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1 Introduction to movement models

Many biological problems lend themselves well to mathematical models. Often we
use these models to predict the behaviour of a population. We can attempt to predict
only population size using ordinary differential equation models of the population
dynamics, or attempt to predict spatial characteristics of the population through the
use of partial differential equation models. In either case, certain simplifications are
necessary. A key question which must be addressed when dealing with population
models is how to obtain a model for the macroscopic behaviour of a population based
on information about individuals in the population.

1.1 Measurements

As a first example, we consider the case of randomly moving individuals, and dis-
cuss how we may use information about these individuals to derive a model for the
population. First, consider a random variable Xt which represents the location of an
individual at time t. We can then consider two statistical measures as illustrated in
Figure 1:

(A) Population measurements:

(A.1) Mean location: X̄t = E(Xt), and

(A.2) Mean quadratic variation: (
∑n

i=1(Xti − X̄t)
2)/(n− 1) = V (Xt)

These two measures represent characteristic values of the population based on
averages of movement of their individuals. We can also consider characteristics of
the individual particles themselves. We consider then:
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Figure 1: A: Schematic of individuals undergoing a random walk; the locations can be
used to estimate a mean location and a mean squared displacement. B: Measurement
of individual movement path for speed, turning rate and turning angle distribution
.

(B) Individual measurements:

(B.1) The mean speed, γ

(B.2) The mean turning rate, µ, and

(B.3) The distribution of newly chosen directions, T (v, v′), where v and v′ are the
new and previous velocities, respectively.

The final measure is often referred to as a kernel, and can be described as the
probability of turning into velocity v given previous velocity v′. For a homogeneous
environment, this will typically be a uniform distribution, but for directed environ-
ments, the distribution may not be uniform. For example, for a cancer cell moving
within a brain, it will be more likely to turn into alignment with the fibrous brain
structures then to travel orthogonally.

The aim of this manuscript is to develop mathematical models which are based
on the above observations. In particular, we are interested in the following questions:

(Q1): How to make a mathematical model for these types of measurements?
(Q2): How are these models related?

1.2 Random walk on a grid

To derive a first and simple model on the population level, we first consider a random
walker on a one dimensional grid [39, 29]. In this situation, consider an individual
starting at point 0, and having some probability 0 < q < 1 of moving to the right,
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Figure 2: A: Simple random walk with constant jump probabilities q and 1− q. B:
Random walk with variable jump probabilities T±i .

and some probability 1 − q of moving to the left. In this example, we assume that
there is 0 probability of the random walker staying put. We let δ be the spatial step
and τ be the time step. This situation is illustrated in Figure 2 (A).

We now consider Xn to be a random variable representing the position after n
discrete steps. We can then compute the expected value of X1 to be

E(X1) =
∑
y

xp(x = y) = δq + (−δ)(1− q) = δ(2q − 1), (1)

and thus we can recursively define E(Xn) to be

E(Xn) = δ(2q − 1) + E(xn−1) = nδ(2q − 1). (2)

We now notice that if q = 1
2

in equation 2, we have that E(Xn) = 0. This makes
sense, as we would expect to find no net displacement when the probabilities for
moving left and right are equal. If however q > 1

2
, then we have a higher probability

of moving to the right, thus we would expect the net movement to be to the right.
We see that in this case E(Xn) > 0, as expected. Conversely, when q < 1

2
, we have

E(Xn) < 0, and see net movement to the left.
We can also consider the variance of our random variable. This is computed using

the following formula:

V (X1) = E(X2
1 )− E(X1)2. (3)

We have E(X1) as computed in 1, so we easily have that E(X1)2 = δ2(2q − 1)2.
We next compute

E(X2
1 ) =

∑
y

x2p(x = y) = δ2q + (−δ)2(1− q) = δ2.
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Therefore,

V (X1) = δ2 − δ2(2q − 1)2 = 4δ2q(1− q),
and subsequently,

V (Xn) = 4nδ2q(1− q).
These measurements are for the discrete time situation, where an individual per-

forms n jumps, n ∈ N. How do these compare to the continuous time situation? If
we consider a time step to have length τ , then t = nτ and n = t

τ
. We then define a

mean velocity c and a diffusion constant D as:

c =
E(Xt)

t
=
δ

τ
(2q − 1), D =

1

2

V (Xt)

t
=

2δ2

τ
q(1− q).

1.3 A continuous random walk

To derive a mathematical description of the random walk from above, we introduce
p(x, t) as probability density for the location of the random walker. We begin with
a description of the discrete case discussed above. If we want to define an equation
for p(x, t+ τ), we are looking for the probability that an individual will be found at
x when the time= t + τ . We note that the only way for an individual to arrive at
position x at time t + τ , is to come from the grid point to the left, or to the right
from time t. We use the Master equation approach

p(x, t+ τ) = qp(x− δ, t) + (1− q)p(x+ δ, t), (4)

where q, 1 − q are the probabilities for a jump to the right/left, respectively. In
order to determine the continuous limit of this discrete equation, we will first take
the expansion in the second variable of the right side about t = τ , and the Taylor
expansion with respect to the first variable about x = δ, and x = −δ. We remove
the arguments (x, t), as all functions in this formula are evaluated at (x, t):

p+ τpt +
τ 2

2
ptt + . . . = q

(
p− δpx +

δ2

2
pxx − . . .

)
+(1− q)

(
p+ δpx +

δ2

2
pxx + . . .

)
.

Simplifying, we obtain

pt(x, t) =
δ

τ
(1− 2q)px(x, t) +

δ2

2τ
pxx(x, t) + . . . . (5)
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We see that the dominating terms in equation 5 are the standard advection-
diffusion equation with

c =
δ

τ
(1− 2q) and D =

δ2

2τ
.

At this stage we can study different possible limit scenarios for δ, τ → 0 and
q → 1/2. We can do this in a number of ways, and we present three choices below.
Of course, there are many more choices of these scalings, but most of them will not
lead to a useful limit equation. In other words, if δ, τ, q do not scale as indicated
below, then this method is not appropriate.

(a) δ
τ
→ α=constant. Then δ2

τ
= δ δ

τ
→ 0, which causes the diffusive term to vanish,

and we are left with a simple transport equation

pt = −cpx.

(b) δ2

τ
→ 2D =constant, then we can consider two cases:

(b.1) if q = 1
2
, then c = 0, and we obtain a pure diffusion equation

pt = Dpxx.

(b.2) If q → 1
2

in such a way that δ
τ
(1 − 2q) → −c, and δ2

2τ
= D

4q(1−q) → D,
then the scaling results in the advection-diffusion equation

pt = −cpx +Dpxx, (6)

where c and D are given by the measurements

c ≈ E(Xt)

t
, D ≈ 1

2

V (Xt)

t
.

Summary:

• When δ and τ scale in the same way, then we obtain a transport equation.
This case is called drift dominated.

• When δ2 ∼ τ , we have the diffusion dominated case.

• Only if q− 1
2
∼ τ we get both terms, an advection and a diffusion term (mixed

case).
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1.4 Outline of this manuscript

2 A brief introduction to chemotaxis

Usually, authors are encouraged to find an objective voice and to avoid any form of
excitement in a written text. Allow me, in this little introduction to chemotaxis, to
do the opposite:

The phenomenon of chemotaxis has fascinated scientists since its first systematic
investigation by biologists in the early 1900s. Chemotaxis describes tha active ori-
entation of individuals, such as cells or baceria, on gradients of a chemical signal,
which is produced by the cells themselves. In many examples, such as Dictyostelium
discoideum (DD) or Eschirichia coli, this process leads to macroscopic cell aggrega-
tions. It is a prototype of self organization, where the resulting pattern is more than
the sum of its parts. This is why so many people were excited about chemotaxis. Self
organization is at the very heart of human existence. Everyone who has children has
observed with fascination the wonder of embryonal development. The initial process
of two cells coming together in the right environment to start embryogenesis is clear
to most people, however, the development of two cells into a small little child is one
of the unsolved mysteries of our existence and it lets us shiver in respect for this
creation.

Chemotaxis offers a small glimpse into this process of self organization. It is
now clear that many processes in embryogenesis are indeed driven by chemotactic
responses. But also conceptually, chemotaxis offers a transition from an individual
scale of moving cells to a macroscopic scale of a piece of tissue or an organ. And
here comes the punch line for us mathematicians: Chemotaxis can be studied with
mathematical models! This is a big development that was initiated by Patlack and
by Keller and Segel. All of a sudden, mathematicians are no longer banned to the
second row to observe biological experiemts from a distance - now, they are able to
play a leading role in this field. How do patterns arise mathematically? Is blow-up
the right framework? How can models be changed, adapted or improved? How do
they relate to alternative models? etc.

Of course, the union of all mathematical chemotaxis papers since Keller and Segel
in 1972 is huge, and it is not our intention to mention all important contributions.
In fact, we will focus only at a few, selected, properties of chemotaxis. In particular
those which are relevant to the modelling with transport equations, which is the
topic of this manuscript. For further details we recommend the two review articles
by Horstmann [21] and by Hillen and Painter [18].

Let’s come back to a bit of history. Over the first twenty years on mathematical
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chemotaxis studies, in particular in the 1990s, it has been shown that petri-dish
experiments of chemotaxis of E. coli, S. typhimurium and also the slime molds DD
can indeed be described by chemotaxis models. As such they are a clear success story
of mathematical modelling. Hence scientists felt compelled to move back towards
the first and original question - development of human organs, tissue and embryos.
Many chemotaxis scientists have now advanced to study tissues and development.
Another aspect of these topics are abnormalities such as cancer. Also cancer involves
moving cells and chemotaxis and tumors share many characteristics with developing
organs. Hence mathematical modelling of cancer has benefitted from the chemotaxis
modelling as well. In this report, I will touch on many of these aspects which are
the focus of much current research.

The modelling of cell movement also followed the fast developments of more and
more advanced observation tools in biology. Confocal microscopy makes it possible
to follow the movement of individual cells. All of a sudden, a new type of data
becomes available. We are no longer measuring mean squared displacements, now
we measure individual speeds, directions and turning angles. This information shall
be used for chemotaxis as well, and it is here where transport equations enter the
picture. Transport equations are a natural tool to use information about individual
cell movement, and they can easily be adapted to model chemotaxis for example,
or cancer invasion as well. Hence the focus of this manuscript are transport models
and their applications. There is, of course, a close connection of transport models to
chemotaxis models, and we will discuss those relations as well. They are classically
known as parabolic limit, hyperbolic limit, or moment closure methods.

While transport equations for biological populations are the main focus here,
chemotaxis will serve as a recurring example, where relevant assumptions are tested,
and important results are illustrated. In the next few sections we first consider
Keller and Segels classical motivation of the chemotaxis model (Section 2.1. Then
we consider a random walk expressed by a master equation, that leads to chemotaxis
in Section ??. Two classical analysis methods will also be discussed, which is the
often ignored linearisation of chemotaxis models in Section 2.3, and a cool method
of Nanjundiah to study steady states in Section 2.4).

2.1 Random walk for chemotaxis

To describe the classical derivation of a chemotaxis model, as for example used by
Keller and Segel [24], we first consider Fick’s law of diffusion. The standard diffusion
equation

ut = D∆u,
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has, by Fick’s law, the population flux

Jdiff = −D∇u. (7)

Chemotaxis models can be based on the idea that chemical signals trigger a
chemotactic flux which is proportional to the population density. As the population
grows, so will the flux in response to the chemical signal. We can therefore describe
the chemotactic flux, or Jch to be β · u, where u is the population density, and β is
the associated rate, which will depend on the signal concentration v(x, t), and will
be directed in the direction of ∇v(x, t). This is because the particles prefer high
concentrations of v, hence the particle flux is in direction of the gradient of v.

β = χ(v)∇v,

where χ(v) is the chemotactic sensitivity. This means that as the cells become
more sensitive to the chemical signal present, β will increase and in turn, so will the
flux. Combining this chemotactic flux term with the diffusive flux in (7), we obtain
the formula for the total flux:

J = −D∇u+ χ(v)u∇v. (8)

This in turn gives us the diffusion based chemotactic model, given by the following
coupled PDE system:

ut = ∇ (D∇u− χ(v)u∇v)
vt = Dv∆v + f(v, u),

(9)

where Dv is the diffusion coefficient of the chemical signal and f(v, u) describes
the production or consumption of the signal. For example, we might have f(v, u) =
−αv + γu. This model is called the Patlak-Keller-Segel, or PKS model [18].

2.2 Derivation via master equation approach

It turns out that we can obtain the same PKS model (9) through derivation from
a random walk, as was done in the previous Section 1.3. For a chemotaxis model,
however, we cannot assume that the jump probabilities (q and 1 − q in the above
derivation) are constant in space. This is because for cells moving in response to a
chemical gradient, the jump probabilities will depend on the signal strength, which
will be spatially dependent. For an individual cell at position i, it will move to the
left with probability T−i and will move right with probability T+

i . The step size h is
considered to be constant in space. This situation is illustrated in Figure 2 (B).
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As before, we can derive an overall equation for the movement of individual cells.
This is based again on the idea that cells can only move into location i from locations
i−1 and i+ 1 with their respective probabilities, and move out of position i into the
adjacent locations, again with the appropriate probabilities. The difference now is
that the probabilities will be spatially dependent. The master equation then becomes

∂u(xi, t)

∂t
= T+

i−1ui−1 + T−i+1ui+1 − (T+
i + T−i )ui, (10)

where ui = u(xi, t) is the cell density at location i. We want to now describe the
jump probabilities as a function of the signal strength (v). As such, we will define
vi to be the signal strength at location xi. The jump probability will also depend
on the cell’s ability to sense the signal present, hence we next define τ(v) to be the
chemical mechanism to measure signal concentrations. For example in Section 2.2.1
we choose τ to be the number of bound surface receptors, which will depend on the
chemical concentration. We then define the jump probabilities using the function τ ,
as well as two parameters, α > 0 and β ≥ 0 as

T±i = α + β(τ(vi±1)− τ(vi)).

If we consider T+
i for example, we see that the jump probability increases as

compared to no signal, when τ(vi+1) is bigger than τ(vi). Plugging these transitional
probabilities T±i into equation (10), we obtain

∂ui
∂t

= α(ui−1 + ui+1 − 2ui)

+β[(τ(vi)− τ(vi−1))ui−1 + (τ(vi)− τ(vi+1))ui+1

−(τ(vi+1)− τ(vi) + τ(vi−1)− τ(vi))ui],

which simplifies to

∂ui
∂t

= α(ui−1 + ui+1 − 2ui)

+β((ui+1 + ui)(τ(vi)− τ(vi+1))− (ui + ui−1)(τ(vi−1)− τ(vi))). (11)

Intuitively, we expect that the jump probabilities should depend on the step size
h. For example, if h is reduced, we expect T±i to increase, as the cells have a higher
probability of jumping a short distance than a long one. As such, we can define a
new probabilities T̃±i where the implicit dependence on h is made explicit. We then
have T̃±i = 1

h2
T±i where k is an appropriate scaling constant. If we include this in

equation (11), we obtain
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∂ui
∂t

= α

(
ui−1 + ui+1 − 2ui

h2

)
− βFi+1 − Fi

h
, (12)

where we introduced

Fi = (ui + ui−1)
τ(vi)− τ(vi−1)

h
.

We now notice that equation (12) contains several approximations to derivatives. If
we then take the limit as h→ 0, we get the following:

∂u

∂t
= α

∂2u

∂x2
− β ∂

∂x

(
2u
∂τ(v)

∂x

)
= α

∂2u

∂x2
− ∂

∂x

(
2βu

∂τ

∂v

∂v

∂x

)
, (13)

which is equivalent to

∂u

∂t
= D

∂2u

∂x2
− ∂

∂x

(
χ(v)u

∂v

∂x

)
(14)

with D = α and χ(v) = 2β ∂τ
∂v
. We see that equation (14) is the same as the

first equation of (9) in one dimension. This shows that we can derive the chemotaxis
equation both from a flux argument, and also from considering the individual random
cell movements. We will encounter a third derivation when we study transport
equations later.

2.2.1 Example: receptor kinetics

We choose an important biological application as an example. In a typical situation,
the chemotactic signal will bind to external cell surface receptors. We use a mass
action approach to model both the receptors, and the signal to which they respond.
Let R denote the concentration of receptors on the cell surface which have not been
activated, V denotes the chemical signal, and Ra the concentration of receptors on
the cell surface which have been activated by the chemical signal.

The system, illustrated in Figure ?? is described by the chemical reaction

R + V 
k+

k− Ra,

with the receptors being activated at a rate of k+, and the activated receptors
becoming deactivated at a rate of k−. The system is illustrated in Figure ??.
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Figure 3: The system containing the cell surface receptors R, the activated receptors
Ra and the chemical signal V . Receptors become activated at a rate of k+ and
deactivated at a rate of k−.

Using mass action kinetics we obtain the following ODEs for the concentrations:

∂R

∂t
= k−Ra − k+RV,

∂V

∂t
= k−Ra − k+RV,

∂Ra

∂t
= k+RV − k−Ra.

The reaction is fast relative to cell movement, thus we consider the steady states
of the system. For example, for Ra, we obtain

Ra =
k+

k−
RV,

in steady state. We also assume that the total number of receptors on the cell
surface will remain constant, therefore R +Ra = N . Then R = N −Ra and

Ra =
k+

k−
(N −Ra)V,

which gives (
1 +

k+

k−
V

)
Ra =

k+

k−
NV,

and so

Ra =
k+

k−
NV

1 + k+

k−
V
. (15)
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We can simplify equation (15) by defining k := k−

k+
, giving

Ra =
NV

k + V
. (16)

Recall from above that τ(v) is the chemical mechanism to measure signal con-
centrations. We said that τ(v) could be defined by the number of bound surface
receptors, which will depend on the chemical concentration, hence τ(v) = Ra(v).
Then we have

τ ′(v) =
N(k + v)−Nv

(k + v)2
=

Nk

(k + v)2
,

and the chemotactic sensitivity in (9) becomes.

χ(v) =
C1

(k + v)2
, (17)

where C1 is a constant.

2.3 Linearization of the classic chemotaxis model

The classical chemotaxis model has been analysed with more and more advanced
methods, estimates and Lyapunov functions. A first step in this analysis is a lineari-
sation around the homogeneous steady state. The linearisation leads already to a
critical mass conditions, which plays an important role for blow-up results [21, 18].

We study the PKS model (9) for constant chemotacitc sensitivity χ and linear
terms in the signal equation. This model has been denoted as the minimal chemotaxis
model in [18].

ut = ∇(∇u− χu∇v),
εvt = Dv∆v + αu− βv. (18)

We note that we have now incorporated a factor of ε with the time derivative of v.
This coefficient comes from a rescaling of time. Since t corresponds to the time scale
of cell movement, we adjust the time scale for the movement of the chemical signal by
ε, implying that the chemical reactions are fast as compared to cell movement. We
introduce τ = t/ε rescaling gives the system above. The model uses homogeneous
Neumann, or zero flux boundary conditions ∇v = ∇u = 0 on the boundaries of a
smooth bounded domain Ω. We will use a linearization in 1-D to study stability of
a homogeneous steady state. This indicate either global existence of solutions or the
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onset of spike formation. We first make a couple of observations about the model.
Firstly, we see that it has spatially homogeneous equilibrium of (18 satisfies

αū = βv̄,

where α and β are constant, and ū and v̄ are the equilibrium distributions. We
also note that the first equation obeys conservation of mass:

M :=

∫
u(x, t)dt = C2,

where C2 is a constant. We thus have that the steady state distributions

ū =
M

|Ω|
and v̄ =

α

β
ū.

To linearize (18) in (ū, v̄) we rewrite the system as

ut = uxx − χuxvx − χuv + χuvxx, ,

εvt = Dvuxx + αu− βv.

We let U and V be small perturbations and set u = ū + U , and v = v̄ + V .
The derivatives are thus given by ux = Ux, uxx = Uxx, and vx = Vx, vxx = Vxx.
Substituting these, the system becomes

Ut = Uxx − χūVxx, , (19)

εVt = DvVxx + αU − βV. (20)

Recall that ū = M
|Ω| . Keeping this in mind and taking Fourier transforms with

dual variable ω, we convert the differentiation to multiplication and write this as a
linear system: (

Û

V̂

)
t

=

(
−ω2 χM

|Ω|ω
2

α
ε
−ω2Dv

ε
− β

ε

)(
U
V

)
.

We see that the trace of the coefficient matrix is

tr = −ω2

(
1 +

Dv

ε

)
− β

ε
< 0,
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and the determinant is

det = ω2

(
ω2Dv

ε
+
β

ε

)
− αχM

ε|Ω|
ω2 =

ω2

ε

(
ω2Dv + β − αχM

|Ω|

)
.

Since the trace is always < 0, we have either a saddle or a stable node. A
saddle occurs when we have the existence of an unstable eigenvalue, i.e. when the
determinant is negative. This condition is equivalent to

ω2Dv < −β +
αχM

|Ω|
, (21)

which gives the necessary condition for instability:

αχM

|Ω|
> β. (22)

Condition (22) gives a necessary condition for the existence of a saddle. Note
that this condition is independent of ε. If we wish to find a sufficient condition, we
must know the eigenvalues of the operator on the domain.

As an example, consider taking Ω = [0, `]. The eigenvalues of the Laplacian on
Ω with homogenous Neumann boundary conditions are

ωn =
nπ

`
, n = 0, 1, 2, . . . .

The condition given in (22) therefore becomes(nπ
`

)2

Dv < −β + α
χM

|Ω|
.

In order to have at least one nontrivial unstable mode (n = 1), we need

π2

`2
Dv < −β + α

χM

|Ω|
,

giving a sufficient condition for the formation of a saddle. If this condition is
satisfied, then there exists a positive eigenvalue for the eigenfunction cos(πx

`
). The

cosine grows with time and it might initiated the formation of a spike. A global
analysis needs to be carried out to characterize the full spike formation.
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2.4 Steady states

In this section we present a method from Nanjundiah [28] to study steady states for
the chemotaxis model. The steady state equations are:

0 = ∇(∇u− χu∇v),
0 = Dv∆v + αu− βv. (23)

In [28], they use a clever trick for analyzing the steady states. First we define
ψ = ue−χv. Note that ψ is strictly positive and only 0 if u = 0. Then

∇ψ = ∇ue−χv − χ∇vue−χv = (∇u− χ∇vu)e−χv.

Equation (??) then reads ∇(∇ψeχv) = 0, which can be written as

∇ψeχv +∇ψχ∇veχv = 0,

and therefore we have
∆ψ + χ∇ψ∇v = 0.

If for example our domain Ω ⊆ R2 and has a smooth boundary, then the Hopf-
maximum principle applies. This tells us that ψ(x) = const. = ψ which means that
u(x) = ψeχv(x). As a consequence, u and v have the same maxima and minima.
Moreover, it follows that

∇u− χu∇v = 0

on Ω. Now if we substitute u(x) into equation (??), we obtain

0 = Dv∇v + αψeχv − βv, (24)

which gives the governing equation for steady states.
In one spatial dimension, we can fully analyse the steady state equation (24):

Dvv
′′ + keχv − βv, k = αΨ.

Introducing w := v′ we can write the above equation as a first order system

v′ = w

w′ = − k
Dv
eχv + β

Dv
v

(25)

which is a 2-dimensional Hamiltonian system with Hamiltonian

H(v, w) = −w
2

2
+
βv2

2Dv

− k

χdv
eχv.
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Figure 4: Left: sketch of the left hand side and the right hand side of (26) as functions
of v. The question mark indicates the area where 0,1, or 2 intersections are possible.
Right: sketch of the bifurcation diagram as function of β.

The equilibria of this Hamiltonian system satisfy w = 0 and

keχv = βv. (26)

The left hand side and the right hand side are shown in Figure 4 (left) as functions
of v. We see that depending on the values of the parameters, there are 0, 1, or 2
solutions to equation (26). A bifurcation occurs when the curves from the left hand
side and from the right hand side of (26) touch. Hence the derivatives agree at a
certain point v∗ with:

kχeχv
∗

= β and keχv
∗

= βv∗.

This implies that
β = χβv∗

and hence

v∗ =
1

k
, and β∗ = kχe,

where β∗ is the critical value where this bifurcation occurs. If β > β∗ then we have
two solutions v1 < v̄ < v2 of (26) (see Figure 4, right). If β < β∗, then we have no
solution. This means that for β > β∗ we have two equilibria (v1, 0), (v2, 0) of the
Hamiltonian system (25). The Jacobian of (25) at a steady state (vi, 0) is

J(vi, 0) =

(
0 1

− kχ
Dv
eχvi + β

Dv
0

)
,

with

tr = 0 and det =
kχ

Dv

eχvi − β

Dv

.
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Figure 5: Phase portrait of the Hamiltonian system (25). The black lines indicate
typical steady states of the chemotaxis model.

Hence the sign of the determinant is given by the sign of kχeχvi − β. At the smaller
steady state v1 the slope of keχv is smaller than β, hence

kχeχv1 < β

and (v1, 0) is a saddle point. For v2 we find

kχeχv2 > β

and (v2, 0) is a center. The phase portrait of the Hamiltonian system (25) is shown
in Figure 5. Orbits rotate around the centre at (v2, 0) and the saddle at (v1, 0)
connects to a homoclinic orbit. If system (24) would be considered with homogeneous
Neumann boundary conditions on [0, L], for example, then

w(0) = w(L) = 0

and steady states are solutions which start on the v-axis and end on the v-axis after
exactly L units. As seen in Figure 5, these are solutions which have 1/2 rotation, or
one rotation or 3/2 rotations etc. Solutions which pass close to the saddle at (v1, 0)
are longer, while solutions near the centre (v2, 0) are shorter. We skip a full analysis
of this system, which can be found in classical texts on dynamical systems.
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3 Correlated random walk in one dimension

The one dimensional correlated random walk is an extension of the diffusion random
walks studied earlier, as it allows for correlation of movement from one time step to
the next; in particular correlation in velocity. These models are easy to understand
and they form a basis for the understanding of higher dimensional transport equa-
tions. In fact, many of the abstract methods which we introduce later for transport
equations, are simply illustrated in the one-dimensional context. However, the 1-D
model is not only a motivating example, it is a valid model for random walk on its
own and it has been applied to many interesting biological problems. See for example
the review article of Eftimie [6] on animal swarming models.

In the following sections we will introduce the model and various equivalent vari-
ations, we will discuss suitable boundary conditions, and we will write the model in
an abstract framework, which will become important later.

3.1 The Goldstein-Kac model in 1-D

Taylor [36] and Fuerth [8] developed the one dimensional correlated random walk
model in the same year. Goldstein [11] and Kac [23] formulated it as a partial
differential equation, and this is where we start. Let u±(x, t) denote the densities of
right/left moving particles. The Goldstein-Kac model for correlated random walk is

u+
t + γu+

x = −µ
2
u+ + µ

2
u−

u−t − γu−x = µ
2
u+ − µ

2
u+,

(27)

where γ denotes the (constant) particle speed and µ/2 > 0 is the rate of switching
directions from plus to minus or vice versa. We can also consider an equivalent
formulation as a one-dimensional transport equation

u+
t + γu+

x = −µu+ + µ
2
(u+ + u−)

u−t − γu−x = −µu− + µ
2
(u+ + u−),

(28)

where now µ > 0 is the rate of directional changes; new directions are chosen as plus
or minus with equal probability 1/2.

Another equivalent formulation arises if we look at the total population u =
u+ + u− and the population flux v = γ(u+ − u−):

ut + vx = 0
vt + γ2ux = −µv, (29)
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which is also known as Cattaneo system. This formulation will be more natural
for scientists with experience in continuum mechanics, as the first equation is a
conservation of mass equation, while the second equation can be seen as a momentum
equation, where the flux adapts to the negative population gradient with a time
factor or e−µt. See Joseph and Preziosi [22] for a detailed connection to continuum
mechanics and to media with memory. Here, we stay with the interpretation of
population models.

If we assume the solutions are twice continuously differentiable, we get yet another
closely related equation. Indeed, differentiating the first equation of (29) by t and
the second by x we get

utt + v+
xt = 0

vxt + γ2uxx = −µvx,
(30)

which can be rearranged into an equation for u alone:

1

µ
utt + ut =

γ2

µ
uxx, (31)

which is the telegraph equation. This equation can be derived for the electrical
potential along a transatlantic telegraph cable; a quite astonishing relation for our
original random walk model. In this equation we then clearly see the relation to a
diffusion equation. Just imagine that µ→∞ and we loose the second time derivative
term. At the same time we let γ →∞ such that

0 < lim
γ→∞,µ→∞

γ2

µ
=: D <∞.

Then D becomes the diffusion coefficient and the parabolic limit equation reads

ut = Duxx.

We see that the one-dimensional model for correlated random walk is in fact closely
related to transport in media with memory as well as to transatlantic cables. This
reinforces the universality of mathematical theories, and often unexpected relations
can be found.

3.2 Boundary conditions

It is an interesting exercise to find appropriate boundary conditions for these models.
Let us focus on the correlated random walk model (27). Since the model equations
are hyperbolic, we need to look at the characteristics. For the first equation, the
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characteristics are x(t) = x+γt and for the second equation it is x(t) = x−γt. Hence
the variable u+ needs boundary conditions on the left boundary, while no boundary
condition on the right boundary. In Figure ?? we indicate the characteristics with
arrows. Formally, we define the domain boundary of Ω = [0, l] × [0, t) as hyperbolic
boundary

∂Ω = ∂Ω+ ∪ ∂Ω−

with

∂Ω+ := {0} × [0, t) ∪ [0, l]× {0}, ∂Ω− := [0, l]× {0} ∪ {L} × [0, t).

Then u+ needs boundary conditions at ∂Ω+ and u− needs boundary conditions at
∂Ω−. Both quantities require initial conditions:

u+(x, 0) = u+
0 (x), u−(x, 0) = u−0 (x).

Homogeneous Dirichlet boundary conditions take the form

u+(0, t) = 0, u−(l, t) = 0,

while homogeneous Neumann boundary conditions are

u+(0, t) = u−(0, t), u−(l, t) = u+(l, t).

Periodic boundary conditions are as expected

u+(0, t) = u+(l, t), u−(l, t) = u−(0, t).

The corresponding initial-boundary value problems for the correlated random walk
as well as for the Cataneo equations and for the telegraph equation have been studied
in great detail in [15], including results on existence, uniqueness, and positivity. One
curious result is the fact that the Dirichlet problem regularizes, while the Neumann
and periodic problems do not regularize.

In the next section we apply the idea of a correlated random walk to chemotaxis.

3.3 Abstract formulation

The main part of this manuscript provides analysis of a generalization of the one-
dimensional correlated random walk to higher dimensions. We will construct an
abstract framework of function spaces and turning operators, and the one dimen-
sional model will arise a special case. To prepare this relation, we now formulate
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equation (27) as a differential equation in a Banach space. In fact, we use the (equiv-
alent) system (28) and introduce an integral operator T for the last term on the right
hand sides:

T : R2 → R;

(
u+

u−

)
7→ 1

2
(u+ + u−).

Here it does not look like an integral operator, but the higher dimensional version
will include an integration. In fact here the integration is over the discrete space
V = {+γ,−γ}. The operator norm of this linear operator can be easily computed
to be

‖T ‖1 =
1

2
.

It will be important later that this norm is less or equal 1. The whole right hand
side of the system (28) defines another operator, which we call the turning operator
L:

L : R2 → R2;

(
u+

u−

)
7→
(
−µu+ + T (u+, u−)
−µu− + T (u+, u−)

)
.

If we write L as a matrix

L =
µ

2

(
−1 1
1 −1

)
we obtain eigenvalues of λ1 = 0 and λ2 = −µ. The zero eigenvalue corresponds to the
fact that the total population size is conserved for equation (28). The corresponding
eigenspace is spanned by the vector (1, 1)T . Hence the kernel of L is given as

kerL = 〈
(

1
1

)
〉.

The abstract formulation appears a bit staged, but this will form the framework for
the multi dimensional situation.

3.4 Correlated random walk models for chemotaxis

We can also model chemotactic behaviour via a correlated random walk model. The
action of the chemical signal on the movement mechanics of cells is very different in
eukariotic cells versus amoeboid cells. In E. coli, for example, the chemical sensing
receptors are internally coupled to the rotation mechanisms of the flagella. If the
cell encounters an increasing signal concentration, it prolongs straight movement and
reduces reorientations. This in effect leads to oriented movement up a signal gradient
[32, 7]. In our context this corresponds to a change in turning rate µ depending on
the signal strength and its gradient. Amoeboid cells, however, are moving through
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tread milling of an internal actin-myosin filament mechanism. Amoeboid cells are
able to detect directions of increased chemical signal and they can actively choose
directions and adapt their speed. Hence in that case the turning rate as well as the
speed are affected by the signal v [3]. In one dimension, the corresponding hyperbolic
chemotaxis model reads

u+
t + (γ(v)u+)x = −µ+(v, vx)u

+ + µ−(v, vx)u
−

u−t − (γ(v)u−)x = µ+(v, vx)u
+ − µ−(v, vx)u

−

τvt = Dvxx + α(u+ + u−)− βv,
(32)

where u± are as before, the densities of right and left moving particles respectively.
The density of the chemical signal is given by v(x, t), and γ(v) and µ(v, vx) are the
density dependent speed and turning rate. Notice that here µ is used without a
factor of 1/2, so it is a turning rate (and not a rate of change of direction).

Like before we can use scaling arguments to compute a parabolic limit (see [20, 19]
for details).

ut = (A(v, vx)ux − χ(v, vx)uvx)x . (33)

It is interesting to see how the diffusivity A and the chemotactic sensitivity χ depend
on speed γ and turning rate µ. The diffusivity is

A(v, vx) =
γ2(v)

µ+(v, vx) + µ−(v, vx)
(34)

while the chemotactic flux is

χ(v, vx)vx = − γ(v)

µ+(v, vx) + µ−(v, vx)

(
γ′(v)vx + (µ+(v, vx)− µ−(v, vx))

)
. (35)

When χ > 0, we have positive taxis, which supports aggregation. Here we have
two effects which can cause chemotactic flow:

1. If γ = γ(v) and γ′(v) < 0, then particles slow down at high concentrations of
v which leads to aggregation at high concentrations of v. Or, alternatively,

2. If µ+ < µ− for vx > 0, then the turning rate is reduced when moving up the
gradient of v, which also leads to aggregation.

Specifically, we study two examples.
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Example 1 (and homework): Assume γ =const and

µ±(v, vx) =
γ

2A
(γ ∓ ϕ(v)vx)

+ .

1. Describe a biological situation for the above choice of µ and γ. Does this choice
correspond to the bacterial or amoeboid case? Explain.

2. Compute the diffusivity A and the chemotactic flux χvx.

Example 2: For the second example, we consider the case where τ = D = 0, and
γ(v) = v. We therefore have that

u+
t + (γ(v)u+)x = u+

t +
(
α
β
(u+ + u−)u+

)
x

= u+
t + α

β

(
u+2
)
x

+ α
β

(u+u−)x .
(36)

We see that the first two terms on the right hand side come from Burger’s equation.
The standard form of Burger’s equation,

ut + (u2)x = 0,

and it is well known that Burger’s equation has shock solutions [1]. Hence in this
case we might expect shock solutions for the chemotaxis model. In [19] we use the
method of viscosity solutions to further analyse the appearance of sharp gradients in
chemotaxis invasion waves.

4 Transport equations

Transport equations are a powerful tool to derive mesoscopic models for the spatial
spread of populations. They are particulallry useful if the movement velocity (=
speed · direction) of the individuals is of importance. The theory of kinetic transport
equations developed from the thermodynamics of diluted gases (see e.g. [2]) and has
since developed for biological populations as well. One major difference between
physical and biological applications is the number of conserved quantities. While in
ideal gas theory five quantities are conserved (mass, three momentum components,
energy), in biological populations, we often only conserve mass. Mathematically the
conserved quantities show up as linear independent functions in the kernel of a so
called turning operator. The kernel of the turning operator in gas theory is five
dimensional, while in our applications it is one dimensional. This is, in a nutshell,
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the main difference between physical and biological applications. The rest is details,
which we will present as fully as possible in this manuscript.

We need to distinguish two important cases. Case 1: the kernel of the turning
operator contains only constant functions and case 2: the kernel is spanned by a
function that depends on the velocity. Such a function is called Maxwellian in a
physical context. The first case allows for a quite general theory as was developed
in Othmer and Hillen in [16, 31], while the second case is more complicated. We use
the remainder of Sections ?? and Section ?? to study case 1,where we explain the
mathematical setup, derive the parabolic limit, and apply the method to chemotaxis.
Case 2 is covered in Sections ?? and ??, where we consider nonisotropic diffusion
models and applications to wolf movement and brain tumor spread.

4.1 The mathematical set-up

We begin by parameterizing a population density p(x, v, t) by space x, velocity v and
time t. This allows us to incorporate individual cell movement into the model, an
important feature which distinguishes transport models from macroscopic models.
As we are typically dealing with biological phenomena, we take t ≥ 0 and x ∈ Rn,
with n = 2, 3. The case of n = 1 corresponds to the one-dimensional correlated
random walk, which we studied in the previous sections. The velocities v are taken
from V , where V ⊂⊂ Rn and V = [s1, s2]×Sn−1 or V = sSn−1. The general transport
equation for a population density p(x, v, t) is thus

pt + v · ∇p = −µp+ µ

∫
V

T (v, v′)p(x, v′, t)dv′, (37)

where we omitted the arguments, except in the integral. The terms on the left hand
side describe the particles’ movement in space, while the terms on the right hand
side describe how the particles change direction. The parameter µ is the turning
rate, which describes how often the particles change direction. As such, 1

µ
describes

the mean run length, in other words, how long a particle travels on average in a
straight line before it changes direction. The distribution T (v, v′) inside the integral
is called the turning kernel, and describes the probability that a cell traveling in the
direction of v′ will turn into the direction of v. As such, the first term on the right
hand side describes cells turning out of velocity v, while the integral term describes
cells turning into velocity v from all other directions v′ ∈ V . Together, these two
terms are called the turning operator. Here we follow the theory as developed by
Stroock [35], Othmer et al. [30] and Hillen and Othmer [16, 31].

Given the compact set V of possible velocities, we work in the function space
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L2(V ) and we denote by K ⊂ L2(V ) the cone of non-negative functions. Given by
the right hand side of equation (37) we define an integral operator on L2(V ); T :
L2(V )→ L2(V ) as

T φ(v) =

∫
V

T (v, v′)φ(v′)dv′

with adjoint

T ∗φ(v′) =

∫
V

T (v′, v)φ(v)dv

The integral kernel T and the integral operator T set the stage for the theory.
In the context of biological applications, we make the following general assumptions.
We list the assumptions right here, while we will explain them in detail right after.

Basic Assumptions:

(T1) T (v, v′) ≥ 0,
∫
V
T (v, v′)dv = 1, and

∫
V

∫
V
T 2(v, v′)dv′dv <∞.

(T2) There is a function u0 ∈ K\{0}, a ρ > 0 and an N > 0 such that for all
(v, v′) ∈ V × V , either

(a) u0(v) ≤ TN(v′, v) ≤ ρu0(v), or

(b) u0(v) ≤ TN(v, v′) ≤ ρu0(v),

where the N -th iterate of T is

TN(v′, v) =

∫
V

. . .

∫
V

T (v′, w) . . . T (wN−1, v)dw1 . . . dwN−1.

(T3) ‖T ‖〈1〉⊥ < 1, where L2(V ) = 〈1〉 ⊕ 〈1〉⊥.

(T4)
∫
V
T (v, v′)dv′ = 1.

Assumption (T1): Assumption (T1) implies that T (·, v′) is a non-negative prob-
ability density on V . The fact that T ∈ L2(V × V ) implies that T and T ∗ are
Hilbert-Shmidt operators, defined as follows ([12]):

Definition 1. An integral operator T f(v) =
∫
T (v, v′)f(v′)dv′ with T ∈ L2(V × V )

is called a Hilbert-Schmidt operator.

Hilbert-Schmidt operators have some compactness properties:
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Theorem 1. ([12]) Hilbert-Schmidt operators are bounded and compact.

Also, (T1) implies that T and T ∗ are positive operators.

Assumption (T2) Assumption (T2a) ensures that T ∗ is u0-positive in the sense
of Krasnosleskii [25], while (T2b) ensures that T is u0-positive. One of these is
sufficient. Krasnoselskii defines u0-positivity as follows.

Definition 2. Let X be a Banach space, K the non-negative cone and L : X → X
linear. Then

(a) L is positive it L : K → K.

(b) Let L be positive. L is u0-bounded from below if there is a fixed u0 ∈ K\{0}
such that ∀φ ∈ K\{0} ∃N > 0, α > 0 with

αu0 ≤ LNφ.

(c) Let L be positive. L is u0-bounded from above if there is a fixed u0 ∈ K\{0}
such that ∀ψ ∈ K\{0} ∃N > 0, β > 0 with

LNψ ≤ βu0.

(d) L is u0-positive if conditions (b) and (c) are both satisfied.

(e) K is reproducing if for all φ ∈ X there exist φ+, φ− ∈ K such that φ = φ+−φ−.

Using this definition, we can prove the following Lemma:

Lemma 1. Assumption (T2a) implies that T ∗ is u0-positive, while (T2b) implies
that T is u0 positive.

Proof. Consider φ ∈ K. We compute the iterate

T ∗Nφ =

∫
V

T (v′, w1) · · ·T (wN1 , v)φ(v′)dw1 . . . dwN+1dv
′

=

∫
V

TN(v′, v)φ(v′)dv′

≥
∫
V

u0(v)φ(v′)dv′ = u0(v)

∫
V

φ(v′)dv′ = αu0(v).
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The last inequality is a direct consequence of (T2a). Similarly, we have

T ∗Nφ ≤
∫
V

ρu0(v)φ(v′)dv′ = ρ

∫
V

φ(v)dvu0(v) = βu0(v).

The second statement has a very similar proof.

Condition (T2) has an interesting biological meaning. It is not assumed that the
kernel T is positive. In fact, it is allowed for T to have support that is smaller than
V , but some iterate of T must cover V . For example if individuals are able to turn
for up to 60 degrees per turn, then they are able to reach any direction after 3 turns.
In that case T 3 would be u0 positive. See Figure ?? for an illustrative explanation.
Using (T2) we are more general than most of the publications on transport equations
in biology. It is almost always assumed that T > 0, but here we can relax that
assumption.

The u0 positivity is already sufficient to have a Krein-Rutman property:

Theorem 2. (Krasnoselskii, [25], Theorems 2.10, 2.11)
Let K be a reproducing non-negative cone in X. Let L be u0-positive. Let ϕ0 ∈ K be
an eigenfunction of L. Then

(i) Lϕ0 = λ0ϕ0 and λ0 is a simple, leading eigenvalue,

(ii) ϕ0 is unique in K up to scalar multiples, and

(iii) |λ0| > |λ| for all other eigenvalues λ.

In our case we have

T ∗1 =

∫
V

T (v′, v)1dv′ = 1

by (T1). Hence ϕ0 = 1 ∈ K is the leading non-negative eigenfunction of T ∗ with
eigenvalue λ0 = 1. All of the other eigenvalues are such that |λ| < 1. We also have

T 1 =

∫
V

T (v, v′)dv′ = 1

by (T4).This means that we also have that ϕ0 = 1 is the leading non-negative eigen-
function of T .

Assumption (T3): Note that in Krasnoselskii’s theorem above it is assumed that
there exists an eigenfunction in K. This is not always the case, and assumption (T3)
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ensures the existence of a spectral gap between the leading eigenvector ϕ0 = 1 and
the remainder of the spectrum. We will show later that if T is a normal operator
(or if T ∗ is normal), then (T2) implies (T3).

Assumption (T4): Condition (T4) looks as natural as the second condition in
(T1). It has, however a very different meaning. The meaning of (T4) is that the
eigenvalue equation ∫

V

T (v, v′)φ(v′)dv′ = λφ(v)

has a constant solution φ(v) = 1 with eigenvalue λ = 1. This is a very special
case that allows us to develop a full theory and to do the macroscopic scalings
done later in this chapter. If the leading eigenfunction ϕ0(v) is not constant the
methods will change slightly, and particular care must be given to the resulting non-
isotropic diffusion equations (see Section ??) . We will see that both cases are equally
important in terms of applications.

4.2 The Turning Operator

The turning operator describes the whole right hand side of (37) and is given by
L : L2(V )→ L2(V ):

Lp(v) = −µp(v) + µT p(v)

and its adjoint

L∗ = −µp(v) + µT ∗p(v).

We can now write down a result about the spectrum of the turning operator.

Lemma 2. Assume (T1)-(T4). Then 0 is a simple eigenvalue of L∗ and L with
leading eigenfunction ϕ0 = 1. All other eigenvalues λ satisfy −2µ <Reλ < 0. All
other eigenfunctions have zero mass.

Proof. Both T and T ∗ have a spectral radius of 1, which implies that µT has a
spectral radius of µ. We therefore have

−2µ < Reλ < 0.

If ϕ 6= ϕ0 is another eigenfunction, then ϕ ∈ 〈1〉⊥ which implies
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0 =

∫
V

ϕ(v)1dv =

∫
V

ϕ(v)dv.

Condition (T3) allows us to introduce another constant, called µ2, which will give
us information about the dissipativity of the turning operator. Consider ψ ∈ 〈1〉⊥
then

∫
V

ψLψdv = −µ
∫
V

ψ2dv + µ

∫
V

ψT ψdv

≤ −µ(1− ‖T ‖〈1〉⊥)

∫
V

ψ2dv

= −µ2‖ψ‖2
2

with µ2 = µ(1− ‖T ‖〈1〉⊥) and ‖T ‖〈1〉⊥ < 1.

4.3 Normal operators

In this section we discuss what it means for an operator to be normal, and explore
some of the consequences of this characteristic.

Definition 3. An operator A is defined to be normal if AA∗ = A∗A.

Theorem 3. If A is normal, then there exists a complete orthogonal set of eigen-
functions. A has a spectral representation A =

∑
λjPj where λj are the eigenvalues

and Pj the spectral projections.

If T is normal, then we can choose an orthonormal basis ϕn with ‖ϕn‖ = 1.

Lemma 3. If T is normal, then (T3) follows from (T1) and (T2).

31



D
RAFT

Proof. Consider the operator norm of T on 〈1〉⊥:

‖T ‖〈1〉⊥ = sup
φ∈〈1〉⊥
‖φ‖2=1

‖T φ‖2

= sup
φ
‖T

∞∑
n=1

αnφn‖2

= sup
φ
‖
∞∑
n=2

αnλnφn‖2

= sup
φ

(
∞∑
n=2

|αnλn|2
) 1

2

< sup
φ

(
∞∑
n=2

|αn|2
) 1

2

= ‖φ‖2 = 1.

In our case we need to check if T is normal:

T T ∗φ = T
(∫

V

T (v, v′)φ(v′)dv′
)

=

∫
V

∫
V

T (v, v′′)T (v′, v′′)φ(v′)dv′dv′′

T ∗T φ =

∫
V

∫
V

T (v′′, v)T (v′′, v′)φ(v′)dv′dv′′.

In order for our operator to be normal, we thus obtain the necessary symmetry
condition ∫

V

T (v, v′′)T (v′, v′′)dv′′ =

∫
V

T (v′′, v)T (v′′, v′)dv′′.

This is satisfied, for example, when T is a symmetric kernel of the form T (v, v′) =
T (v′, v),∀(v, v′) ∈ V 2.

4.4 Important Examples

We now consider two important examples, and investigate how the theory discussed
so far above applies.
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4.4.1 Example 1: Pearson walk

For the first example, we will choose our space of directions to be a sphere of constant
radius, i.e. V = sSn−1. This means that our particles can choose any direction, and
will travel with constant speed. We will choose the simplest turning kernel, which is
constant and normalized: T (v, v′) = 1

|V | .

We will now check (using X) if our four basic assumptions are satisfied for this
simple choice of V and T , which in turn allows us to apply any of the theory that
we develop later.

(T1) T ≥ 0 X,
∫
V
Tdv = 1 X,

∫
V

∫
V
T 2dvdv′ = 1 X, and so the conditions of

assumption (T1) are met.

(T2) Not only do we have that T ≥ 0, but we actually have the stronger condition
T > 0. This implies that T is u0-positive.

(T3)

T ∗φ =

∫
V

1

|V |
φ(v′)dv′ = T φ =

∫
V

1

|V |
φ(v)dv

We can thus conclude that T is self adjoint and henceforth it is normal. Then
by Lemma 3, we can conclude that (T3) is satisfied. X

(T4)
∫
V
Tdv′ = 1. X

The Pearson walk satisfies all assumptions (T1)-(T4), and it will form our pro-
totype for the theory and scaling developed later.

4.4.2 Example 2: movement on fibre networks

There are many examples which arise naturally in biology where the particles in
question, whether they be animals or cells, make their turning decisions based on
their environment. For example, glioma cells diffusing in the brain will use the
white matter tracts as highways for their movement [5, 10, 9, 38]. We also see this
phenomenon in ecology, where wolves will use paths that are cut in the forest for oil
exploration to hunt more efficiently [26, 27]. We thus consider in this example these
types of situations, where our turning kernel is is given by an underlying anisotropy
of the environment. We use unit vectors θ ∈ Sn−1 to describe the anisotropies of the
environment through a directional distribution q(x, θ) with∫

Sn−1

q(x, θ)dθ and q(x, θ) > 0.
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In the context of glioma growth, q(x, θ) denotes the distribution of nerve fibre di-
rections in each location x. In the example of wolf movement the function q would
provide information of preferred movement directions due to roads or seismic lines.
We discuss these two examples later in Section ?? and ??. We assume that indi-
viduals favour directions that are given by the environment, and, for simplicity, we
consider unit speed |v| = 1, V = Sn−1. Then T (v, v′, x) = q(x, v). The assumption
(T1)-(T4) relate to the v dependence only, hence in the following we ignore the x
dependence in q, noting, however, that q, in general, would depend on x.

(T1) q ≥ 0 X,
∫
V
T (v, v′)dv =

∫
V
q(v)dv = 1, Xand

∫
V

∫
V
q2(v)dvdv′ = |V | ·∫

V
q2(v)dv <∞, henceforth q ∈ L2(Sn−1). X

(T2) We first compute the iterates:

TN(v′, v) =

∫
V

· · ·
∫
V

T (v′, w1) · · ·T (wN−1v)dw1 · · · dwN−1

=

∫
V

· · ·
∫
V

q(v′)q(w1) · · · q(wN−1)dw1 · · · dwN−1

= q(v′)

Hence condition (T2a) becomes:

u0(v) ≤ q(v′) ≤ ρu0(v),

which is satisfied only if q > 0.

The condition (T2b) becomes:

u0(v) ≤ q(v) ≤ ρu0(v),

and so we have a weaker condition, only requiring that q to be u0 positive.

(T3) Is T normal? T would be normal if∫
V

q(v)q(v′)dv′′ =

∫
V

q(v′′)q(v′′)dv′′

which is equivalent to
|V |q(v)q(v′) = ‖q‖2

2

and we see that this is true if q =const., which brings us back to the Pearson
case. So in general, T (v, v′) = q(v) is not normal. Therefore we must do some
more work in order to verify (T3) and we compute ‖T ‖〈1〉⊥ directly
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‖T ‖〈1〉⊥ = sup
φ∈〈1〉⊥
‖φ‖=1

∣∣∣∣∣∣∣∣∫
V

q(v)φ(v′)dv′
∣∣∣∣∣∣∣∣

= sup

∣∣∣∣∣∣∣∣q(v)

∫
V

φ(v′)dv′
∣∣∣∣∣∣∣∣

= 0.

Hence on 〈1〉⊥ the operator T is the zero operator. Which satisfies assumption
(T3), but it also shows that the splitting of L2(V ) = 〈1〉 ⊕ 〈1〉⊥ is not a good
choice here. Indeed, we will later see that we should choose L2(V ) = 〈q〉⊕〈q〉⊥.

(T4) Finally, we check condition (T4).∫
V

T (v, v′)dv′ = q(v)|V | = 1,

which is only true for q(v) =const.

So for this example, if T (v, v′) = q(v) is not constant, then it fails (T4) and
possibly (T3).

4.4.3 Example 3 (homeork) Symmetric kernels

Check if symmetric kernels of the form a), b) or c) satisfy the assumptions (T1)-(T4):

a) T (v, v′) = t(|v − v′|)
b) T (v, v′) = t(v − v′)
c) T (v, v′) = t(v′)

4.5 Main Spectral Result

In this section, we summarize the results thus far into one main theorem and provide
a proof of the missing pieces.

Theorem 4. [16] Assume (T1)-(T4). Then

1) 0 is a simple leading eigenvalue of L with unique eigenfunction ϕ0 = 1,

2) All other eigenvalues λ are such that −2µ < Reλ ≤ −µ2 < 0 and all other
eigenfunctions have zero mass.
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3) L2(V ) = 〈1〉 ⊕ 〈1〉⊥ and for all ψ ∈ 〈1〉⊥:∫
V

ψLψdv ≤ −µ2‖ψ‖2
2, where µ2 = µ

(
1− ‖T ‖〈1〉⊥

)
,

4) The ‖L‖ has a lower and upper estimate

µ2 ≤ ‖L‖L(L2(V ),L2(V )) ≤ 2µ,

5) L〈1〉⊥ has a linear inverse F (pseudo-inverse) with

1

2µ
≤ ‖F‖〈1〉⊥ ≤

1

µ2

.

Proof. We have already verified parts 1)–3) earlier in this section, thus we now prove
4) and 5). To verify 4):

‖L‖L(L2(V ),L2(V )) = sup
φ∈L2(V )
‖φ‖=1

‖Lφ‖2

≤ sup
φ=α+φ⊥

‖Lα‖2︸ ︷︷ ︸
=0

+‖Lφ⊥‖2


= sup

φ⊥∈〈1〉⊥
‖Lφ⊥‖2

= sup
φ⊥∈〈1〉⊥

‖ − µφ⊥ + µT φ⊥‖2

≤ sup
φ∈〈1〉⊥

µ‖φ⊥‖2 + µ‖T φ⊥‖2

≤ sup
φ⊥∈〈1〉⊥

2µ‖φ⊥‖2

and ∀φ ∈ 〈1〉⊥, ‖φ‖2 = 1 we have

µ2‖φ‖2
2 ≤ −

∫
φLφdv ≤

Hölder
‖φ‖2 · ‖Lφ‖2 ≤ ‖L‖L(L2(V ),L2(V )),

which implies µ2 ≤ ‖L‖ ≤ 2µ.

Part 5) follows directly from F =
(
L|〈1〉⊥

)−1
. For example, if Fφ = z and

φ, z ∈ 〈1〉⊥, then Lz = φ and
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‖φ‖ = ‖Lz‖

⇒ µ2‖z‖ ≤ ‖φ‖ ≤ 2µ‖z‖

⇒ 1

2µ
‖φ‖ ≤ ‖z‖ ≤ 1

µ2

‖φ‖

⇒ 1

2µ
‖φ‖ ≤ ‖Fφ‖ ≤ 1

µ2

‖φ‖

4.6 Existence and uniqueness

Since the transport equation as formulated in (37) is linear, we immediately get
existence and uniqueness of solutions as follows. We denote the shift operator A :=
−(v · ∇) with domain of definition

D(A) = {φ ∈ L2(Rn × V ) : φ(., v) ∈ H1(Rn)}.
The shift operator is skew-adjoint and, according to Stones theorem ([4, 34]) it
generates a strongly continuous unitary group on L2(Rn × V ). The right hand side
of (37) is given by the bounded operator L, hence it is a bounded perturbation of the
shift group. Consequently, also (37) generates a strongly continuous solution group
on L2(Rn × V ). Moreover. given initial conditions u0 ∈ D(A), then a unique global
solution exists in

C1([0,∞), L2(Rn × V )) ∩ C([0,∞), D(A)).

5 The formal diffusion limit

The computation of the diffusion limit, as presented here, is one of the standard
methods for the analysis of transport equations. The equation type of a transport
equation is hyperbolic, as it is based on pieces of balistic motion, interspersed with
directional changes. As the frequency of these changes becomes large, and the speed
is large, then the movement looks, on a macroscopic scale like diffusion (see Figure
??). Mathematically, this macroscopic limit can be obtained via a formal asymptotic
expansion with a small parameter ε. This parameter ε related the microscopic spatial
scale to a macroscopic spatial scale. We will see that the above assumptions (T1)-
(T4) allow us to obtain a well defined and uniformly parabolic limit equation, where
the diffusivity is given by the turning kernel T . Before we present the scaling method
in Section 5.2, we discuss realistic scaling arguments for E. coli bacteria.
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5.1 Scalings

INSERT FIGURE HERE

We now consider E. coli bacteria as an example of different time and spatial
scales.
Turning: E. coli turn about once per second. Hence the turning rate µ satisfies
1
µ
∼ 1

s
. From the point of view of the cell, we call this the time-1 timescale of

τturn = O(1),
Drift: If observed over 50-100 turns, the trajectories appear directed, and a net
displacement can easily be measured. We call this the intermediate drift time scale
τdrift ∼ O

(
1
ε

)
, and ε ∼ 10−2.

Diffusion: If we allow for 2500-10000 turns, then the trajectories look like diffusion
and random movement. Hence we introduce a third time scale of τdiff ∼ O

(
1
ε2

)
.

A common first step in biological problems is to perform a nondimensionalization.
This serves to remove dimension from the problem, thus simplifying the model. In
many situations, this will also reduce the number of parameters which we are dealing
with, and it often allows us to identify large and small parameter combinations. In
the case of transport equations, as introduced in the previous section, we introduce

ṽ = v
s
: where s is the characteristic speed. In case of E. coli it is about 10-20 µm

s
,

x̃ = x
L

: where L is the characteristic length scale. For E. coli bacterial colonies are
of the order of 1mm-1cm, and

t̃ = t
σ
: where σ is the macroscopic time scale of observation. In the bacterial case

it is about 1-10h.

If we apply these scalings, then the transport equation becomes

1

σ

∂p

∂t̃
+
s

L
ṽ · ∇x̃p = −µp+ µ

∫
V

Tpdv′.

Using the values which we identified for E. coli, we find

σ ≈ 1− 10 hours = 3600− 36000 seconds ∼ 104s,

and
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s

L
≈

10µm
s

10−3m
=

10 · 10−6 m
s

10−3m
= 10−2 1

s
.

When ε = 10−2, we then have 1
σ
∼ ε2 and s

L
∼ ε. If we remove the ∼, then we

obtain the resulting scaled transport equation:

ε2pt + εv · ∇p = Lp. (38)

5.2 The formal diffusion limit

To compute the formal diffusion limit, we will begin by studying a regular perturba-
tion, or Hilbert expansion of p with respect to ε. This gives us

p(x, v, t) = p0(x, v, t) + εp1(x, v, t) + ε2p2(x, v, t) + h.o.t. (39)

We will begin by substituting this expansion into equation into 38 and match
orders of ε.
Order ε0:

Lp0 = 0,

which implies that p0 is in the kernel of L, hence

p0(t, x, v) = p̄(x, t),

which is independent of v.

Order ε1:
v · ∇p0 = Lp1. (40)

This equation can be solved for p1 if v · ∇p0 ∈ 〈1〉⊥, so we need to check if this
solvability condition is satisfied. Computing the following inner product of v · ∇p0

and 1 we find:

∫
V

v · ∇p01dv = ∇


∫
V

vdv︸ ︷︷ ︸
=0 due to

symmetry of V

p̄

 = 0.

Hence equation (40) can be solved as p1 = F(v · ∇p0) = F(v · ∇p̄0),
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Order ε2:
p0t + v · ∇p1 = Lp2. (41)

Which is a bit more complicated to solve than the first two cases. Here we have
two options for how to proceed; a) integrate, or b) use the solvability condition. In
the case studied here, a) and b) are equivalent, however, in other cases we would
integrate.

If we integrate equation (41), we obtain∫
V

p0t + v · ∇p1dv = 0,

since the right hand side integrates to 0. Plugging in the results from the order
0 and order 1 matching, this becomes∫

V

p̄t(x, t)dv +

∫
V

v · ∇F(v · ∇p̄(x, t))dv = 0.

Since p̄t does not depend on v, we can simplify the first term. Also, since ∇
is a spatial derivative, and the integral is over the velocity space, we can take the
derivative out of the integral in the second term. This equation thus becomes

|V |p̄t(x, t) +∇ ·
∫
V

vFvdv · ∇p̄(x, t).

We can simplify this to

p̄t = ∇ ·D∇p̄ (42)

where the diffusion tensor D is defined to be

D = − 1

|V |

∫
V

vFv⊥dv = − 1

|V |

∫
V

v ⊗Fvdv.

Where we use two equivalent forms to denot an exterior product. We can write this
in index notation as well

∇ ·D∇ =
n∑

i,j=1

∂iD
ij∂j, with Dij =

1

|V |

∫
V

viFvjdv.
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5.2.1 Example: Pearson Walk

We can once again consider the Pearson walk as an example. Recall from before that
for this example we choose V = sSn−1 and T (v, v′) = 1

|V | . We first must compute

the inverse function F . Given φ ∈ 〈1〉⊥, we wish to find z ∈ 〈1〉⊥ such that Lz = φ.
We will find it useful to use the fact that

z ∈ 〈1〉⊥ ⇒
∫
V

z(v)dv = 0.

Now if we apply the operator L, we have that Lz = φ is equivalent with

−µz(v) + µ

∫
V

1

|V |
z(v′)dv′︸ ︷︷ ︸

=0

= φ(v),

and so z(v) = − 1
µ
φ(v). Hence

F = − 1

µ
as multiplication operator.

Then for this example, we find that the diffusion tensor is

D =
1

µ|V |

∫
V

vvTdv.

In order to have an explicit form for D, we must then compute∫
V

vvTdv, with V = sSn−1.

For example, in 2-dimensions: V = sS1, and v = s
(

cosφ
sinφ

)
. We can then explicitly

compute

vvT = s2

(
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

)
,

and so

D =
s2

|V |

∫ 2π

0

(
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

)
sdφ.

We can then solve by integrating component wise. If we consider this tensor in 3
dimensions, then we have double integrals of trigonometric functions to solve. This
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is still possible, but tedious. But then in higher dimensions the integral becomes
more and more cumbersome. In the proof of the next Lemma we propose a clever
use of the divergence theorem to compute the above integral in any dimension. As
shown by Hillen in [13], this method can be generalized to higher dimensions and
higher velocity moments.

Lemma 4. Let V = sSn−1, ω0 = |Sn−1|, then |V | = sn−1ω0 and∫
V

vvTdv =
ω0s

n+1

n
I,

where I is the n-dimensional identity matrix.

Proof. Since

∫
V

vvTdv is a tensor, we use two test vectors a, b ∈ Rn and use tensor

notation, i.e. summation over repeated indices

aibi =
n∑
i=1

aibi

then

aT
∫
V

vvTdv b =

∫
V

aivivjbjdv

= s

∫
V

vi
|v|

(aivjbj)dv

=︸︷︷︸
divergence
theorem

s

∫
Bs(0)

divvi(aivjbj)dv

= s

∫
Bs(0)

aibidv

= s|Bs(0)|aibi

We can compute |Bs(0)| as follows

|Bs(0)| = sn|B1(0)| = sn
∫
B1(0)

dv =
sn

n

∫
B1(0)

divvvdv

and if we apply the divergence theorem again this becomes
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sn

n

∫
Sn−1

σ · σdσ =
sn

n
|Sn−1| = sn

n
ω0.

Then

aT

∫
V

vvTdv b = aT
sn

n
|Sn−1|b =

sn+1

n
ω0a

Tb

for all vectors a, b ∈ Rn. Hence∫
V

vvTdv =
ω0s

n+1

n
I.

Remarks:

1. For general symmetric V , there exists κ > 0 such that

∫
V

vvTdv = κI.

2. In [13] explicit formulas for all higher velocity moments
∫
V
vivj · · · vkdv were

computed explicitly for any order.

Now returning to our discussion of the Pearson walk example. We can explicitly
compute the diffusion tensor using the above discussion, i.e.

D =
1

µ|V |

∫
V

vvTdv =
1

µ|V |
ω0s

n+1

n
I,

and since |V | = sn−1ω0, this simplifies to

D =
s2

µn
I.

This diffusion tensor corresponds to isotropic diffusion, and so the use of the
tensor is not necessary, and we can simply use a diffusion coefficient. This gives the
isotropic diffusion equation

p̄t =
s2

µn
∇p̄.
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5.3 Structure of the diffusion tensor

The above limit construction leads to a diffusion-like equation (42) and the first
question is the question under which condition is the operator ∇ · D∇ uniformly
parabolic. We will see that here the condition (T3) and the corresponding constant
µ2 are important.

Lemma 5. Assume (T1)-(T4). The diffusion tensor D is uniformly elliptic, i.e.

∃κ > 0 such that ϕ ·Dϕ ≥ κ|ϕ|2.

Proof. Let ϕ ∈ Rn and compute

ϕ ·Dϕ = − 1

|V |

∫
V

(ϕ · v)F(ϕ · v)dv.

Since ϕ · v ∈ 〈1〉⊥, we can apply F i.e. there exists z = F(ϕ · v) and Lz = ϕ · v.
Then

ϕ ·Dϕ = − 1

|V |

∫
V

Lz(v)z(v)dv

≥ µ2

|V |
‖z(v)‖2

2 from our spectral result

=
µ2

|V |

∫
V

∣∣∣∣F ( ϕ

|ϕ|
· v
)∣∣∣∣2 dv|ϕ|2

≥ c0
µ2

|v|
|ϕ|2

with

c0 = min
|ϕ|=1

∫
V

|F(ϕ · v)|2dv > 0.

Note that indeed c0 > 0 since ‖F‖〈1〉⊥ > 1
2µ

. Furthermore, the integral
∫
V
|F(ϕ·v)|2dv

does not depend on the choice of ϕ, since V is symmetric.

Theorem 5. Assume (T1)-(T4). The differential operator ∇ · D∇ generates an
analytic semigroup on L2(Rn). For p(0, ., v) ∈ L2(Rn) and p̄0(x) =

∫
p(0, x, v)dv

there exists a unique global solution p̄(x, t) of

p̄t = ∇ ·D∇p̄
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with the following properties:

(i) p̄ ∈ C([0,∞), L2(Rn))

(ii)
∂p̄

∂t
∈ C∞((0,∞)× Rn)

(iii) ‖p̄(., t)‖∞is a decreasing function of t.

Corollary 1. (Regularity, [37]) For each m ∈ N and each 0 < ϑ <∞ there exists a
constant C0 = C0(m,ϑ, ‖p̄0(., t)‖2)such that

‖p̄‖Cm((ϑ,∞)×Rn) ≤ C0.

5.4 Graphical Representations of the Diffusion Tensor

There are two intuitive ways to graphically represent a diffusion tensor: ellipsoids
and peanuts. Let D denote a three dimensional diffusion tensor.

1. The fundamental solution of the diffusion equation in Rn is the multidimen-
sional Gaussian distribution, of the form

G(x, x̃) = C exp
(
−(x− x̃)TD−1(x− x̃)

)
.

with an appropriate normalization constant C. This function describes the
probability density of finding a random walker at a distance w = x − x̃ from
a starting point x̃. Hence the level sets of wTD−1w describe locations of equal
probability, which is the diffusion ellipsoid:

Ec := {w ∈ Rn : wTD−1w = c}

The value of the constant is not important, and it is often chosen to be c = 1.

2. The function from Sn−1 → R defined as θ 7→ θTDθ gives the apparent diffu-
sion coefficient in direction θ, and also the mean squared displacement in that
directionand it is called the peanut.

These objects are, in fact not the same. While the probability level sets are ellipsoids,
the apparent diffusion coefficient is typically peanut shaped, as can be seen for our
examples in Figure 6.
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We chose examples of diffusion tensors in diagonal form. If they are not in
diagonal form, then the ellipsoids or peanuts are rotated relative to the coordinate
axis. The diffusion ellipsoid for a diagonal diffusion matrix D = diag(λ1, λ2, λ3) is

E1 =

{
w ∈ Rn :

(
w1√
λ1

)2

+

(
w2√
λ2

)2

+

(
w3√
λ3

)2

= 1

}
,

which is clearly an ellipsoid. The peanut in this case is the map

θ 7→ λ1θ
2
1 + λ2θ

2
2 + λ3θ

2
3.

In Figure 6 we consider

D1 :=

 5 0 0
0 3 0
0 0 1

 , D2 =

 8 0 0
0 1 0
0 0 0.2

 .

Having peanuts and ellipsoids, there is a nice way to visualize the condition of
ellipticity of D.

Definition 4. D is uniformly elliptic, if there exists a constant κ > 0 such that

θT ·Dθ > κ|θ|2, (43)

for all vectors θ ∈ Rn.

Lemma 6. 1. The diffusion tensor D is uniformly elliptic, iff the peanut of D
contains a ball.

2. The diffusion tensor D is uniformly elliptic, iff the ellipsoid of D contains a
ball.

Proof. Let us consider the peanut case first. The map θ → κ|θ|2 can be written as
θ → κθT Iθ with the identity matrix I. Hence it is also a peanut. A very special
peanut, in fact, since it is a ball of radius κ. Then condition (43) says that the
peanut of D contains the peanut of κI.

Related to the diffusion ellipsoid, we need to work a little more.

”=⇒” Assume D is uniformly elliptic, and consider v with vTD−1v = 1. Without
restriction, we can study the level set of level 1. We claim:
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Figure 6: Left: Diffusion ellipsoid. Right: The corresponding peanut for the apparent
diffusion in direction θ. Top row: example D1, bottom row, example D2.
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Claim 1: |v| >
√
κ.

To prove Claim 1. we need to show two more statements:

Claim 2: inf |φ|=1 ‖Dφ‖ ≥ κ.
Assume Claim 2 is not true. Then there exists φ0 with |φ0| = 1 such that
‖Dφ0‖ < κ. However,

κ = κ|φ0|2 ≤ φ0Dφ0 ≤ |φ0|‖Dφ0‖ < κ,

which is a contradiction. Hence Claim 2 is true.

Claim 3: ‖D−1‖op ≤ 1
κ
.

Claim 2 implies that κ‖φ‖ ≤ ‖Dφ‖, for all φ ∈ Rn. Let z := Dφ, such that
φ = D−1z. Then

κ‖D−1z‖ ≤ ‖z‖ =⇒ ‖D−1z‖
|z|

≤ 1

κ
.

Hence Claim 3 is true.

Finally, to prove Claim 1 we estimate:

1 = vTD−1v ≤ ‖D−1‖op‖v‖2 ≤ 1

κ
|v|2

Hence |v| ≥
√
κ and the ellipsoid E1 contains a ball of radius

√
κ.

”⇐=” If the ellipsoid contains a ball of radius r, then it is non degenerate and it
has n main axis ei, with lengths αi, i = 1, . . . , n. These can be arranged such
that 0 < r ≤ α1 ≤ α2 ≤ · · · ≤ αn. The main axis vectors are eigenvectors or
generalized eigenvectors of D−1 with eigenvalues α2

i , i = 1, . . . , n. Then D has
the same eigenvectors and generalized eigenvectors with eigenvalues λi = α−2

i ,
i = 1, . . . , n. Then θTDθ ≥ κ|θ|2 for

κ := min

{
1

α2
i

, ı = 1, . . . , n

}
=

1

α2
n

.

We show an illustration for the case of example D1 in Figure 7.
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a ball of radius 1.

5.5 Anisotropic vs. Isotropic Diffusion

Now depending on the form of the diffusion tensor D, we can obtain either anisotropic
or isotropic diffusion. We call diffusion isotropic if D = αI for some α > 0; otherwise
diffusion is called anisotropic. For isotropic diffusion the rate of spread is equivalent
in all directions. The resulting distributions are spherical in nature. Anisotropic
diffusion, however, occurs when the rate of diffusion varies in different directions.
This can arise from many biological problems where animals have certain preferred
directions of motion. The rates of spread in these directions are effectively higher,
and the resulting distributions are ellipsoidal in nature, aligned with the dominant
direction of spread.

In this section we will derive criteria on the turning kernel T and on the turning
operator L which ensure that the corresponding parabolic limit is isotropic. For this
we introduce the expected velocity

v̄(v) :=

∫
V

T (v, v′)v′dv′ (44)

For the Pearson walk, with V = sSn−1, and T (v, v′) = 1
|V |we find an expected

velocity of

v̄(v) =

∫
V

1

|V |
v′dv′ = 0.
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More generally, if T has the form T (v), then v̄(v) = 0 as well.
Also, if we integrate the expected velocity, then we get zero by condition (T1):∫

V

v̄(v)dv =

∫
V

∫
V

T (v, v′)v′dv′dv = 0.

To decide if the diffusion limit is isotropic or anisotropic we compare three state-
ments:

(St1) There exists an orthonormal basis {e1, . . . , en} ⊂ Rn such that the coordi-
nate mappings φi : V → R, φi(v) = vi are eigenfunctions of L with common
eigenvalue λ ∈ (−2µ, 0), for all i = 1, . . . , n.

(St2) The expected velocity satisfies

v̄(v)‖ v and γ :=
v̄(v) · v
v2

is the adjoint persistence with γ ∈ (−1, 1).

(St3) There exists a diffusion coefficient d > 0 such that D = dI (isotropic).

Theorem 6. Assume (T1)-(T4) and that V is symmetric w.r.t. SO(n). Then we
have the inclusions

(St1) ⇔ (St2) ⇒ (St3).

The constants λ, γ, d are related as

γ =
λ+ µ

µ
, d = − KV

|V |λ
=

KV

|V |µ(1− γ)
,

where KV is given by ∫
vvTdv = KV I.

Moreover, if there is a matrix M such that v̄(v) = Mv for all v ∈ V then all three
statements are equivalent.

Proof. (St1) ⇔ (St2):

(St1) ⇔ Lvi = λvi, ∀i
⇔ −µvi + µ(v̄(v))i = λvi

⇔ (v̄(v))i = γvi, γ =
λ+ µ

µ

⇔ (St2)
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(St1)⇒ (St3): The coordinate mappings φi are eigenfunctions of L and φi ∈ 〈1〉⊥.
Hence φi are also eigenfunctions for F with eigenvalue λ−1 for each i = 1, . . . , n. Then

ekDej = − 1

|V |

∫
V

vkFvjdv

= − 1

|V |
1

λ

∫
V

vkvjdv

= − KV

|V |λ
δkj

(St3) ⇒ (St1) see Hillen and Othmer [16]

5.5.1 Examples

Example 1, Pearson walk: As seen earlier, for the Pearson walk we have v̄(v) = 0
and consequently also γ = 0. Still, statement (St2) is true and we find isotropic
diffusion with diffusion coefficient

d =
KV

|V |µ
=

s2

nµ
.

Example 2, Symmetric T . Now we again assume V = sSn−1 but now T is
symmetric of the form T (v, v′) = t(|v − v′|). The expected velocity

v̄(v) =

∫
V

T (v, v′)v′dv′ =

∫
V

t(|v − v′|)v′dv′,

which is not entirely trivial to compute. To do this, we consider a given v ∈ V .
Since V = sSn−1 is a ball of radiaus s, the level sets

Γa := {v′ ∈ V : |v − v′| = a}
are circles on Sn−1 surrounding v, for a ∈ (−1, 1). Then on Γa we have t(|v − v′|) =
t(a). Then we can split our integral

∫
V

t(|v − v′|)v′dv′ =

∫ 1

−1

∫
Γa

t(|v − v′|)v′dv′da

=

∫ 1

−1

t(a)

∫
Γa

v′dv′

=

∫ 1

−1

t(a)c1 v

= c2 v
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where we use the fact that the symmetric integral
∫

Γa
v′dv′ is in direction v and c1, c2

are appropriate constants (note c1 can be negative). Hence v̄(v) is parallel to v, and
statement (St2) holds. Hence the diffusion limit is isotropic.

Example 3, nonisotropic. For this example, we will consider a constant kernel
T , perturbed by a second order correction term

T (v, v′) =
1

|V |
+ vTMv, with M∈ Rn×n and V = sSn−1.

Then we have

D =
s2

nµ

(
I +
|V |s2

n
M
(
I− |V |s

2

n
M
)−1

)
,

which is non- isotropic (see details in [16]).

Example 4, chemotaxis
For our last example, we will define T to be

T (v, v′) =
1

|V |
+ εQ(v, v′, s)∇S

which, as we will derive in the next section, gives a chemotaxis model with

D =
s2

nµ
and χ(s) =

1

|V |

∫
V

∫
V

vQ(v, v′, s)dv′ds.

For many more examples, see [31].

5.6 Chemotaxis

In the case of chemotaxis,tThe turning rate and the turning kernel might depend on
the signal S(x, t). We study these as perturbations ( see [31]). Note that we cannot
use v for the signal concentration, since it is used for the velocities. Hence here we
use S.

T (v, v′, S(·)) = T0(v, v′) + εkT1(v, v′, S(·)),

µ(v, S(·)) = µ0 + ε`µ1(v, S(·)),
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and study the four pairwise combinations when k, ` = 0, 1. We assume that T0

satisfies (T1)-(T4), and that for T1 we have

T1 ∈ L2,

∫
V

T1(v, v′, S(·))dv = 0,

|T1(v, v′, S)| ≤ T0(v, v′, S).

Consider then the example generated when

T (v, v′, S(·)) = T0(v, v′) + εα(S)(v · ∇S)

which says it is more likely to choose a new direction in the direction of ∇S.
Then

Lϕ(v) = −µϕ(v) + µ

∫
V

T (v, v′)ϕ(v′)dv′ + εµα(S)

∫
V

(v · ∇S)ϕ(v′)dv′

= L0ϕ(v) + εµα(S)(v · ∇S)ϕ̄(x, t),

= L0ϕ+ εL1ϕ

where ϕ̄ =
∫
V
ϕdv, and L1ϕ = µα(S)(v · ∇S)ϕ̄(x, t). Because of the perturbed

structure of the right hand side, we cannot directy apply the theory from above.
Instead, we again compare orders of ε. The scaled transport equations is now

ε2pt + εv · ∇p = L0p+ εL1p

ε0:
0 = L0p0 ⇒ p0 = p0(x, t)

ε1:
v · ∇p0 = L0p1 + L1p0

which is equivalent with

v · ∇p0(x, t)− µα(S)(v · ∇S)p̄0 = L0p1.

Since p̄0 =
∫
V
p0(x, t)dv = |V |p0 we can write this as

v · ∇p0 − µα(S)(v · ∇S)|V |p0 = L0p1.
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To solve for p1, we need to check the solvability condition

∫
V

vdv·∇p0−µα(S)

∫
V

vdv·
∇Sp0 = 0, which is true due to symmetry of V . Then

p1 = F0

(
v · ∇p0 − µ|V |α(S)(v · ∇s)p0

)
,

where F0 is the pseudo inverse of the unperturbed part L0.
ε2:

p0t + v · ∇p1 = L0p2 + µα(S)(v · ∇S)p̄1

Integrate:

|V |p0t +

∫
V

v · ∇F0 (v · ∇p0 − µ|V |α(S)(v · ∇S)p0) dv

= 0 + µα(S)

∫
V

v · ∇Sdv︸ ︷︷ ︸
=0

p̄1

Hence

|V |p0t +∇ ·
∫
V

vF0vdv · ∇p0 − µ|V |∇ ·
∫
V

vF0vdv · α(S)∇Sp0 = 0.

We arrive at a (possibly anisotropic) checmotaxis equation

p0t = ∇ (D∇p0 − µ|V |α(S)p0D∇S)

where

D = − 1

|V |

∫
V

vF0vdv.

Notice that the diffusion tensor D appears in both terms, this means that the chemo-
taxis term carries the same anisotropy as the diffusion term, which it should, since
the cells move in a given (possibly anisotropic) environment and both movement
terms should be affected by anisotropy.

Finally, if we consider the Pearson walk with T0(v, v′) = 1
|V | and D = s2

nµ
I, then

we obtain the classical (isotropic) chemotaxis model

p0t = ∇(d∇p0 − χ(S)p0∇S

with d = s2

nµ
and χ(S) = |V |α(S)s2

n
.
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5.6.1 Other cases

We considered an order ε perturbation of T in detail in the previous section. We
can also consider order one perturbations, and perturbations of µ. Doing this we get
into technical challenges which we skip in this manuscript. For details we refer to
[31]. Here we simply list the corresponding examples
Examples:

1. In case of bacterial movement, bacteria tend to turn more often if they move
down a gradient and less often if they move up a gradient. This can be expressed
through a perturbed turning rate

µ(S) = µ0(1− εb(S)(v · ∇S)). (45)

If we combine this with the Pearson walk for T = 1/|V |, then we obtain a
chemotaxis model

p0,t = ∇(d∇p0 − χ(S)p0∇S),

with

χ(S) =
s2

n
b(S).

The function b(S) describes the signal sensing mechanism of the cells. Here we
see how this term enters the chemotaxis model.

2. Amoeba are able to modify their turning rate as well as actively choose a
favorable direction. This can be modelled by using a perturbed turing rate as
above (45) as well as a perturbed turning kernel as we did above. In a special
case we consider

T (v, v′, S) =
1

|V |
(1 + εa(S)(v · S).

Then we obtain a chemotaxis model with chemotactic sensitivity

χ(S) =
s2

n
(a(S) + b(S)).

Hence both effects combine in a linear way.

3. If myxobacteria encounter a stream of myxobacteria moving in a given direction
b, then they also turn into that direction. This can be expressed through a
special kernel of

T (v, v′) = κ(v · b)(v′ · b).
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In addition we consider the perturbed turning rate (45). The parabolic limit
is of chemotaxis form

p0,t = ∇(D∇p0 − V (p0, S)∇S)

with nonisotropic diffusion

D =
s2

µ0n

(
I +
|V |s2

n
κbbT

(
I− |V |s

2

n
κbbT

)−1
)
.

Unfortunately, we have not been able to give a biological interpretation of this
diffusion tensor.

4. It is also possible to include volume constraints into the transport equation
framework. For example choosing

µ(S) = µ0(1− εb(S)(v · S)β(

∫
p(dv)),

where β is a decreasing function. Then

p0,t = ∇(d∇p0 − p0β(p0)χ(S)∇S),

which is the volume filling chemotaxis model as introduced by Hillen and
Painter [15].

5.7 Persistence

An important biological quantity is the persistence. It is an indicator for the particles
to keep their heading when doing a turn. A particle which never changes direction,
i.e. performs a ballistic motion would have persistence 1, while a brownian particle
has persistence 0. The persistence in the context of transport models is easily defined.
Consider a given incoming velocity v′. Then the expected outgoing velocity is

v̂(v′) :=

∫
V

T (v, v′)vdv

and the average outgoing speed is

ŝ :=

∫
V

T (v, v′)‖v‖dv.

The index of persistence ψα is defined as
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ψα(v′) =
v̂ · v′

ŝs′
where s′ = ‖v′‖.

Hence the parameter γ, which we introduced in Theorem 6 is he persistence of
the adjoint turning operator, or the adjoint persistence.

Homework: It is an interesting exercise to find out under which conditions is
γ = ψα. Certainly for symmetric kernel, but also for normal kernels?

5.7.1 Example

Assume that turning depends only on the relative angle

θ := arccos

(
v · v′

‖v‖‖v′‖

)
.

Then T (v, v′) = h(θ(v, v′)) = h(θ − θ′), h(−θ) = h(θ). For example, in 2-
dimensions, with s = 1, we have v =

(
cos θ
sin θ

)
and for normalization we need∫

V

T (v, v′)dv =

∫ 2π

0

h(θ − θ′)dθ = 1.

Which is equivalent to∫ 2π−θ′

−θ′
h(α)dα = 2

∫ π

0

h(α)dα = 1.

The expected outgoing velocity is
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v̂(θ′) =

∫
h(θ − θ′)

(
cos θ

sin θ

)
dθ, and with α := θ − θ′

=

∫
h(α)

(
cos(α + θ′)

sin(α + θ′)

)
dα

=

∫
h(α)

(
cosα cos θ′ − sinα sin θ′

sinα cos θ′ + cosα sin θ′

)
dα

=


cos θ′

∫
h(α) cosαdα− sin θ′

∫
h(α) sinα︸ ︷︷ ︸

=0

dα

cosα′
∫
h(α) sinα︸ ︷︷ ︸

=0

dα + sin θ′
∫
h(α) cosαdα


= h(α) cosαdα

(
cos θ′

sin θ′

)
.

Then the persistence is given as

ψα = v̂(θ′) · v′ =
∫
h(α) cosαdα(cos θ′ · sin θ′)

(
cos θ′

sin θ′

)
=

∫
h(α) cosαdα,

where we can see why the persistence is sometimes called the mean cosine.

It is similar in 3-dimensions, where we normalize as:

2π

∫ π

0

h(θ) sin θdθ = 1

and the persistence turns out to be (we skip the details):

ψα = 2π

∫ π

0

h(θ) cos θ sin θdθ

Again this is a mean cosine using the correct 2-dimensional surface element in 3-D:
sinθdθ.

Persistence indices are easy to measure based on the above formulas, i.e. one follows
individual particle tracks and computes the mean cosine for all the turns. It has been
found that slim mold Dictyostelium discoideum has a persistence of about ψα = 0.7,
whereas the persistence of E. coli bacteria is about ψα = 0.33.
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5.8 Summary and Conclusions

In this section we considered the parabolic limit of transport equations in the case
of constant equilibrium distribution. The general conditions (T1)-(T4) allowed us to
develop a full theory including classifications into isotropic and anisotropic diffusion
and including standard chemotaxis models. However, some important examples such
as T (v, v′) = q(v) are not included, and the question of what to do with these cases
remains., and will be addressed in the following Sections.

6 Transport and Anisotropic Diffusion Models for

Movement in Oriented Habitats

This section will contain the material from

• [17] T. Hillen, K. Painter, Transport Models for Movement in Oriented Habi-
tats and Anisotropic Diffusion. In: Dispersal, individual movement and spatial
ecology: A mathematical perspective. Eds: M.A. Lewis, P. Maini, S. Petro-
vskii, Heidelberg, Springer, 2012, 46 pages.

• [33] K.J. Painter, T. Hillen, Mathematical modelling of glioma growth: the use
of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of
cancer invasion. J. Theoretical Biol., 323, 25-39, 2013

• [14] Hillen, Thomas M5, Mesoscopic and Macroscopic Models for Mesenchymal
Motion, J. Math. Biol. 53(4), 585-616, 2006.

References

[1] A. Bressan. Hyperbolic Systems of Conservation Laws. Oxford University Press,
2000.

[2] C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Diluted
Gases. Springer, New York, 1994.

[3] J.C. Dallon and H.G. Othmer. A discrete cell model with adaptive signalling for
aggregation of dictyostelium discoideum. Phil. Trans. R. Soc. Lond. B, 352:391–
417, 1997.

59



D
RAFT

[4] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for
Science and Technology. Springer, Heidelberg, 2000.

[5] G. A. Dunn and J. P. Heath. A new hypothesis of contact guidance in tissue
cells. Exp. Cell Res., 101(1):1–14, 1976.

[6] R. Eftimie. Hyperbolic and kinetic models for self-organized biological aggrega-
tions and movement: a brief review. J. Math. Biol., 65(1):35–75, 2012.

[7] R. Erban and H. Othmer. From signal transduction to spatial pattern formation
in e. coli: a paradigm for multiscale modeling in biology. Multiscale Modeling
and Simulation, 3(2):362–394, 2005.

[8] R. Fürth. Die brownsche bewegung bei berücksichtigung einer persistenz der
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