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If we assume, by contradiction, that dim N 3 1, the operator % has at least one non zerq

eigenvector : UEN, uz0and u'=hu. Consequently u=e>‘tt+: where Ay=\y.Since ¢ = %w_ =0on
v

Mo, an open subset of ", one has =0 on an open subset « of Q provided I is piecewise
analytic. If €2 is connected we conclude that u=0, a contradiction.

Then if (7) were not true this would implydimN » 1. From (1') and (?7) we deduce (1N
and exact controllability.

6. Conclusion
The conclusion is as follows. The four assumptions
(i) Dm+Dm*>00n Q
(11) €2 is connected and I" is piecewise analytic (or even C?)
(i1i) m.v = O at crack tips,
(iv) m.t > Cat crack tips
imply exact controllability. If in addition m.v ¢ Oalong the cracks, the control v vanishes on
the cracks as one would reasonably expect.
The extra flexibility allowed by these possible choices of m yields more general

distribution of the cracks than the very particular choice of m considered in the above §3.
Various examples of such multipliers m are given in Iriggiani (1988).
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pifferential Equations on Branched Manifolds

K. P. HADELER and THOMAS HILLEN Tiibingen University, Tiibingen,
Germany

Summary: Vector fields on two-dimensional branched manifolds can be seen as
caricatures of three-dimensional problems. The corresponding semiflows are easy
to visualize locally because of dimension two, on the other hand they are not
continuous. With suitable transversality conditions one can obtain information
on qualitative behavior and limit sets of trajectories. Particular attention is given
to the fact that limit sets, in general, need not be invariant. Typical bifurcations
are studied. The phenomena and applications are illustrated by graphical and
numerical examples.

Introduction

The qualitative behavior of differential equations on two-dimensional compact
manifolds is relatively well understood (see, e.g., Palis and di Melo [11]) whereas
the behavior of differential equations in three dimensions can be very compli-
cated and difficult to visualize. Therefore branched manifolds have been used as
two-dimensional caricatures of three-dimensional systems. Williams {15] has de-
veloped a general concept of branched manifolds and he has studied caricatures of
the Lorenz attractor ([16], [17], see also Guckenheimer and Holmes [5] and Spar-
row [13]). One can make a similar construction for the Rossler attractor ([12], see
also Jetschke [7]). Hadeler and Shonkwiler {6] have used branched manifolds in
an epidemiological model. There is a rather close connection between differential
equations on branched manifolds and differential equations with reset conditions
or, in other terminology, differential equations with discontinuous right hand sides.
Filippov [4] has developed a theory of such differential equations and has collected
a vast bibliography. His view is essentially restricted to local qualitative analysis
whereas we shall try to take a global view. In an abstract setting differential equa-
tions with discontinuous right hand sides can also be seen as differential inclusions
(see, e.g., Aubin and Cellina [2]) or systems for set-valued functions.

Mostly a branched manifold has been seen as a set of planes (with boundaries)
joined together along certain edges to form a geometric object on which vector
fields are studied. At the edges transition conditions have been defined ad hoc
(“if the trajectory ... ”). In this view the connectedness and, in particular, the
embedding in three dimensional space play a major role. Here we follow a more
abstract approach which provides a rigorous definition of transition conditions.
The appropriate construction requires some effort. Later we shall return to the
familiar object by way of identifications.
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Definition of a branched manifold

The purpose of branched manifolds is, of course, to study vector fields and their
trajectories. In our approach (as in Williams [15]) we define a branched manifold
as a geometric object independent of any vector flelds or flows. Roughly speaking
a branched manifold is a collection M of smooth manifolds M; with transition
conditions. Trajectories “run” on one manifold, “arrive” at some submanifold,
and “continue” on another manifold.

If the transition conditions are used to identify points on the manifolds M,
one obtains an object M which heuristically can be seen as a set of surfaces glued
together along lines. Then the transition conditions ensure that at each point of
M there is a well-defined tangent space.

In this approach one can, on a fixed branched manifold, study vector fields
depending on parameters and related bifurcations. In another view, used in [6],
one can start from given vector fields on the M; and study changes in the transition
conditions.

In applications the constituting M; will be mostly spheres S?, and the N;;
will be spheres S1.

In realistic applications the manifolds will be simply connected planar do-
mains, and the submanifolds will be line segments. However, these manifolds are
topologically equivalent to spheres. As usual in differentjal equations the assump-
tion of compact manifolds without boundary merely leads to some simplification
of the representation and some unification, it makes a coherent theory possible.

Let M;, © = 1,...,r, be two-dimensional compact C' manifolds without

boundary.
Let N;j, j =1,...,s,, be one-dimensional (compact) C! submanifolds of M;.
Assume

N,’jﬂN,‘k———@ for J# k. (1)

We define .
M =M\ [ V. (2)

i=1
Now we define transition conditions. It is useful to introduce an index set J =
{(G7):i=1,...,j=1,... y$i}. One can visualize J as a matrix with rows of

different lengths. Furthermore denote by L the set L = {1,...;r}. Let V:J— L
be a function.

For (1,7) € J let g;; be a C? mapping g;; : Nij — M; where | = V (3, 5). By
construction the image 9:;(Ni;) C M; is compact.

The main hypothesis on the various manifolds is the following nonintersection
property. For I € L we require

U ) N UNIJ- =9. (3)

V5=l

\ @
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The object M = {M;, Nij, gi; : (4,7) € J} is called a branched manifold. In
addition to M we shall need the underlying point set M = Ui, M.
Example 1: » =1, s = 1. Thus V maps (1,5) = (1,1) into I = 1. There is only
one manifold M = M; = §? and only one submanifold N = Nij,andg: N — M.
Condition (3) reduces to g(N)N N = §. This example corresponds to the classical
reset problem. The trajectory runs on M until it meets N. Then it is reset to
g(N) and starts again (see Fig.1a). The caricature of the dynamics of the Réssler
attractor as given by Jetschke [7] fits into this scheme (Fig.1b).

)

2) b)
Fig.1: The reset problem as a branched manifold
Example 2: r=1,5=2 M, = 52 V(1,1)=1,V(1,2) =1. N1, N; are disjoint
sets 57, and the images 91(N1), g2(N2) coincide (as sets). g1(N1) = go(N,) is a
sphere S disjoint from N; U N, (Fig.2a). The Fig.2b shows a flow on M. The

shaded area in Fig.2b is equivalent to William’s caricature of the Lorenz attractor
(Fig.2c).

3N = 4,M)

a) b) c)
Fig.2: The Lorenz attractor

Example 3: r =2, 5, = s2 =1, My =S M, = §?, V(1,1) =2, V(2,1) = 1.
This setting is the common situation in problems of pest control or epidemic
control ([6]) where there is a switch between strategies. Fig.2a presents the general
situation for spheres. In the case studied in [6] one cap of each sphere can be
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discarded since no trajectory ever returns to these caps. Then the part of the
branched manifold which contains the essential dynamics can be represented as in

Fig.2b.
«—Lv B
B ﬂ Ly
L,

Dz ¢ ¢

a) b)

Fig.3: Epidemic control problem as a branched manifold

On M (i.e.,’'on M endowed with the structure of M) we introduce an equiv-
alence relation ~ in the following way. Let G be the set of functions § = {gij :
(¢,7) € J} U {td} where id is the identity on M. For points #,§ € M we define
Z ~ § if there are functions f,g € G such that f(z) = 9(9). One can visualize the
identification by ~ as glueing together the M; along N;; and g(Nij), respectively.

Proposition 1: The relation ~ is an equivalence relation.

Proof: & ~ & sinceid € G. Z ~ §j implies § ~ & by symmetry of definition. Assume
z ~yand y ~ 2. Then there are functions f,g,h,k € G such that f(2) = 9(y)
and h(y) = k(Z). In view of (1) there are only two cases.
Case 1: ¢ = h. Then f(z) = h(3), Z ~ 3.
Case 2: g = ud (or h = id). Then f(2) = § and h(§) = k(Z). h = id would lead to
Case 1. Thus assume h # id. From (3) it follows that f =id, & = §, h(z) = k(2),
z~Z

Now we define the object M = M/ ~. The set M will be endowed with the
quotient topology and thus it becomes a compact Hausdorff space. We shall call
both objects M and M the branched manifold. We shall denote by 7 the natural
projection 7 : M — M.

The object M looks rather similar to the ramified spaces which have been
studied by Lumer (8], v.Below (3], Nicaise [9], Ali-Mehmeti [1] in connection with
diffusion equations. We underline that they are indeed different. Ramified spaces
are also constructed from smooth manifolds by way of identifications, but in their
construction there is no directional information. Of course the present notion of
branched manifold is closely related to the notion of Williams [15]. In Williams’
definition of a branched manifold there is, by definition, a well-defined tangent
space at every point. The natural visualization of Williams’ branched manifold is
a set of two-dimensional surfaces in IR® which pass through a curve such that at

4

3,
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each point of this curve all surfaces have the same tangent plane. In the present
context the appropriate visualization is given by Figs.1 and 2. Here the uniqueness
of the tangent space is a consequence of the construction as it will be shown in
the next proposition.

Proposition 2: In each equivalence class z € M there is one and only one point
& with the property:

{ieM feg f@)=3}=r=1d (4)
Proof: If z contains only one point Z then Z has property (4). Suppose z contains
two points §,Z € M with § # Z. Then there are f,g € G such that g(§) = h(%).
Put £ = ¢(y). Then Z € z because id € §. The point # has property (4) in view of
condition (3). Now assume there are &, &, € z with property (4). Then there are
functions A1, hy € G such that h1(Z;) = ha(Z2). Then, again by (4), hy = hg =id
a.nd :1.31 = :52.
Definition: For each equivalence class z € M the point Z € M with property
(4) is called the actual point a(z). The tangent space at z € M is given by
TeM = ToyM.

Thus a : M — M is the map which attributes to each point on M the actual
point in M. An equivalence class or point z € M is called trivial if it contains
only one point of M. Otherwise the point is called a branch point. The set of
trivial equivalence classes is open in M. The function « is continuous on this open
set. It should be underlined that 7 does not induce a natural projection of T M
to T./M

Flows

Suppose that on each manifold M;, 7 =1,...,r, there is a C'! vector field f;. This
collection of vector fields defines a C! vector field f on M and M. By integrating
the vector fields f; we obtain flows ®;(¢,z), 1 = 1,...,r which exist for all ¢ € IR.
The function ®,(t,zg) is the solution of

&(t) = fiz(t)), =(0) = =0, (5)
ie., 08,(t,2)
5t = fi(éi(tvm))v (6)
@,‘(0, :I:) =2z

We want to construct a semiflow ® on M which for small ¢ > 0 has the
property
(¢, ) if 2 € M|,
b(t,2) = (1)
@z(t,g,‘j(i)) ifZ e N;;, V(Z,]) =1
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Theorem 3:

i) There is a unique semiflow ® on M which has the property (7).
11) The function

&(t,z) = 19(t, o(z)) (8)
Eie;ines a semiflow & on M for which &(t,a(z)) = a(®(t,z)) has the property
7).
Proof: Define, for z € M;

T,'(:E) = inf {t >0: @,‘(t,:i) € U;i:lN,'j} . (9)

Furthermore define
§ = inf (inf {n(2) : & € Uv(ij)=19:5(N:5)}) (10)

The number § is positive in view of (3) and compactness. For 0 < ¢t < § define a
local semiflow by

®,(1,%) if € M; and 0 <t < 7(&),
P(t,2) = -
(B2) =\ @y(t—ri(8), 91j(Bi(ri(3),3))) if & € M, Bu(r(3),3) € Ny, (1D
V(t,j)=1,and 74(2) < t < 6.

The function ¢ is well-defined and satisfies
&(t +3,%) = B(s, 8(¢,%)), ¥(0,3) =3 (12)

for t,s > 0 with t+s < 6. Since § is uniform and M is compact, this local semiflow
can be continued to a semiflow.

These properties carry over to ® as defined by (8).

Corollgry 4:  The trajectory t — ®(t,z) is continuous (in the topology of M).
Ihe trajgctory t — ®(t,%) has at most one discontinuity (in the topology of A;i)
i any giwen time interval of length 6.

The flow ® can be recovered from ® as

®(t,%) = l‘i_x}}a(é(s,m)), g€z, for t>0,

st
$(0,%) = 3.

. It is evident that both ci>(t, Z) and ®(t, z) are not continuous in & or z, respec-
tl\{el?’. There is no sensible way to make these functions continuous. In some sense
this is the sacrifice one has to make in replacing smooth three-dimensional vector
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fields by vector fields on branched manifolds. Some continuity can be recovered
under transversality assumptions.

The idea of the construction can be explained as follows. For a given nontrivial
point £ € M there are several points # € M; for appropriate ¢+ € L. Thus there
are several candidates fi(Z) for a tangent vector. By the principle of the actual
point one of these tangent vectors is selected. Thus at every point of M there is
a unique tangent vector. This vector field is piecewise smooth though it may not
be smooth if M is embedded into some space of higher dimension.

The construction of Williams is somewhat different. Geometrically speaking,
his construction assumes that the different manifolds glued together, embedded
into some space of higher dimension, are tangent to each other.

Transversality

Suppose N is a closed C? curve in M;. The vector field f; is called transversal to
N at & € N if 7 is a simple point of N and fi(Z) is not tangent to N at Z. The
vector field f; is called transversal to N if it is transversal to N at every point of
N.
A point € M is called transversal if either Z € M! or & € N;; and f; 1s
transversal to N;; at . The vector field f is called transversal if all points of M
are transversal.
A point £ € M is called transversal if all Z € = are transversal.

Suppose ®(t,z), t > 0, is a trajectory in M. Suppose ®(t, ) is transversal
for some tg > 0. Then &(¢,x) is transversal for to <t <o + § where 6 is defined

by (9).

Theorem 5: Suppose € M is trivial and ®(t,z) is transversal for all t > 0.
Then for every T > O there is a neighborhood Ur C M of z such that ® 1s
continuous in [0,T] x Ur.

Proof: The orbit (¢, z) through « has only countably many transitions 71 < 72 <

.. By assumption a(z) € M. Hence there is a neighborhood Uy of z and a
0 > 0, 6o < &, such that ®(t,y) contains only one point for (¢,y) € [0, 60) x U,
and consequently @ is continuous in this set.

Now suppose it has been shown that thereis a 8k, 0 < 8k < 8, and a neighbor-
hood Uy, of z such that ®(¢,y) is continuous in [0, 7% + 6x) x Uk. Since ®(1x —¢,7)
is transversal for small ¢ > 0 by assumption, by Wazewski’s theorem [14] and
assumption (3) there is a fk41, 0 < Sk41 < 6, and a neighborhood Ui41 C Uk
such that ®(¢,y) is continuous in [0, Te41 + 6k+1) X Uk41. This argument can be
repeated.

We shall need a similar assertion for the flow d.

Corollary 6: Let z € M, i€ M!, and suppose that fi)(t,é':) is transversal for all
t>0. Then for every T > 0 there is a neighborhood Ur C M;, Ur 3 &, such that
® is continuous in [0,t] X Ur.
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The proof is essentially the same as that of Theorem 5.

The assumption of transversality everywhere is much too restrictive. In order
to have something concrete at hand we define a class of vector fields which hayve
some generic properties, !

Suppose ¢ € M is a branch point which is not transversal. Then there is
# € z such that £ € N;; C M;, and f; is tangent to N;;. We call a branch point
z a generic contact point if for all & € z the following is true: If € N;; then the
contact of @;(¢,z) and N;; is only of first order. Then locally ®,(¢, %) stays on one
side of N;; (see Fig.4).

Fig.4: Generic contact point

If z is a generic contact point then at each ¥ € z, % € Ni;, there is a neighbor-
hood U C M; of & such that the trajectory ®;(¢,2) and N;; define three domains
Us, Uy, Ug (see Fig.4). Trajectories of 3 starting in Uy stay in M; as long as they
stay in U, trajectories in U; and U, leave M;. That is why & is not continuous at
these points.

We call a vector field f on M a field of generic contact if there are only finitely
many points which are not transversal and if all these points are generic contact
points. The vector fields in [6] have this property.

At least in topologically simple cases strong transversality properties pro-
vide equivalences between branched manifolds and unbranched manifolds of known
topological structure. In the following examples 4a,b,c we assume that the vee-
tor field f; is transversal to all curves N;; and also to all curves g;;(N;;) with
V(j,1) = 1. We say that the Poincaré-Bendixson property holds for a trajectory
when the trajectory eventually remains in some S? (or disc).

Example 4a: M is a 2-sphere, N and g(N) are disjoint circles. These curves
define an annulus 4 and two discs Dy (bounded by N) and D; (bounded by
g(N)). Since the vector field is transversal on N and g(N) there are just four
qualitatively different situations which can be presented as follows.

a) Dg and D; are positively invariant. Then a trajectory either stays in Dy or
Dy, or 1t stays in A, or it leaves A to stay in D;. Hence the Poincaré-Bendixson
property holds.
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The

b) Trajectories from the annulus never arrive at N. There is no reset.
Poincaré-Bendixson property holds.

¢) Dy is positively invariant, but Dy is negatively invariant. Then the two discs
can be discarded. The two curves can be identified, a 2-torus remains.

Example 4b: M;, M; are 2-spheres, Ni1, Na; and their images are disjoint circles.
On M; these curves define an annulus and two discs. There are 16 qualitatively
different cases. If we exchange M; and M; then ten cases remain. Among these
all cases are trivial where either Ny; or Njy; cannot be reached from the interior of
the annulus. In these cases every trajectory has at most one transition from one
sphere to the other. Then four cases remain. In three of these cases one sees easily,
as in Example 1, that the Poincaré-Bendixson property holds. In the remaining
case one can disregard the four discs, and connect the two annuli to a 2-torus.
Thus we conclude that the dynamics of a transversal vector field on this branched
manifold can be essentially represented on a 2-sphere or on a 2-torus.

Example 4c: My, M, are 2-spheres with s; = 2 and s; = 1. The six resulting
curves and the direction of the transversal vector field are shown in Fig.5. This
structure cannot be reduced to a smooth (classical) manifold. A similar observa-
tion holds for the Lorenz manifold of Williams [16], [17].

Fig.5: Hlustration of Example 4c

Limit sets

As usual the limit set (w limit set) of a trajectory ®(¢,z) is defined as

w(z)={z:3t; <ty < -, tg — 00, ®(tx,z) — z}.

As in the classical case one proves the following proposition.

Proposition 7: The set w(z) is
i) nomempty,
1) compact in the topology of M,

i) connected in the topology of ‘v{

Proof:

i} Choose any sequence ;. M is compact. Hence there is an accumulation point.

u
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ii) Let y € M, y € w(z). Then there is a neighborhood U of y and a T' > 0 such
that U N {®(t,z) : t > T} = 0. Hence w(z) is closed and thus compact.

iii) Suppose w(z) is not connected in the topology of M. Then there are open sets
Uand Vsuchthat UNV =, w(z) CUUV,and w(z)NU # 0, w(z)NV #0.
Define K = M\(UUV). K is compact. For every T > 0 therearet; > T,t2 > T
such that ®(¢;,z) € U, ®(t2,z) € V, hence also t > T such that ®(t,z) € K.
Hence there is a sequence ty — oo such that ®(fx,z) converges to some point
y € K. Hence y € w(z). This gives a contradiction.

Limit sets on branched manifolds need not be positively invariant. A simple
counterexample: In Example 1 above assume that a trajectory in M\ NV approaches
a stationary point on N. Then the stationary point is the limit set, but if the
stationary point is chosen as an initial condition then the trajectory continues on

g(N).

Even if the vector fields f; are structurally stable (see, e.g., [10]) and all
critical elements are transversal to the N;; there may be limit sets which are not
positively invariant. This fact is shown by Example 5b. However, one can prove
the following result.

Theorem 8: Assume that all points of w(z) are transversal. Then w(z) is
positively invariant.

Proof: Let y € w(z). By assumption there is a sequence tx — oo such that
®(tx,z) — y. We have to show @(s,y) € w(z) for s > 0. We can use the flow
property

B(t + s,z) = B(s, B(t,)).

If & were continuous in z then ®(tx + s,z) — ®(s,y) would follow immediately.
Since ® is not continuous in general, we have to consider the problem in more
detail.

Case 1: y is trivial. In view of Theorem 5, for every T > 0, there is a neighborhood
Ur C M, Ur 3 vy, such that ® is continuous in [0,T) x Ur. Choose T > s. For
large k we have ®(tx,z) € Ur. We use

®(s + tr,z) = B(s, B(tx, ).
For k — oo the right hand side has the limit ®(s,y) whereas the left hand side,

by definition of the limit set, coverges to some point in w(z).

Case 2: y is not trivial. Let a(y) = § € M; be the actual point. The sequence
®(ti, ) may contain nontrivial points.

Case 2a: There is an infinite subsequence such that the actual points are in
M;. We can assume that the given sequence has already this property, i.e., that
a(®(tr,z)) = §x € M;. By Corollary 6, for every T > 0 there is a neighborhood
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Ur c My, Ur 3  such that <i>_ is continuous in [0, T} x Ur. Choose T > s. For
large k we have ®(tx,a(z)) € Ur. Then

&(s + t,a(z)) = B(s, B(t, a(z)),

and thus
®(s + tr,z) = B(s, B(tr, 2))-

For k — oo we have ®(t, a(z)) — §, thus ®(tg,z) — y. Now we can continue as
in Case 1.

Case 2b: There is no such sequence as in Case 2a. We choose, if necessary,
a subsequence, and have the following situation. There is § € v, § # a(y),
§ € Ni; C M;. There is an open neighborhood U C M; of § such that N;; NU
is homeomorphic to an interval, and N;; N U separates U into two open sets U-
(where trajectories of & leave M;) and U, (where trajectories of $ stay in M;)
and U = U, UU_ U(N;; NU). We can assume that ®; is transversal to N;; along
N;'j NnU.

Case 2ba: There is an infinite subsequence such that the actual points are in Us.
We can assume that the original sequence has this property, i.e., a(®(tk,z)) € Us.
For large k the trajectory of ®; (or & through a(®(tk,z)) crosses Nj; close to §.
In U, this trajectory is a trajectory of ®. Hence for each k there is an sx such
that a(®(t; —t,z)) € Uy for 0 <t < sk, and &;(—sk, «(®(tk,z)) € Ny;. Thisis a
contradiction to the fact that there is a transition to M; at N;;. Hence Case 2ba
is impossible.

Case 2bB3: There is an infinite subsequence such that o(®(tk,z)) € U-. We
can assume that the given sequence has this property. Choose ¢ > 0 such that
®,(t,9) € U- for —e <t < 0. Then for k sufficiently large there is sx such that
®(tg + s +t,z) € U_ for —e <t < 0. Then ®(t + sk +t,z) — ®i(t,¥) uniformly
in —¢ <t < 0 for k — co. Hence ®;(t,§) € w(z) for —¢ <t < 0. Now choose any
of these points and proceed as in Case 1.

We add some comments on attractors and basins. Consider a vector field on
S? with finitely many critical elements. Then the basins of the attractors form
finitely many open domains and their boundaries are formed by trajectories, hence
are piecewise differentiable curves. These boundaries may contain repellers and
saddle points. The basin boundaries are themselves invariant sets. On branched
manifolds we have a different situation. In Example 5b there are finitely many
stationary points and periodic orbits, every trajectory converges to one of these.
The basin of each attractor contains an open set such that the closures of these
sets cover the whole manifold. But the basins need not be open.

Return mappings and global behavior

The global behavior of the dynamical system defined by (M, f) can be studied
by return mappings (Poincaré mappings). The idea is that trajectories which
have only finitely many transitions stay eventually in one of the M; and hence are
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“trivial”. Thus one chooses a curve L (preferably one of the curves N;; or g;;(N; i)
and one follows all trajectories starting from L. For z € L (in the following we
shall omit all tildes) define

m(z) =inf{t > 0: ®(¢t,z) € L}.

Then define
Loo={z€Ll:r(z)= o0}

Introduce the symbol @ for “empty”. Define a mapping ¢ on L U {8} by

@(r(z),z) fz€ L\ Ly,
plz) =<0 if 2 € Loo,
0 fe=40.

The mapping ¢ is called the return mapping. At least in cases where the number of
the N;; is small one can get a global view of the asymptotic behavior by studying
@ and its iterates.

If ¢ is such that ¢*(z) = @ for some k then the trajectory ®(t,z) meets L
only finitely often. Fixed points of ¢ other than @ correspond to periodic orbits.

Here we study a type of branched manifold closely related to Example 3. Let
M, = R* M, = IR?, each endowed with the same cartesian coordinate system
(z,y). Let N1y = {z = b} and Ny; = {z = a}, and let g11(z) = z, g2:(z) = z (with
respect to the identical coordinate system). For convenience we assume a < b. If
we discard the sets {x € M; : 2 > b} and {z € M : ¢ < a} then we arrive at the
manifold studied in [6].

As in [6] we introduce the sets A; = {(z,y) € M; : a < y < b}, A =
{{zy) eMy:a<y<b}, B={(z,y) € Mz : y>b},C={(z,y) € My : y <a}.
Furthermore we introduce the lines L, = {y = a} and L, = {y = b} as subsets
of M; and M,. It is sufficient to consider trajectories which meet Ny; and Naj
infinitely often. Choose L = L,. Define a mapping ¢; as follows. For any point
z € Ly, C M define mi(z) = inf{t > 0: ®(t,z) € Ly C My}. Define p1(z) =
®(r1(z),z) if 71(z) is finite and ¢1(z) = @ otherwise. Extend the definition of 1
by putting ¢1(8) = 0. Define 7, and ¢, using M, instead of M;. Then ¢ = w091
is the return mapping.

To have something concrete at hand we assume that the trajectories in . 4; UC
look as in Fig.6a, whereas the trajectories in .4, U B look as in Fig 6b.

Apparently there are four interesting points called P, @, R, S as indicated. We
assume that P and S do not coincide on M, neither do @ and R. The points P
and @) are generic contact points. The points R and S are just points where f; is
not transversal to g;;(N;;).

Y
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a) b)
Fig.6: The flows on M; and M,

Then the function ¢, is continuous everywhere, it is decreasing for z < R and
increasing for ¢ > R. Hence it attains its minimum at R (see Fig 7a). Let 51,5
be the two preimages of @ with respect to the flow in A;. Then g, increases for
z < 81, decreases for z > Sy, and ¢, takes the interval (S1, 5;) to @ (see Fig.7b).

(& A \;% 3

. ' Q S—
Ry = -
: /

a) b)
Fig.7: The maps ; and @3

We have to study the composition @3 0 ¢;. The behavior depends on the
relative position of some interesting points. For z < 0 the function ¢; is large
and decreasing, thus ¢ is small and increasing. For z >> 0 the function ¢, is large
and increasing, thus ¢ is large and decreasing. We assume that ¢ is dissipative in
the sense that o(z) < z for £ > 0 and ¢(z) > z for z € 0.

The minimum ¢1(R) of ¢ may be located below Si, between S; and Sy, or
above Sy (we do not discuss limit cases).

Case 1: ¢1(R) > S2. Then the function ¢ does not assume the value §, it is first
increasing, then decreasing. The maximum is assumed at R. If ¢(R) < R then
there is an odd number of fixed points, all located below R, these are alternatingly
stable and unstable, every trajectory {of ¢) converges to one of these fixed points.
If ¢(R) > R then there is an even number of fixed points in (—oo, R], and a
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single fixed point in [R, +00). The latter may be unstable and give rise to period
doubling or other complex behavior.

Case 2: p1(R) € (S1,S52). There are two values R; and R, with Ry < R < R;, and
p1(R2) = p1(Rh) = S;. The function ¢ is increasing in (—oo, Ry), decreasing in
(R, +00), and it carries (R, R}) into §. Furthermore, o(R2) = ¢(Ry) = Q. Now
there are again three cases.

If @ < R; then there is an odd number of fixed points in (—oo, R;], and no fixed
point in [R}, +00). Trajectories cannot enter the interval (R2, R}), all trajectories
end up in (~o0, R3], and approach one of the fixed points.

There is a largest fixed point in (~oo, R;], and this fixed point is stable (in a
generic situation, otherwise it is stable from above). This fixed point corresponds
to a stable periodic orbit of ®. The interval (Rz, R}) corresponds to trajectories of
¢ which approach the attractor in .A; UB. Trajectories of ¢ cannot enter (Rz, R}).
The trajectory of & starting from R; is the boundary between the basins of the
stable periodic orbit and the attractor in A4; UB. The boundary itself approaches
the attractor.

If @ € (R2, R)) then there is an even number of fixed points in (—o0, Rs], and
no fixed point in [Rj, +-00). Some trajectories (of ¢) can end up in (R2, Ry) (all
trajectories will end up in this interval, if ¢ has no fixed points,

If @ > Rj then there is an even number of fixed points in (—o0, Ry], and exactly
one fixed point in [Rj, +00). The interval (R;, R}) will attract some trajectories.

Case 3: 1(R) < S1. There are four values Ry < R; < R < R} < R) such that
P1(R2) = p1(Ry) = S2, p(R1) = (R}) = S;. There are five cases depending
on where the point @ is located in relation to these numbers. We shall list some
essential features.
Q < Rz. In (00, R;] an odd number of fixed points, no fixed points otherwise.
R; < @ < R;. In (—o0, R;] there is an even number of fixed points, no fixed
points otherwise.
R1 < @ < R;. An even number of fixed points in (—o0, R3], an odd number of
fixed points in (Ry, R}), no fixed point in | %, +00).
R} < @ < Rj. An even number of fixed points in (—00, R;] and in (Ry, R}), no
other fixed points.
Ry < Q. An even numer of fixed points in (o0, R] and in (R1, R}), exactly one
fixed point in (R}, +00).

It should be underlined that the return map  descr ibes all trajectories ®(t, z)
of the original system which meet the curve L,. All other trajectories have trivial
behavior insofar as they stay eventually either in M) or in M,.

Theorem 9:  Under the assumptions stated above there are two types of limst
sets: limit sets of the Poincaré- Bendizson type in Ay UC and A1 UB, and periodic
orbits which meet L, and L,.
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Numerical examples

On the manifolds M; of the preceding section consider two vector fields f;, in
polar coordinates,

r=r(l~-r/R;),

¢ =1
where 7 = 1,2. Hence the problem depends on four parameters q, b, Ry, R;. In the
numerical study we keep R, R, fixed and vary a,b. The numerical calculations
indicate that all non-constant solutions converge to periodic solutions. The number
of periodic solutions varies between one and two (and not between one and three,
as one might think). The transition between the different cases shows the saddle-
node bifurcation of periodic orbits which has been found in [6].
Example 5: Let r = 2,8 = 1,5 =1, V(1,1) =2, V(2,1) = 1, M; = 5‘2 =
R2U {0}, My = S%? = R?U {o0}. Define the g,; with the obvious identifications
in cartesian coordinates
Ni={(z,9):y=0},9u:Nu - M,z — z,

Noy ={(z,y):y=a}, g21: Noy = My, 2 — z.
a)2R1 =1, Ry = 0.5. a = —0.4, and b is ranging from 0.1 to 0.9. Then there are

two unstable stationary points on M, and the two circles are not periodic orbi.ts
on M. Numerical evidence shows that there is a unique “large” periodic orbit,
which is globally stable (with the exception of the stationary points). Fig.8 shows

the case b = 0.4.

fi:

Fig.8: One attracting periodic orbit

b) Ry =1, Ry = 0.3, b = 0.2, and a ranges from —0.4 to —0.1. There are t“{o
unstable stationary points on M, and the smaller circle is a locally stable periodic
orbit on M for —0.4 < a < 0.3.

For —0.4 < a < —0.3 the smaller circle is a limit set. But for a = —0.3 the
smaller circle is not a periodic orbit. The trajectory starting at z = 0, y = —0.3
leaves the limit set. Hence the limit set is not positively invariant.
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Numerical evidence shows that the smaller circle is globally stable (with the
exception of the stationary points) for a close to —0.4. On the other hand, for
a € [~0.3,-0.1) we are in the situation of Example 5a, there is a single “large”
periodic orbit which changes between M; and M,.

However, for a in between something interesting happens. At ¢ = & ~ —0.302
there is a saddle-node bifurcation of periodic orbits which resultsin a “large” stable
periodic orbit and a basin boundary. For a € (@, —0.3) the two stable orbits coexist.
The boundary of the basins is defined by the trajectory of f, which is tangent to
the line L,. The boundary trajectory itself approaches the large periodic orbit.
Hence the basin is not open. Fig.9 shows the situation for a = —0.301.
¢) Ri =1, Ry = 0.2, a =05, b = 0.7. There are two unstable stationary points
and one stable periodic orbit which shows a complicated behavior (Fig.10).

Fig.10: Complicated orbit

T
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