution at t = 10.

For smaller ε, however, we instead see extremely steep ridges of high population density

form at the interface between isotropic and aligned regions (i.e. along the lines y = a and

y = b). Subsequent dispersal of these ridges within the aligned region is extremely slow.

While the expected final steady state pattern would be a single highly concentrated ridge

lying along the midline, this is never observed within simulation timescales. Simulations

(not shown) for the piecewise linear form (6.2) show similar behaviour as ε → 0.

We exploit the quasi-one-dimensional nature of the simulations to perform a refined

and extended analysis. Specifically, we consider the equivalent one-dimensional model

ut = (d2(y)u)yy , (d2(y)u)y = 0 at y = 0, Ly , u(y, 0) = u0(y) , (6.3)

together with the previously proposed forms for d2(y). Setting ut = 0 in (6.3), integrating

and applying the boundary conditions gives (for nonconstant d2) the heterogeneous steady

state

uss(y) =
c

d2(y)
. (6.4)

In the above, the constant c is determined from the conservation of mass and the imposed

initial conditions, cf. also the corresponding brief discussion in the Introduction, and

Proposition 1.3. For the smooth form (6.1) we have a single minimum at ym = (a+ b)/2



Anisotropic diffusion in oriented environments can lead to singularity formation 37

Figure 3. (Colour online) Simulation of the anisotropic diffusion model, system (1.4) together

with u0(x, y) = 1 and the smooth form (6.1). (a) Time evolution showing solutions using ε = 0.1,

a = 0.9 and b = 1.1 in (6.1). The population accumulates inside the aligned region, evolving to a

heterogeneous steady state distribution. The analytically determined solution steady state solution

is shown in the final panel. (b) Time evolution showing solutions using ε = 0.001, a = 0.9 and

b = 1.1 in (6.1). The population accumulates into two extremely concentrated ridges at the interface

between the isotropic and aligned regions, with little subsequent movement within simulation

timescales. Simulations are performed as described in the text. Here we have employed a variable

two-dimensional mesh, concentrating points at the aligned region to provide better resolution of

ridge development. Absolute and relative tolerances for the time-integration scheme were set at

10−8.
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Figure 4. (Colour online) Simulation showing the time evolution of solutions to equation (6.3)

with u0(y) = 1 and d2(y) as in (6.1) with ε = 0.01, a = 0.9 and b = 1.1. The population initially

accumulates into two concentrated peaks at y = a and y = b, which subsequently undergo slow

convergence to a single peak in the centre of domain. The final panel plots the analytically

determined steady state solution. Simulations are performed as described in the text, where we have

again employed a variable mesh. Error tolerances are as in Figure 3.

and we expect the steady state to be composed of a single aggregate with maximum

at ym.

An extended simulation of (6.3) with d2(y) as in equation (6.1) and ε = 0.01, a = 0.9, b =

1.1 is plotted in Figure 4. Initially we observe the accumulation of the population into two

concentrated peaks close to y = a and y = b. The peaks subsequently converge within

the region of low d2 on a much slower timescale, eventually accumulating into a single

concentrated peak at y = (a+ b)/2: the solution at t = 105 is, as predicted by Proposition

1.3, extremely close to the steady state solution in (6.4) shown in the final panel.

As ε → 0 we obtain convergence to the prototypical form for d and we might expect

Dirac-type singularities to form at the interface points y = a and y = b. Simulations

presented in Figure 5 appear to support this conjecture. While for larger values of ε (top

row) any peak formation at y = a and y = b is highly transient with solutions quickly

converging to the steady state distribution, for smaller ε, two peaks initially form at y = a

and y = b. Notably, these peaks become more concentrated with decreasing ε and any

subsequent convergence of the peaks for the smallest values of ε (bottom two rows) is

imperceptible within practical numerical timescales.

6.2 Comparison with a Dirichlet problem

Formation of the boundary peaks results from diffusion between the isotropic and

anisotropic regions where they become pinned due to realignment. In this section we

provide numerical evidence, indicating that this population transfer evolves according to a
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Figure 5. (Colour online) Simulation of the one-dimensional diffusion model, equation (6.3),

together with u0(y) = 1 and d2(y) as in (6.1) for varying ε, a = 0.9 and b = 1.1. In the top to bottom

rows we compare the evolution of solutions at comparable times for ε = 0.1, 0.01, 0.001 and 0.0001.

As ε → 0, we note that solutions become more sharply concentrated into aggregates at y = a and

y = b. Simulation method is as described in Figure 4.

Dirichlet problem in the limit ε → 0. Specifically, for the region y ∈ (0, a) (or y ∈ (b, Ly))

we consider

vt = 0.5vyy , vy(0, t) = 0 , v(a, t) = 0 , v(y, 0) = 1 . (6.5)

Thus, the point a defines a sink for the population v within the isotropic region. Solved

using standard methods, we obtain the analytical solution

va(y, t) =

∞∑
i=0

4

(2i+ 1)π
sin

(
(2i+ 1)π(x+ a)

2a

)
exp

(
−0.5 (2i+ 1)2 π2t

4a2

)
. (6.6)

In Figure 6 we plot numerical simulations for equations (6.3) together with d2(y) as in

equation (6.1) under varying ε. Here we assume a = 1 and a � b � Ly , restricting our

attention to the region y ∈ [0, 2] such that we concentrate on the single smooth step

centred on y = 1. Further, we append these plots with the analytical solution va derived

from the Dirichlet problem (6.5). Here we have calculated va by truncating at the first 100

terms, more than enough needed to generate a highly accurate solution.

As expected from previous studies, as ε → 0 we observe the development of a single

concentrated peak located at y = a. Moreover, as ε → 0 the numerical solutions in the
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Figure 6. (Colour online) Comparison between solutions to the one-dimensional diffusion model

(6.3) and the analytical solution (6.6) to the Dirichlet problem. For (6.3) we consider u0(y) = 1, d2(y)

as in (6.1) for varying ε and a = 1. The top row plots the log10 of the population density against y

for various values of ε at the times indicated. In each frame we add the analytical solution va(y, t)

for the region y ∈ [0, a). The bottom row expands the bottom-left corner of these plots to reveal

convergence to the analytical form. Simulation method is as described in Figure 4.

region y ∈ [0, a) appear to converge with the analytical form va(y, t) derived from the

Dirichlet problem. This convergence becomes more apparent in the blown-up sequence

of plots shown in the bottom row. We have further controlled our results through testing

for other values of a, using the step-like form for d2 and exploring whether the same

behaviour occurs in the original two-dimensional simulations.

6.3 Two-dimensional simulations: non-uniform initial conditions

In the above simulations we have concentrated either on the quasi-one-dimensional case

with uniform initial conditions or its equivalent one-dimensional version. In this section

we consider non-uniform initial conditions. Again, we consider the smooth form (6.1)

together with a = 0.9, b = 1.1 and Lx = Ly = 2 and initially suppose the population is

concentrated into two aggregates arranged as follows:

u0(x, y) = 0.5e−100((x−0.5)2+(y−0.5)2) + e−100((x−1.5)2+(y−1.5)2) .

Simulations in Figure 7 reveal the population evolution for (a) ε = 0.1 and (b) ε = 0.001.

For both values of ε the population diffuses into the anisotropic region, where, due to
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Figure 7. (Colour online) Simulation of the anisotropic diffusion model, system (1.4) with non-

uniform initial conditions (see text for details). (a) We set ε = 0.1, a = 0.9 and b = 1.1 in (6.1).

(b) We set ε = 0.001, a = 0.9 and b = 1.1 in (6.1). For details of numerical implementation, see

Figure 3.

realignment, the population accumulates. Initially a much larger accumulation is observed

at the points closest to the initial aggregation sites. Dispersal along the direction of

alignment results in the subsequent broadening of these aggregates until a quasi-one-

dimensional configuration is achieved. As previously, while for the larger values of ε

solutions converge to the heterogeneous steady state within the simulation timescales,

for smaller ε the population remains confined to a sharp ridge. Note that according to
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Theorems 1.1 and 1.2, the density of these ridges corresponds to the size of the initial

population within the isotropic regions from which each ridge derives.

7 Conclusion

It is surprising that a simple linear diffusion equation (1.1) can have such a rich behaviour

in spatial pattern formation and blow-up. This is, of course, related to the singular nature

of the diffusion tensor. It is of large interest to study other geometries and to understand

and classify all singularities that can arise from equations of the form (1.1).
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[16] Ladyžhenskaja, O. A., Solonnikov, V. A. & Ural’ceva, N.N. (1968) Linear and Quasilinear

Equations of Parabolic Type, AMS Providence, RI.

[17] Lewis, M. A. (In preparation) Resource selection functions, the ideal free distribution and

random walks.

[18] McKenzie, H. W., Lewis, M. A. & Merrill, E. H. (2009) First passage time analysis of

animal movement and insights into the functional response. Bull. Math. Biol. 71(1), 107–129.



Anisotropic diffusion in oriented environments can lead to singularity formation 43

[19] Mosayebi, P., Cobzas, D., Murtha, A. & Jagersand, M. (2011) Tumour invasion margin on

the Riemannian space of brain fibres. Med. Image Anal. 16(2), 361–373.

[20] Okubo, A. & Levin, S. A. (2002) Diffusion and Ecological Problems: Modern Perspectives,

Springer, New York.

[21] Othmer, H. G. & Hillen, T. (2002) The diffusion limit of transport equations II: Chemotaxis

equations. SIAM J. Appl. Math. 62(4), 1122–1250.

[22] Othmer, H. G. & Stevens, A. (1997) Aggregation, blowup and collapse: The ABC’s of taxis

in reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081.

[23] Painter, K. J. (2009) Modelling migration strategies in the extracellular matrix. J. Math. Biol.

58, 511–543.

[24] Painter, K. J. & Hillen, T. (Submitted) Mathematical modelling of glioma growth: The use

of diffusion tensor imaging DTI data to predict the anisotropic pathways of cancer invasion.

[25] Winkler, M. (2005) Large time behaviour and stability of equilibria of degenerate parabolic

equations. J. Dyn. Differ. Eqns. 17(2), 331–351.


