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Abstract. We derive models for chemosensitive movement based on Cattaneo’s law of heat
propagation with finite speed. We apply the model to pattern formation as observed in exper-
iments with Dictyostelium discoideum, with Salmonella typhimurium and with Escherichia
coli. For Salmonella typhimurium we make predictions on pattern formation which can be
tested in experiments. We discuss the relations of the Cattaneo models to classical models
and we develop an effective numerical scheme.

1. Introduction

In this paper, we apply Cattaneo’s law of heat propagation with finite speed ([4])
to the biological phenomenon of chemotaxis, or more generally, to chemosensi-
tive movement. Chemosensitive movement describes the active orientation of in-
dividuals along chemical signals which are produced by the population itself. The
most prominent examples of chemotactic species are the slime mold Dictyostelium
discoideum (Dd), which moves towards higher concentrations of cAMP (cyclic
adenosine mono-phosphate), or flagellated bacteria like Salmonella typhimurium
(St), which reacts to aspartate.

In biological literature there is a distinction between chemotaxis and chemoki-
nesis (see [29] or [6]). Whereas chemotaxis denotes a directed orientation towards
or away from the chemical stimulus, chemokinesis describes some non-directed
bias in the movement behavior, which indirectly leads to an oriented movement
of the population. Chemokinesis appears in bacteria, who reduce their turning fre-
quency while moving in a favorable direction. From a modeling point of view the
above distinction is not necessary and we summarize all these orientation effects
in chemosensitive movement (see a detailed discussion in [14]).

The classical mathematical model for chemosensitive movement is the Patlak-
Keller-Segel model ([25], [19]). This model assumes diffusion of the species at
hand. The purpose of this paper is to study an alternative model – a Cattaneo model
– which respects finite propagation speeds and which is based on the individual
movement patterns of the species.
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In the following sections we apply the Cattaneo-chemotaxis model to experi-
ments of Firtel [8] for the slime mold Dictyostelium discoideum, to experiments
of Woodward et al. [30] for Salmonella typhimurium and to Ford’s data [10,9] on
Escherichia coli, using as many realistic parameters as possible.

We use the remainder of this introduction to explain, in detail, the appearence
of the Cattaneo law from heat transport and from random walk processes. Since
the Cattaneo model is a hyperbolic system it is worthwhile to discuss the numeri-
cal scheme which we developed to solve the equations. An appendix contains the
discussion of the numerics.

1.1. Cattaneo’s law

The Cattaneo law was introduced by C. Cattaneo in 1948 as a modification of
Fourier’s law of heat conduction. It is used to describe heat propagation with finite
speed. In that context, let θ(t, x) ∈ R denote the temperature of a homogeneous
medium � ⊂ R

n and let q(t, x) ∈ R
n denote the heat flux. Then the Cattaneo law,

together with an equation for conservation of energy, leads to the Cattaneo system
[4], [18]

θt + ∇ · q = 0, τqt + q = −D∇θ. (1)

The constant τ > 0 describes the adaptation time of the heat flux q to the negative
gradient of the temperature θ . The parameter D > 0 is the diffusion constant. For
τ = 0 we obtain Fourier’s law q = −D∇θ and system (1) translates into the
heat equation θt = D�θ . As shown by Gurtin and Pipkin [11], the Cattaneo law
describes a flux which depends exponentially on the history of the temperature
gradient. We observed, moreover, that the Cattaneo system (1) is the minimizing
flux of an exponentially weighted Dirichlet integral. Define

F(θ) := D

2τ

∫ t

0

∫
�

e(s−t)/τ |∇θ |2dxds

then the first variation of F is

δF (θ) = D

τ

∫ t

0
e(s−t)/τ∇θ ds.

Hence δF satisfies a Cattaneo law:

τ(δF )t + δF = −D∇θ.

If θ is given by the minimizing flux equation θt = −∇ · δF of the functional F
then (θ, δF ) solves the Cattaneo system (1).

In 1995, Hadeler [12] observed that the Cattaneo model is also useful for de-
scribing biological populations. In one space dimension, the Cattaneo system (1)
is equivalent to the Goldstein-Kac model for a correlated random walk (see [12],
[13]). In more than one space dimension we assume that u(t, x) ∈ R is a particle
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density and that v(t, x) ∈ R
n describes a particle flux. The corresponding Cattaneo

model is

ut + ∇ · v = 0, τvt + v = −D∇u. (2)

The advantage of Cattaneo models is that the undesired feature of infinite fast
propagation of information is omitted, as might occur in diffusion based models.

The semilinear Cattaneo system

ut + ∇ · q = f (u)

τqt + q = −D∇u (3)

has been studied in Hillen [13] on bounded domains in R
n with smooth bound-

aries. The function f describes birth and death of a population. The system has been
studied with both homogeneous Dirichlet and homogeneous Neumann boundary
conditions. With construction of a Lyapunov function it has been shown that, under
appropriate growth assumptions on f , the ω-limit sets are contained in the set of
stationary solutions.

In Hillen [14], the Catteno system has been derived from a moment closure
approach of transport equations. For that, consider bacteria which move according
to the following rules (as observed by Berg [1] and many others): An individual cell
moves with nearly constant speed in a certain direction. It suddenly stops, rotates
and chooses a new direction at random. The stopping times can be modeled by an
exponential distribution with rate µ. The rotation-times are small compared to peri-
ods of movement. The distribution of new chosen directions (preferred turn-angles)
can be measured in experiments. It is denoted by T (v, v′), where v′, v ∈ V are
incoming and outgoing velocity, respectively. The set V ⊂ R

n is the set of possible
velocities and, in this case, we have V = sSn−1, where s is the cell speed. Stroock
[28] has shown that this process (in an appropriate limit) leads to a linear transport
equation

pt + v · ∇p = −µp + µ

∫
T (v, v′)p(v′)dv′, (4)

where p(t, x, v) denotes the particle density at time t ≥ 0 at spatial position x ∈ �

of particles moving with velocity v ∈ V . Transport models and related stochastic
processes have also been discussed in Othmer et al. [23]. To derive the Cattaneo
system we assume that the cells have no preferred turn-angle, i.e. T (v, v′) = |V |−1

is constant. Then (4) describes a Pearson walk [26].
We introduce the velocity moments of p

m0(t, x) :=
∫
V

p(t, x, v)dv

mi(t, x) :=
∫
V

vip(t, x, v)dv, i = 1, . . . , n

mij (t, x) :=
∫
V

vivjp(t, x, v)dv, i, j = 1, . . . , n.

Multiplication of (4) with 1 or vi for i = 1, . . . , n and integration along V leads to
a system for the first two moments:
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m0,t +
n∑

i=1

∂imi = 0 (5)

mi,t +
n∑

j=1

∂jmij = −µmi, (6)

where ∂i = ∂
∂xi

. As thoroughly illustrated in Hillen [14] the above moment system

can be closed for (m0,m1, . . . , mn) by minimizing the L2(V )-norm:

H(u) := 1

2

∫
�

u2dx

with constraints ∫
u(t, x, v)dv = m0(t, x) (7)

and ∫
viu(t, x, v)dv = mi(t, x), i = 1, . . . , n. (8)

The minimizer can explicitly be given as

umin(t, x, v) = 1

|V |

(
m0(t, x) + n

s2

n∑
i=1

vimi(t, x)

)
.

We assume that the second moment mij (p) of p is well approximated by the second
moment of the minimizer umin. Then the closed system reads (see [14])

M0,t +
n∑

i=1

∂iMi = 0

Mi,t + s2

n
∂iM0 = −µMi, i = 1, . . . , n (9)

where we used capital letters to distinguish from the true moments m0,mi . Note
that (9) is indeed a Cattaneo system (1). The error which appears during this ap-
proximation can be controlled (see [14]).

1.2. Boundary conditions

If we study Cattaneo models on bounded domains, the boundary conditions have
to be considered carefully. We can use the minimizer umin of the previous section
to translate boundary conditions of the transport model into boundary conditions
of the Cattaneo system.

The homogeneous Dirichlet boundary condition for the transport equation (4)
is:

p(t, x, v) = 0 for all x ∈ ∂� and all v ∈ V with v · η(x) < 0, where η(x)

denotes an outer normal at ∂�.
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Here we assume that the boundary of � is piecewise differentiable. If x ∈ ∂�

allows for more than one outer normal vector (corner points), we require the above
condition for all outer normals.

It is natural to assume that the minimizer umin satisfies the same boundary
condition. This leads directly to

m0 = 2nKV

s2|V | η(x) · �m, (10)

with

KV :=
∫

{v∈V :v1≥0}
vdv · e1,

where �m = (m1, . . . , mn) and e1 = (1, 0, . . . , 0). For V = sSn−1 we explicitly
calculate the constants KV : For n = 1 we have KV = s, for n = 2 we obtain
KV = 2s and for n ≥ 3 we get

KV = sn−1
∫

{σ∈Sn−1:σ1≥0}
σdσ · e1 = sn−1

∫
Sn−2

∫ π/2

−π/2
cosϕdϕ dn−2ω,

where dn−2ω denotes the surface measure on Sn−2. Then

KV = 2sn−1|Sn−2|.
The factor which appears in the boundary conditions is then given as

2nKV

s2|V | =


s−1 for n = 1,
4(s2π)−1 for n = 2,
4ns−2|Sn−2|/|Sn−1| for n ≥ 3.

For the modeling of chemotaxis we use homogeneous Neumann boundary condi-
tions. If we start again with pure physical reflection conditions for the transport
model (4) we have

v · �m = (v − 2(η(x) · v)η(x)) · �m
for all velocities v with v · η(x) < 0. This reduces to

η(x) · �m = 0. (11)

1.3. Models for chemosensitive movement

Before we derive detailed models for Dd and St, we explain the basic modeling as-
sumptions and we illustrate the relations to the classical Patlak-Keller-Segel model
(PKS-model). The PKS-model in a simple form reads

ut = ∇(Du∇u − V (u, S)∇S)

St = DS�S + g(u, S),
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where u(t, x) denotes the cell density and S(t, x) the signal concentration. The
function V (u, S) is a (nonlinear) cross-diffusion coefficient. The function g(u, S)

describes production and degradation of the signal. Many authors studied quali-
tative properties of this system for V (u, S) = uχ(S) and g(u, S) = −νS + αu.
Results on finite time blow-up are known (see the references in [16] or in [14]).

In Hillen and Painter [16], the chemotactic cross diffusion V is chosen as
V (u, S) = uβ(u)χ(S), where β(u) describes density control (β(0) > 0, β(ū) = 0
for some ū > 0 and β(u) > 0 for all 0 < u < ū) and χ(S) ≥ 0 is the chemotactic
sensitivity. For this choice of V solutions exist globally in time, and spatial patterns
can be observed (see [16]). Here we aim to use the density control ansatz for the
Cattaneo model as well.

There are, at least, two ways to derive the corresponding Cattaneo model for
chemosensitive movement. Heuristically, we consider the population-flux of the
PKS-model

q = −Du∇u + V (u, S)∇S. (12)

Again we assume that the flux q is not instantaneously equal to the right hand side of
(12), but it relaxes to it with a time constant 1/τ . Then the corresponding Cattaneo
model for chemosensitive movement reads

ut + ∇ · q = 0

τqt + q = −Du∇u + V (u, S)∇S. (13)

As shown in Hillen [14], we can also derive (13) from an associated transport model,
where turning rate and turning kernel T are chosen appropriately. For example, we
chose

µ(m0, v; S,∇S) := µ0

(
1 − n

s2 V (m0, S)v · ∇S
)

(14)

and

T (v, v′; S,∇S) := 1

|V |µ(m0, v
′; S,∇S), (15)

with V = sSn−1 and m0(t, x) = ∫
V
p(t, x, v)dv as before. The moment closure

procedure applies and leads to (13) (see [14]).

2. A model for slime molds

The slime mold Dictyostelium discoideum has developed an extraordinary mech-
anism: upon starvation, the amoebae form tissue-like aggregates. This process is
controlled by chemotaxis; the cells move upward gradients of the messenger mole-
cule cAMP produced by the cells themselves. Eventually, they form a fruiting body,
where spores can survive until conditions for germination are favorable.

The formation of aggregates has been documented by many authors. We are
guided by observations of Firtel et al.[8]. The aim of our simulations is not to
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reproduce the experimental results as precisely as possible, but to describe them
qualitatively. The model equations are:

ũt̃ + ∇̃ · q̃ = 0 (16)

τ̃ q̃t̃ + q̃ = −Du∇̃ũ + χũ

(
1 − ũ

K

)
∇̃S̃ (17)

S̃t̃ = Ds�̃S̃ + k1ũ − k2S̃. (18)

Here we use ũ, q̃, and S̃ for the particle density, the particle flux, and the signal
concentration, respectively. Later we use expressions without ˜ for the correspond-
ing non-dimensional variables. We model the chemotactic cross diffusion with a
simple logistic law V (ũ, S̃) = χũ(1 − ũ

K
), where K is the maximal cell density.

The chemotactic sensitivity χ is assumed to be constant > 0. Moreover, we assume
linear production and degradation of the chemoattractant S̃ with k1, k2 > 0.

To non-dimensionalize the system, we choose the following scaling:

t = t̃

t0
, x = x̃

x0
, with t0 = k−1

2 , x0 =
√
Dsk

−1
2 . (19)

The dimensionless variables u(x, t), q(x, t) and S(x, t) are given by u = ũK−1,

q = q̃K−1(Dsk2)
− 1

2 and S = S̃χD−1
s . Thus we obtain the equations

ut + ∇ · q = 0 (20)

τqt + q = −D∇u + u(1 − u)∇S (21)

St = �S + αu − S. (22)

The parameter values are listed in Table 1 and 2. For those parameters not available
in the literature, we choose reasonable values. The non-dimensionalized system
depends only on τ , D and α. The numerical values are given below each of the
figures Fig. 1 and 2, respectively.

We impose Neumann boundary conditions on a bounded domain � (petri-dish).
For the chemical concentration S it is given as

∇S · η |∂� = 0. (23)

The boundary condition for the population-flux q has been already derived in Sec-
tion 1.2. It reads

q · η |∂� = 0. (24)

Table 1. Parameters of the non-dimensional model (20)–(22).

Non-dimensional parameter Definition

τ k2τ̃

D DuD
−1
s

α χKk1(k2Ds)
−1
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Table 2. Dimensional parameter values used in eq. (16)–(18). The time constant τ cor-
responds to the average duration of cell movement. In [7], the diffusivity of cAMP was
measured in water; we take 75% of this value for diffusion on agar (Ds = 3×10−6cm2 s−1).
Assuming a correlated random walk, the cell diffusion coefficient, Du, is given by s2 τ̃

2 . With
s = 2.5 × 10−5cm s−1 and τ̃ = 320 s, we obtain Du = 1 × 10−7cm2 s−1.

Parameter Experimental value Reference

cell speed s 2 – 2.5 × 10−5cm s−1 Rietdorf et al. [27]
time constant τ̃ 240 - 360 s Rietdorf et al. [27]
χ no measurements available
Ds 4 × 10−6cm2 s−1 Dworkin and Keller [7]
k1, k2 no measurements available
K 105 – 106 cells cm−2

Du 1 × 10−7cm2 s−1

0

0.5

1

(a) t = 250

0

0.5

1

(b) t = 550

0

0.5

1

(c) t = 3000

Fig. 1. Numerical solution of the model (20)–(22) with initial conditionu(x, y) ∈ [0.5, 0.51]
on a square domain [0, 20]2. Parameter values: D = 0.03, τ = 1, α = 0.5.

The initial conditions are

u(·, 0) = u0, q(·, 0) = q0, S(·, 0) = S0. (25)

2.1. Simulation results

We solve the Cattaneo system (20)–(22) with boundary conditions (23) and (24)
on a bounded square domain � = [0, 20] × [0, 20]. The numerical scheme is
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0

0.5

1

(a) t = 740

0

0.5

1

(b) t = 820

0

0.5

1

(c) t = 1000

Fig. 2. Numerical solution of the model (20)–(22) with initial conditionu(x, y) ∈ [0.2, 0.21]
on a square domain [0, 20]2. Parameter values: D = 0.03, τ = 1, α = 0.8.

discussed in the Appendix. In all simulations, the initial condition is a homoge-
neous distribution of the cell density with random fluctuations of 1%. The flux q

and the concentration of the chemical S are zero initially.

In Fig. 1, we show the time evolution of the cell density u. The initial distri-
bution is u0 = 0.5 + random. Due to initial irregularities of the cell density, small
aggregations start to form. We observe collision and collapse of peaks, a phenome-
non which is known from simulations of corresponding parabolic models [16]. The
aggregations continue to grow, until plateaus at u = 1 are formed. Eventually, they
merge as well.

In Fig. 2, the initial distribution is u0 = 0.2 + random. Compared to experi-
ments made at Firtel-Lab of the University of California, San Diego [8], we see
that the transition from many small maxima to a few large aggregations can be
observed in both cases. However, it is apparently only possible to describe the
experiments qualitatively. Since the experimental value of the parameter k2 is not
known, time and space scale of our model remain undetermined. For the scaling
which we chose in (19), the time and space scales are coupled via x0 = √

Dst0.
We choose the square domain [0, 20]2 to correspond to the experimental domain.
In reality, it takes about 8 hours until aggregates are formed (R. Firtel, personal
communication). In our simulations, though, it takes much longer. The reason for
this difference could be the fact that the model does not take into account the rather
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complicated dynamics of cAMP production and the propagation of chemical waves
(see e.g. [22]).

3. A model for bacteria

Under certain conditions, strains of the bacterium Salmonella typhimurium form
ring-shaped or spotted patterns. In experiments of H.C. Berg and E. Budrene (see
Woodward et al.[30]), a population of bacteria was inoculated at the centre of a petri
dish filled with semi-solid agar and with a growth substrate. The population first
spreads in a homogeneous form and produces a bacterial lawn. Later the cells start
to form concentric rings, which at low concentrations of the substrate, immediately
break apart into discrete arcs or spots. At higher initial concentration of the sub-
strate, the rings remain intact. This type of pattern formation cannot be explained
without chemotaxis.

Woodward et al.[30] have proposed a mathematical model for this mecha-
nism based on the diffusion equation. We will introduce a Cattaneo model for this
phenomenon, which includes population growth, chemotactic response, and pro-
duction of the chemoattractant according to [30].

In contrast to the experiments with Dd, the cell population is not constant. We
assume that the cells proliferate with a constant rate k1, until a certain density, which
depends on the substrate concentration, is reached. Since the part of the substrate
which is consumed during the experiments is small, we consider the underlying
substrate concentration to be constant c > 0. The equation for the cell density
u(t, x) then reads

ũt̃ + ∇̃ · q̃ = k1ũ

(
1 − ũ

k2c

)
. (26)

Again the population-flux is given by Eq. (13). We choose the function V (u, S)

as proposed by Lapidus and Schiller [20] in 1976. They studied experiments with
E. coli, a closely related species to St:

τ̃ q̃t̃ + q̃ = −Du∇̃ũ + k3ũ

(k4 + S̃)2
∇̃S̃. (27)

From experiments, we know that the production of aspartate is approximately linear
in the cell density u and the substrate concentration c. At high cell densities, the
production saturates:

S̃t̃ = Ds�̃S̃ + k5cũ

k6 + ũ
− k7S̃. (28)

Here we choose a linear degradation of the chemical.
Again, we have to non-dimensionalize the model. With time scale t0 = k−1

7 and

space scale x0 = D
1
2
s k

− 1
2

7 , we obtain the following equations for the dimensionless
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Table 3. Parameters of the non-dimensional model (29)–(31).

Non-dimensional parameter Definition

τ k7τ̃

D DuD
−1
s

ρ k1k
−1
7

α k2k3k5(k
2
4k6k7Ds)

−1

β k2k5(k4k6k7)
−1

γ k2k
−1
6

Table 4. Dimensional parameter values used in equ. (26)–(28). k1 can be determined from
the average cell doubling time, which is about 2h.

Parameter Experimental value Reference

time constant τ 1–10 s Berg and Brown [2]
Du 2–4 × 10−6 cm2 s−1 Berg and Turner [3], Berg [1]
Ds 8.9 × 10−6 cm2 s−1 Berg [1]
k1 ≈ 9.6 × 10−5 s−1 Woodward et al. [30]
k2 no measurements available
k3 3.9 × 10−9 M cm2 s−1 Dahlquist et al. [5]
k4 5 × 10−6 M Dahlquist et al.[5]
k5, k6 ,k7 no measurements available

variables u = ũk−1
2 , q = q̃k−1

2 (Dsk7)
− 1

2 and S = S̃k6k7(k2k5)
−1:

ut + ∇ · q = ρu
(

1 − u

c

)
(29)

τqt + q = −D∇u + αu

(1 + βS)2 ∇S (30)

St = �S + cu

1 + γ u
− S. (31)

Like before, we use homogeneous Neumann boundary conditions (23) and (24).

3.1. Simulations for bacteria

We solve system (29)–(31) numerically and vary the substrate concentration c.
Initial values are chosen corresponding to the experimental conditions: the cell
density is 1.0 in a small circular area in the centre of the domain. Everywhere else,
it is 0. The flux and the concentration of aspartate is initially zero everywhere.
Fig. 3 shows the evolution of the cell density for two different substrate concentra-
tions. The results are closely comparable to the experimental observations: at a low
substrate concentration c ((a) in Fig. 3), concentric rings are formed which later
break into spots. At high substrate concentrations ((b) in Fig. 3), the chemotactic
response is saturated and the rings remain intact. If we compare our simulations
to the experiments, we can estimate the time scale t0 = 180 s and the length scale
x0 = √

Dst0 approximately 0.04 cm. Thus we get a time interval of 2.2 hours
between the formation of successive rings, and a distance of 2.8 mm between the
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(a) t = 220 t = 320 t = 360

(b) t = 350 t = 380 t = 400

Fig. 3. Numerical solution of model (29)–(31) on a square domain [0, 62]2. The evolution
of the cell density at two different substrate concentrations is shown: in the top row (3(a)),
the substrate concentration is c = 0.8, in the bottom row (3(b)), it is c = 2.5. Parameter
values: D = 0.3̄, τ = 0.03, β = 2, α = 9, ρ = 0.03, γ = 0.2.

rings. These values compare well to the experimental results (around 2 hours and
2 mm, respectively).

We are interested in what happens if two competing ring-forming swarms over-
lap. We consider a numerical simulation, where the nutrient concentration is as in
the ring-case above. Initially we inoculate the petri dish in two circular regions with
a cell density of 1.0. In Figure 4 we show the developed pattern at time t = 420. We
find that in the overlap region spots are formed and the rings are broken. This sug-
gests, that the ring formation is an unstable mechanism compared to spot formation.
Our computer prediction might be tested in experiments.

4. Discussion

In this article we discuss a model for chemosensitive movement, which is based on
Cattaneo’s law. In contrast to the classical Patlak-Keller-Segel model, which basi-
cally uses Fourier’s law, the Cattaneo law accounts for finite propagation speeds
of perturbations. Here the Cattaneo model (9) has been derived from a moment
closure procedure of a kinetic equation. Using this approach, the relevant model
parameters, such as τ, γ, V are directly related to the movement characteristics
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Fig. 4. Pattern generation of two competing swarms at time t = 420 on a domain of [0, 118]2.
The parameter values are as in Figure 3(b).

(i.e. turning rate µ and velocity distribution T ) of the individuals at hand. Equa-
tions (13), (14) and (15) show one possible relation.

It is straightforward to include more detailed dependencies on space x, or on ex-
ternal factors like light sources, temperature gradients or variables which describe
internal chemical pathways. For internal pathways in chemotaxis see the review
article of Othmer and Schaap [24].

In the studies presented here, the Cattaneo model for chemosensitive move-
ment is well suited to describe the experimentally observed patterns. We expect
that the PKS model and the Cattaneo model for chemosensitive movement have
the same asymptotic behavior. In one space dimension this has been considered in
[17]. Hence on a long time scale we expect that both model classes (hyperbolic
and parabolic) show the same results. For short time ranges, however, we expect
a better description from a Cattaneo type model, due to finite characteristic speed.
To investigate this we study the experiments on bacterial chemotaxis done by Ford
et al. [10,9]. Due to symmetries of the experimental setup a one-dimensional model
is appropriate. In Figures 4 and 7 of [10] the spatial spread is shown as a function of
square-root of time. If the underlying process is pure diffusion, then the occupied
area of the bacterial swarm should be proportional to the square-root of time, hence
a linear fit gives a (mean) diffusion coefficient. For a correlated random walk, the
spatial spread is proportional to time for short time ranges and proportional to the
square-root of time for large time ranges (see [23]). Hence a graph corresponding
to Figure 4 of [10] should be curved like a parabola near zero, eventually growing
linearly. In Figure 5 we compare Ford’s data with a linear fit, which corresponds to
a diffusion model assumption and with a simulation of a one dimensional Cattaneo
model [17].

We used realistic parameter values as given in Ford et al., like a particle speed
of γ = 0.01 mm/s and a turning rate of µ = 1s−1 on a spatial domain of length
40 mm. We observe that both models, parabolic and hyperbolic, describe the data.
Differences can be seen in the time range up to about 40 s. For Ford’s experiments
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Fig. 5. Comparison of the experimental data of Ford et al. [10] (boxes) to a diffusion based
model (linear curve) and to the simulation for a one-dimensional Cattaneo model (parabo-
la-shaped line).

both model types are appropriate and we should choose the model according to the
available data. If spread is measured for the population as a whole (motility D or
chemotactic sensitivity, χ ) then a diffusion based model should be used. If individ-
ual paths are followed and turning rates and turn-angle distributions are measured,
then a hyperbolic model is more appropriate.

This, indeed, reflects the general outcome of our research. Depending on the
available experimental parameters, a diffusion model is appropriate for population
parameters and a transport model, or a Cattaneo model is advantageous if parame-
ters for movement of individuals are available. There certainly is an overlap region,
where both model types can be used with equal rights. From a more theoretical
point of view, the transport- and Cattaneo-models provide a convenient platform
to study and understand how the behavior of a population as a whole emerges from
the behavior of its individual members.

A. Numerical appendix

Since the Cattaneo system is hyperbolic, the numerical scheme has to be chosen
carefully. To solve the model for slime molds, we use an algorithm based on the Lax-
Wendroff scheme (see Section A.2). The numerical treatment of bacteria requires
minor alterations of the slime molds-algorithm (Section A.3). First we consider the
numerical boundary conditions (Section A.1).

A.1. Numerical boundary conditions

Here, and for the following sections, we use standard notation: on a rectangular
domain, we use mesh indices i = 0, ..., I and j = 0, ..., J with mesh width h

and time step k. We arrange the enumeration such that the domain boundaries are
given by the indices i = 1, I − 1 and j = 1, J − 1, respectively. Mesh points with
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index i = 0 or I and j = 0 or J are ghostpoints, which allows us to establish the
boundary conditions in a simple way. In each time step, we define

un
i,0 = un

i,2, un
i,J = un

i,J−2, i = 1, ..., I − 1 (32)

un
0,j = un

2,j , un
I,j = un

I−2,j , j = 1, ..., J − 1 (33)

Sn
i,0 = Sn

i,2, Sn
i,J = Sn

i,J−2, i = 1, ..., I − 1 (34)

Sn
0,j = Sn

2,j , Sn
I,j = Sn

I−2,j , j = 1, ..., J − 1 (35)

q1n
0,j = −q1n

2,j , q1n
I,j = −q1n

I−2,j , j = 1, ..., J − 1 (36)

q2n
i,0 = −q2n

i,2, q2n
i,J = −q2n

i,J−2, i = 1, ..., I − 1. (37)

The cornerpoints u0,0, uI,J , etc. are not used for the algorithm. Now the use of
central differences for gradients at i = 1, ..., I − 1 and j = 1, ..., J − 1 leads to
the exact fullfillment of the described boundary conditions (23) and (24). Note that
from (21), (23), and (24) it follows that u satisfies ∇u · η = 0 at ∂� as well.

The above extension of the domain using the symmetry imposed by the bound-
ary conditions allows us to consider each grid point with i = 1, ..., I − 1 and
j = 1, . . . , J − 1 as an inner point.

A.2. Numerical scheme for slime molds

For each time step, the equation for the chemical S is solved first. In order to do this,
we use the concept of operator splitting: the diffusion term in (22) is solved using a
standard alternating direction implicit method (ADI, see for instance Morton [21]).
The reaction term is then computed by

Sn+1
i,j = αk

1 + k
un
i,j + 1

1 + k
S∗
i,j , (38)

where S∗
i,j is the solution of the diffusion equation. The cell flux q is computed by

q1n+1
i,j = τ

(τ + k)
q1n

i,j − Dk

2h(τ + k)

(
un
i+1,j − un

i−1,j

)
+ k

(τ + k)
f 1i,j , (39)

q2n+1
i,j = τ

(τ + k)
q2n

i,j − Dk

2h(τ + k)

(
un
i,j+1 − un

i,j−1

)
+ k

(τ + k)
f 2i,j , (40)

with i = 1, . . . , I − 1, j = 1, . . . , J − 1. On the boundaries, we again have (36)
and (37). Here (f 1, f 2) denotes the chemotactic part of the flux, i.e.

f 1i,j = 1

2h
un
i,j (1 − un

i,j )(S
n+1
i+1,j − Sn+1

i−1,j ), (41)

f 2i,j = 1

2h
un
i,j (1 − un

i,j )(S
n+1
i,j+1 − Sn+1

i,j−1), (42)

and

f 10,j = −f 12,j , f 1I,j = −f 1I−2,j , j = 1, . . . , J − 1 (43)
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f 2i,0 = −f 2i,2, f 2i,J = −f 2i,J−2, i = 1, . . . , I − 1 (44)

on the boundaries.
Following the idea of Lax and Wendroff, the algorithm for the population den-

sity u is based on a Taylor series expansion that is truncated after the third term. In
our case

u(t + �t, x, y) = u(t, x, y) + �t(−q1x − q2y)

+ (�t)2

2τ

[
D(uxx + uyy) + q1x + q2y − f1x − f2y

]
.

The corresponding difference equation is for i = 1, . . . , I − 1, j = 1, . . . , J − 1

un+1
i,j = un

i,j +
(

k2

4τh
− k

2h

)(
q1n+1

i+1,j − q1n+1
i−1,j + q2n+1

i,j+1 − q2n+1
i,j−1

)
+ k2

2τ

[
D

h2

(
un
i+1,j + un

i−1,j + un
i,j+1 + un

i,j−1 − 4un
i,j

)
− 1

2h

(
f 1i+1,j − f 1i−1,j + f 2i,j+1 − f 2i,j−1

)]
. (45)

On the boundaries, we use (32) and (33).
Thus, we have all information which is necessary to solve system (20)–(22)

numerically for t > 0. We checked numerically that, with the boundary conditions
defined above, the total population size is preserved with an accuracy of nine digits.

A.3. Numerical scheme for bacteria

The application of the numerical scheme to the model for bacteria (29)–(31) re-
quires some minor alterations. The equation for the chemo-attractant S is again
approximated using operator splitting. The equation for the flux is given by (39)
and (40), where now

f 1i,j =
αun

i,j

2h(1 + βSn+1
i,j )2

(
Sn+1
i+1,j − Sn+1

i−1,j

)
, (46)

f 2i,j =
αun

i,j

2h(1 + βSn+1
i,j )2

(
Sn+1
i,j+1 − Sn+1

i,j−1

)
, (47)

for i = 1, . . . , I − 1 and j = 1, . . . J − 1 with boundary conditions (43) and (44).
Due to the production term in the u-equation (29), the discretization for u has

to be computed anew. The Taylor series expansion of u(t + �t, x, y) reads:

u(t + �t, x, y) = u(t, x, y) +
(
(�t)2

2τ
− �t

) (
q1x + q2y

)+ �tρu
(

1 − u

c

)
+ (�t)2

2τ

(
D(uxx + uyy) − f1x − f2y

)
+ (�t)2

2
ρ

(
1 − 2u

c

)(
−q1x − q2y + ρu

(
1 − u

c

))
.
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Here we used ut = −q1x −q2y +ρu(1− u
c
) and utt = −q1xt −q2yt +ρut (1− 2u

c
).

The corresponding difference equation for i = 1, . . . , I − 1, j = 1, . . . , J − 1
reads

un+1
i,j = un

i,j +
(

k2

4τh
− k

2h

)(
q1n+1

i+1,j − q1n+1
i−1,j + q2n+1

i,j+1 − q2n+1
i,j−1

)
+ kρun

i,j

(
1 −

un
i,j

c

)
+ k2

2τ

[
D

h2 (u
n
i+1,j +un

i−1,j +un
i,j+1+un

i,j−1−4un
i,j )

− 1

2h

(
f 1i+1,j − f 1i−1,j + f 2i,j+1 − f 2i,j−1

)]
− k2ρ

2

(
1 −

2un
i,j

c

)(
1

2h

(
q1n+1

i+1,j − q1n+1
i−1,j + q2n+1

i,j+1 − q2n+1
i,j−1

)
− ρun

i,j

(
1 −

un
i,j

c

))
.

As before, we apply (32) and (33) on the boundary.
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