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Abstract Spatially moving predators are often considered for biological control of inva-
sive species. The question arises as to whether introduced predators are able to stop an
advancing pest or foreign population. In recent studies of reaction–diffusion models, it
has been shown that the prey invasion can only be stopped if the prey dynamics observes
an Allee effect.

In this paper, we include prey-taxis into the model. Prey-taxis describe the active move-
ment of predators to regions of high prey density. This effect leads to the observation that
predators are drawn away from the leading edge of a prey invasion where its density is
low. This leads to counterintuitive result that prey-taxis can actually reduce the likelihood
of effective biocontrol.

Keywords Predator–prey models · Prey-taxis · Invasion · Biocontrol

1. Introduction

Mathematical modeling has provided useful tools to understand biological phenomena
such as disease spread, insect outbreak, animal coat patterns, wound healing, and inter-
specific interactions. There are three main types of interspecific interaction: predator–prey,
competition, and mutualism. In a predator–prey relationship, the predator species bene-
fits from killing and consuming the prey species, and the prey population size may be
regulated as a result (Murray, 1989).

A characteristic feature of living organisms is that they respond to the environment in
search for food and reproductive opportunity. One such response is movement toward or
away from an external stimulus, which is called taxis. Taxis is facilitated by both direc-
tional behavior-change of velocity, and turning angle, and nondirectional behavior-change
of speed or turning rate in response to the stimulus (Okubo and Levin, 2000). Correspond-
ing to the type of external stimulus, various types of taxis are defined, such as aerotaxis,
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chemotaxis, geotaxis, haptotaxis, prey-taxis and others. The purposes of taxis may be
numerous, including movement toward food and avoidance of enemies.

In this paper, we consider spatial predator–prey systems. In particular, we consider
the foraging behavior of the predator toward high prey density and investigate the role of
prey-taxis in spatial predator–prey interactions. For that, we extend the diffusion–reaction
model in Owen and Lewis (2001) by incorporating the mechanism of prey-taxis into spa-
tial predator–prey systems (Kareiva and Odell, 1987).

Predator–prey models have been studied by numerous people using different frame-
works, such as discrete models (Hassell, 1978), ODE models (Wangersky, 1978; Auger
et al., 2002), and diffusion–reaction models (Dunbar, 1983; Cantrell and Cosner, 1996;
Owen and Lewis, 2001; Huang et al., 2003). Diffusion–reaction models describe spatial
structures explicitly by means of diffusive motility of species in heterogeneous environ-
ments, and they describe temporal structures via reaction terms.

Owen and Lewis (2001) showed that when a prey species grows logistically, a predator
population that catches up with an invading prey wave is in general not able to slow down
the prey spread. To demonstrate this, they used diffusion–reaction systems and linearized
about the leading edge of the wave (where the densities of the prey and the predator are
close to zero). However, they found that for the particular prey population dynamics of
Allee type, the predator can actually slow down or even reverse the prey invasion. In their
model, it was assumed that the diffusion rate of the predator is much faster than the one
of the prey. When the prey dynamics developed under an Allee effect, Owen and Lewis
applied a singular perturbation analysis and considered the situation that the front of the
predator arrives at that of the prey.

In this paper we undertake a similar analysis in the presence of prey-taxis. It turns out
that the control effect of the predator is actually reduced through prey-taxis (Section 3).
Effective control of a spreading prey population requires predators at the leading edge of
the spreading prey population. However, the addition of prey-taxis to a model means that
predators are drawn away from the leading edge by prey-taxis. This reduces the effect of
the predator on controlling prey spread as compared to that from pure diffusive motion of
predator.

Compared to the long history of chemotaxis (Horstmann, 2003), a prey-taxis equa-
tion was derived more recently by Kareiva and Odell (1987). Kareiva and Odell investi-
gated the phenomenon that predators (ladybugs) tend to search for food in areas of higher
prey (aphids) density, and derived the mechanism for this non-random foraging. Based
on this mechanism, they studied predator aggregation in high prey density areas. (See
Ferran and Dixon, 1993; Dixon, 2000 for more details of foraging behavior of ladybugs.)
This inclusion of directional movement towards prey-rich environments tended to increase
the chance of predator survival in a heterogeneous prey distribution (Kareiva and Odell,
1987).

The characteristic feature of prey-taxis equations is that taxis is incorporated into dis-
persal terms as an advection term where velocity is proportional to the gradient of the prey
density. Here we obtain the model by incorporating a prey-taxis term into the reaction–
diffusion model of Owen and Lewis (2001) as follows

vt = εvxx + vf (v) − nh(v), (1)

nt = nxx − (
χ(v)vxn

)
x
+ γ n

(
h(v) − δ

)
, (2)
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where ε, γ and δ are positive dimensionless quantities. It is assumed that ε � 1. Here
v(x, t) and n(x, t) are prey density and predator density, respectively. The function f (v)

describes the prey population dynamics in absence of the predator, h(v) is the functional
response per predator, and γ δ is the mortality rate of the predator in absence of the prey.
The prey-sensitivity, χ(v), is a non-negative non-increasing function of the prey density.
The model (1), (2) has been derived in Lee (2006) where more details about the modeling
assumptions can be found.

When applied to predator–prey models, traveling wave front solutions have shown how
the predators invade an area where prey has already stabilized to its carrying capacity.
Traveling wave fronts are solutions to partial differential equations (PDEs), which have a
fixed shape and translate at a constant speed c as time evolves. (See Murray, 1989 for a
detailed discussion.)

Investigating traveling waves enables us to understand how the prey population can be
controlled by the predator that is released as a biological control agent. Understanding
the mechanism of the predator response to spatial prey density helps us to select a proper
control agent. In addition, we may be able to diagnose the sources of failure and success
in biological control campaigns. As a result, we could suggest management possibilities
that are likely to be successful.

The study of traveling wave solutions falls into two groups. The first describes spread
of predators into an area where prey has already stabilized to its carrying capacities. The
second describes simultaneous spread of predator and prey into a new environment.

Dunbar (1983, 1984, 1986) demonstrated the existence of various traveling wave trains
(traveling wave solutions which show periodic behaviors) and traveling front solutions
with a range of speeds c for a diffusive predator–prey system with logistic growth of the
prey and a type II functional response and where only the predator moved. Huang et al.
(2003) extended Dunbar’s result to the case that the prey equation has a diffusion term as
well. When logistic prey dynamics are replaced by a so-called Allee effect, predator–prey
systems with constant diffusion terms for both species have a unique traveling wave solu-
tion with a fixed unique wave speed c (Gardner, 1984). Here, the Allee effect is negative
population growth at low densities due to a variety of social mechanisms such as a lower
chance of finding mates, less efficient group defense, and so forth (Allee et al., 1949;
Lewis and Kareiva, 1993).

In this paper, we consider the case where predator and prey spread together into a
new environment. The case where only the predator moved, i.e. ε = 0 was considered by
Dunbar (1983). Owen and Lewis (2001) considered the case where prey also moved, i.e.
ε > 0. We include prey-taxis, ratio-dependent functional responses, and an Allee effect,
and see results on predator control of prey.

This paper is organized as follows. In Sections 2.1, 2.2, we consider the prey popu-
lation dynamics with no Allee effect growth. In particular, in Section 2.1, for standard
functional responses, we study the role of prey-taxis on the prey spread and find that
predators cannot slow down a prey invasion (Theorem 2.1). In Section 2.2, we investigate
ratio-dependent functional responses and find that for a specific linear ratio-dependent
functional response, predators can slow down a prey invasion (Theorem 2.2). An Allee
effect is considered in Sections 3.2 and 3.4 with prey-taxis. A constant prey sensitivity
and a non-constant prey sensitivity are considered in Sections 3.2 and 3.4, respectively,
and we find that predators can stop a prey invasion (Theorems 3.1 and 3.3).



Continuous Traveling Waves for Prey-Taxis 657

2. Prey dynamics with no Allee effect

In this section, we study the model (1), (2) with the case that the prey dynamics has no
Allee effect. In addition, we consider standard functional responses (h(0) = 0 and h′(0)

is bounded) in Section 2.1 and ratio-dependent functional responses in Section 2.2. The
purpose of this section is to find if the predator with prey-taxis can stop or slow down a
prey invasion. We find that when the functional response is of standard, then the presence
of predators cannot slow down the prey spread, but when the functional response is of
ratio-dependent type, then the presence of predators may slow down or stop the prey
spread.

2.1. Standard functional responses

Here, we study the wavefront after the predators catch up with the prey invasion. In this
section, we consider growth with no Allee effect (f (0) > 0, e.g. logistic growth, f (v) =
1 − v) and a standard functional response (h(0) = 0 and h′(0)) is bounded, e.g. type I–III
Holling functional response. This case with no prey-taxis was considered by Owen and
Lewis (2001) where it was shown that predator did not slow down spread of the prey. The
traveling wave with the predator moved at the same speed as the traveling wave without
the predator, namely the Fisher wave speed.

Slow movement of the prey generates a sharp transition in prey population from the
coexistence steady state on the left of the wave to zero population on the right of the wave.
In Lee (2006), we derive a prey sensitivity χ(v) from a random walk approach that is fit
to experimental data. From that study, we find that to leading order χ(v) = b

v
(see also

Segel, 1980), hence the case χ(0) = ∞ occurs. However, it is biologically unrealistic to
assume an infinite response of predators to an infinitesimal amount of prey. Additionally,
the singularity at v = 0 produces mathematical difficulties, which are not biologically
relevant. Hence, in this paper we will consider some regularization, i.e. for τ > 0, we
study χ(v) = b

v+τ
and χ(v) = b

(v+τ)2 (see also Tyson et al., 1999).
We transform Eqs. (1), (2) using traveling wave coordinates, z = x − ct (with wave

speed c) to get

0 = cV ′ + εV ′′ + Vf (V ) − Nh(V ), (3)

0 = cN ′ + N ′′ − (
χ(V )V ′N

)′ + γN
(
h(V ) − δ

)
, (4)

with N(z) = n(x, t) and V (z) = v(x, t). We consider the traveling wave connection be-
tween the coexistence steady state (ṽ, ñ) = (v0, n0) and trivial steady state (v̂, n̂) = (0,0)

with the conditions that limz→∞ N(z) = limz→∞ V (z) = 0, limz→−∞ N(z) = n0, and
limz→−∞ V (z) = v0. This describes the situation where an established prey population
begins to spread along the positive direction and newly introduced predators follow the
spread of the prey. Since the predator density changes via diffusion and by the local pop-
ulation dynamics, initially, predators may easily catch up with the prey wave. However,
as soon as predators reach the front of the spreading prey, the predator spreading speed is
slowed down due to the lack of prey.

We consider whether or not the traveling waves of prey slow down due to the interac-
tion with predators. We use linear analysis for this. In a small neighborhood of a hyper-
bolic equilibrium (v̂, û) = (0,0) for (3), (4), flow of the nonlinear system is topologically
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equivalent with that of its linearization if (0,0) is a hyperbolic steady state (Hartman,
1964). The linearized equations of Eqs. (3), (4) are,

0 = cV ′ + εV ′′ + (
v̂f ′(v̂) + f (v̂) − n̂h′(v̂)

)
V − h(v̂)N, (5)

0 = cN ′ + N ′′ − (
χ(v̂)n̂

)
V ′′ + γ n̂h′(v̂)V + γ

(
h(v̂) − δ

)
N. (6)

The linearized prey-taxis term can be obtained by

(
χ(v)vxn

)
x

= ((
χ(v̂) + χ ′(v̂)V

)
Vx(n̂ + N)

)
x

= χ(v̂)n̂Vxx + χ ′(v̂)n̂(V Vx)x + χ(v̂)(NVx)x + χ ′(v̂)(NV Vx)x

≈ χ(v̂)n̂Vxx, (7)

up to the order V 2 approximation.
We now look for solutions in the form

N,V ∝ exp(λz), (8)

where λ is the eigenvalue. The eigenvalue λ having negative real parts implies that the
steady state (n̂, v̂) = (0,0) is linearly stable, since, after small perturbation, (n̂, v̂) →
(0,0) as z → ∞. Substitution of (8) into (5), (6) gives the following condition

∣
∣∣
∣
ελ2 + cλ + v̂f ′(v̂) + f (v̂) − n̂h′(v̂) −h(v̂)

−χ(v̂)n̂λ2 + γ n̂h′(v̂) λ2 + cλ + γ (h(v̂) − δ)

∣
∣∣
∣ = 0. (9)

Since we are interested in the predator–prey–free steady state, i.e. (n̂, v̂) = (0,0), (9)
becomes

∣∣
∣∣
ελ2 + cλ + f (0) 0

0 λ2 + cλ − γ δ

∣∣
∣∣ = 0, (10)

which leads to the same characteristic equation as Owen and Lewis (2001) derived for the
diffusion-only case. Hence, we obtain a similar result that the wave speed in a prey-taxis
system is the same as that in the prey-only case. Therefore, predators cannot slow down
the prey spread in the form of traveling waves. In this case, predators slow down and
adjust their own spread rate to the prey’s spread rate.

Theorem 2.1. Consider (1), (2) on an unbounded domain −∞ < x < ∞ and assume

(i) The functional response is zero for zero prey density (h(0) = 0) and its slope is
bounded at zero density (h′(0) bounded), e.g. type I, h(v) = v, or type II, h(v) =
(α+1)v

α+v
,

(ii) The per capita growth rate for prey is positive for low prey densities (f (0) > 0), e.g.
logistic growth of prey, f (v) = 1 − v, and

(iii) Bounded prey-taxis coefficient of the form, χ(v) ≥ 0, e.g. χ(v) = b
v+τ

, or χ(v) =
b

(v+τ)2 .
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Then the minimum traveling wave speed c∗ is bounded by the minimal Fisher speed

c∗ ≥ 2
√

εf (0).

This implies that predators cannot slow down a prey invasion with speed 2
√

εf (0).

This may indicate that as predators approach the tip of prey spread, they adjust their
speed not to exceed the tip of the prey’s spread. Through a series of simulations, it is seen
that as the prey sensitivity coefficient b decreases, the tip of predators catching up with
prey retreats behind the tip of prey spread, so a predator free zone appears near the tip of
the prey spread. A diffusion process of the predator tend to make predators smear into the
tip of the prey spread, but strong prey-taxis makes predators move back. Thus, at some
distance from the tip of the prey wave, the tip of the predator catching up is formed.

2.2. Ratio-dependent functional responses

Since for growth with no Allee effect, the prey-taxis term fails to have an effect on the
result of the linear analysis, we now consider different functional responses, without a
prey-taxis term. These cases have not been studied by Owen and Lewis (2001).

Here, we consider ratio-dependent functional responses in order to examine whether
predators may slow down prey spread. Our analysis (not shown here) also indicates that
prey-taxis does not play a role in stopping prey spread for the ratio-dependent case. The
ratio-dependent functional responses we consider are the form of h(v,n) = μv

n+dv+τ
for

some positive constants μ, d , and τ (see DeAngelis et al., 1975; Getz, 1991; Berryman
et al., 1995). Here we consider four cases. The first case is of d = τ = 0, the second one
of d = 0 and 0 < τ � 1, the third one of d > 0 and τ = 0, and the last one of d > 0 and
0 < τ � 1. Indeed, the first two cases are the linear ratio-dependent functional responses
and the last two are the hyperbolic ratio-dependent functional responses.

We are thus interested in the following system

vt = εvxx + vf (v) − nh(v,n), (11)

nt = nxx + γ n
(
h(v,n) − δ

)
. (12)

First, we consider case 1 of a linear ratio-dependent functional response, i.e. h(v,n) = μv

n
.

When we substitute h(v,n) = μv

n
into Eq. (11), we have vt = εvxx + v(f (v) − μ). At

(v,n) = (0,0), the linear ratio-dependent functional response, h(v,n) = μv

n
, is undefined,

but the term nh(v,n) is continuous at (v,n) = (0,0). In this case, Eq. (11) becomes a
Fisher-type equation. Thus, the condition for the wave speed is

c2 ≥ 4ε
(
f (0) − μ

)
. (13)

Hence, when the functional response is of the linear ratio type in case 1, then the presence
of predators may slow down or stop the prey spread depending on the parameter μ. In the
absence of predators, the prey dynamics follow logistic growth, but the introduction of
predators leads to a different prey population growth about the leading edge of the wave.
The main cause for the slowing down of the prey invasion is the fact that predators are
spontaneously generated by prey even at arbitrary low prey densities. As a result, the prey
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Bounded prey sensitivity with ratio-dependent functional response and without
Allee effect

Fig. 1 With logistic growth, f (v) = 1 − v, linear ratio-dependent functional response, h(v,n) = μv
n , and

constant prey sensitivity (χ = 0), introduced predators, which catch up with prey spread, and only slightly
slow down the prey spread. Here μ = 0.1.

intrinsic growth rate becomes smaller due to the potential interactions with predators at
the leading edge of the wave, i.e. the intrinsic growth rate becomes f (0) − μ. This may
be biologically questionable, i.e. ratio dependence seems to break down in a biological
sense at zero predator density (Abrams and Ginzburg, 2000). Figures 1 and 2 demonstrate
that the prey spread with μ = 0.1 and μ = 0.95, respectively. Consequently, it is noted
that the case of μ = 0.95 shows a slower spread rate of the prey than that of μ = 0.1.

We now regularize the linear ratio-dependent functional response by adding a small
term 0 < τ � 1 to the denominator, i.e. h(v,n) = μv

n+τ
. Then at the predator–prey–free

steady state, i.e. (n̂, v̂) = (0,0), the linearized equations of (11), (12) are

0 = cV ′ + εV ′′ + f (0)V , (14)

0 = cN ′ + N ′′ − γ δN, (15)

which leads to the characteristic Eq. (10). Hence predators cannot slow down the prey
spread in the form of traveling waves, which is contrary to the result in case 1. This regu-



Continuous Traveling Waves for Prey-Taxis 661

Bounded prey sensitivity with ratio-dependent functional response and without
Allee effect

Fig. 2 With logistic growth, f (v) = 1 − v, linear ratio-dependent functional response, h(v,n) = μv
n , and

constant prey sensitivity (χ = 0), introduced predators, which catch up with prey spread, and obviously
slow down the prey spread. Here μ = 0.95.

larization means that predators are no longer produced when the prey density approaches
zero.

In case 3, a singular hyperbolic functional response, i.e. h(v,n) = μv

n+dv
, has attracted

the attention of researchers for its rich behaviors at (v,n) = (0,0) (Kuang and Beretta,
1998; Jost et al., 1999). This singular function causes a singularity for a prey and predator
local dynamics, which prevents a linear stability analysis at the leading edge of a wave.
For this case, other methods need to be used and we leave this case as an open problem.

Now we consider the regularized hyperbolic ratio-dependent functional response of
h(v,n) = μv

n+dv+τ
in (11), (12). At the predator–prey–free steady state, i.e. (n̂, v̂) = (0,0),

the linearized equations of (11), (12) are

0 = cV ′ + εV ′′ + (
f (0)

)
V, (16)

0 = cN ′ + N ′′ − γ δN, (17)
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which again leads to the characteristic Eq. (10). Hence, this indicates that when the preda-
tor follow a regularized hyperbolic ratio-dependent functional response, then the predator
cannot slow down the prey spread with diffusion. We summarize:

Theorem 2.2. Consider (1), (2) with χ = 0, f (0) > 0, and ratio-dependent functional
response, h(v,n) = μv

n+dv+τ
. If d = τ = 0, i.e. h(v,n) = μv

n
, then the minimal traveling

wave speed c∗ satisfies

c∗ ≥ 2
√

ε
(
f (0) − μ

)
.

If τ > 0, then the minimal traveling wave speed c∗ satisfies

c∗ ≥ 2
√

εf (0),

regardless of the value of d ≥ 0.

Remark. If d > 0 and τ = 0, i.e. h(v,n) = μv

n+dv
, then other methods need to be used for

calculating the minimal traveling wave speed c∗.

3. Prey dynamics with an Allee effect

In the previous sections, we studied logistic prey growth and used linear analysis to find
the prey spread rate. However, when the prey dynamics includes an Allee effect, we can-
not use linear analysis (see Lewis and Kareiva, 1993 for details) because the speed of a
“pushed wave” is determined by the whole wave front. Instead of linear analysis, singular
perturbation analysis of the wavefront has been used for the diffusion-only case (Owen
and Lewis, 2001). In this section, we consider prey-taxis as an additional dispersal term
and use singular perturbation methods to find a necessary condition for the predator to
stop a prey invasion, i.e. c = 0. We begin this section by briefly reviewing the analysis of
Owen and Lewis (2001).

3.1. Singular perturbation method for standing waves

Here, we briefly sketch the singular perturbation for standing waves. Owen and Lewis
(2001) study models (1), (2) without prey-taxis (χ = 0). Due to the sharp transition layer
for small ε, a singular perturbation approach is used to find two conditions

∫ v0

0
vf (v) − g(v0)h(v) dv = 0, (18)

∫ vs

v0

vf (v)g′(v) dv = 1

2
δg(vs)

2, (19)

(See Owen and Lewis, 2001 and Lee, 2006 for more details.)
A singular perturbation analysis of the wavefront consists of two steps. The first step

is to consider a stationary wave in a transition layer and the result appears in (19). The
second step is to match the right- and left-outer solutions and the result is in (18). To
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Fig. 3 Stationary wave solution to Eqs. (1) and (2) with logistic growth, f (v) = 1 − v, type I functional
response and h(v) = v. Here δ = 0.7, ε = 0, and γ = 1. In A, dashed and solid lines show initial preda-
tor and prey distribution, respectively. In B, dashed and solid lines show predator and prey distribution,
respectively, at t = 500.

describe a standing prey wave (c = 0) with sharp transition, we begin with a predator–
prey model for a completely immobile prey (Hastings et al., 1997). We assume that the
distribution of prey reached a steady state (Fig. 3A shows the initial distributions of the
predator and prey density). Introduced predators initially move forward and stop at the
prey front to reach a steady state (Fig. 3B shows the distributions of the predator and prey
density after 500 time units).

In the second step, we allow the prey to move with a small diffusion rate. When prey
move slowly compared to their predators, a transition layer appears at the wave front (see
Fig. 4B). In the transition layer, the predator density remains about constant n = n0 to
leading order and the corresponding prey density is v0.

It is noted that when we apply these two conditions (18), (19) from Owen and Lewis
(2001) to the situation where the prey population growth is logistic or shows an Allee
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Fig. 4 Stationary wave solution to Eqs. (1) and (2) with logistic growth, f (v) = 1 − v, type I functional
response and h(v) = v. Here δ = 0.7, ε = 0.01, and γ = 1. In A, dashed and solid lines show initial preda-
tor and prey distribution, respectively. In B, dashed and solid lines show predator and prey distribution,
respectively, at t = 10.

effect, the predator density is slightly overestimated in the transition area (see Fig. 4B).
With logistic growth, the overestimated predators fail to stop the prey spread. Therefore,
the predators from the exact solution cannot stop the prey spread. In contrast, with an
Allee effect, the overestimated predators stop the prey spread, however, it does not guar-
antee that the predators from the exact solution may stop the prey spread. As the prey
diffusion rate ε increases, this error increases. Thus, the parameter a shown in the Allee
effect would have to increase for predators to stop the prey spread as ε increases.

The same method can be used for non-zero wave speeds. Before we derive a necessary
condition for stopping prey in the predator–prey model with prey-taxis, we also note that
a singular perturbation analysis of the wavefront can be applied for the case with logistic
growth as well. As a result, singular perturbation gives an idea that the appearance of the
predator can stop or slow down the prey spread but that method may not give an idea how
much the prey slow down due to the predator.



Continuous Traveling Waves for Prey-Taxis 665

3.2. Constant prey sensitivity

We now resume finding the stopping conditions for the case of prey-taxis. Recall that a
key difference between our model and the model of Owen and Lewis is that prey-taxis is
added in our model. To find a spread rate, we study the wavefront after the predators catch
up with the prey and the coexistence is observed. Slow movement of the prey generates a
sharp transition that connects the coexistence steady state on the left to the zero population
on the right.

We want to find out whether predators with a prey-taxis strategy can stop prey spread,
i.e. if c = 0 is possible. Here, we consider a constant prey sensitivity, i.e. χ(v) = χ . We
use the singular perturbation method of Owen and Lewis (2001), which needs a critical
modification due to the prey-taxis term. Due to the zero wave speed we consider the
temporal steady state of the following system

vt = εvxx + vf (v) − nh(v), (20)

nt = nxx − (χvxn)x + γ n
(
h(v) − δ

)
, (21)

where the constant χ is the prey sensitivity of the predator and ε, γ , and δ positive di-
mensionless parameters. We consider Allee dynamics, f (v) = (1 − v)(v − a) and a type
I functional response, h(v) = v (later we will consider various forms of f (v), and h(v)).
The stationary system is as follows

0 = εvxx + vf (v) − nh(v), (22)

0 = nxx − (χvxn)x + γ n
(
h(v) − δ

)
. (23)

Transition layer. Rescaling the spatial coordinate to ξ = x√
ε
, Eqs. (22), (23) are written as

0 = vξξ + vf (v) − nh(v), (24)

0 = nξξ − (χvξn)ξ + εγ n
(
h(v) − δ

)
. (25)

The boundary conditions of the transition layer are: limξ→±∞ vξ (ξ) = 0, limξ→∞ v(ξ) =
0, and limξ→−∞ v(ξ) = v0. As ε → 0, n follows nξξ − (χvξn)ξ = 0. Integrating this equa-
tion, we have nξ − χvξn = C0. As ξ → ±∞, nξ → C0, since vξ → 0. For large |ξ |,
nξ ≈ C0. Integrating one more time, then for large |ξ | we have n ≈ C0ξ + C1 where C0

and C1 are integral constants. However, for any non-zero constant C0, a different sign of ξ

generates a negative population for the predators for |ξ | � 1, i.e. if C0 > 0, then for nega-
tive large ξ , n becomes negative. Thus, C0 must be zero. We now have nξ −χvξn = 0 for
all ξ and nξ = 0 for large |ξ |. Isolating n on the left side and v on the right side, we have

1

n
nξ = χvξ . (26)

This can be integrated directly with respect to ξ so that

ln
(
n(ξ)

) − ln
(
n(−∞)

) =
∫ ξ

−∞
χvξ dξ = χ

(
v(ξ) − v(−∞)

)
. (27)



666 Lee et al.

Since n(−∞) = n0, a constant to be determined, we have

n(ξ) = n0 exp
(
χ

(
v(ξ) − v0

))
. (28)

In contrast to the case studied by Owen and Lewis (2001), the predator density is not
constant in the transition layer, but rather given by (28). Note that n(−∞) = n0 and
n(∞) = n1 = n0 exp(−χv0). We substitute relation (28) for n into (24), and then we
have a single equation for v, namely

vξξ + vf (v) − n0 exp
(
χ

(
v(ξ) − v0

))
h(v) = 0, (29)

where the boundary conditions are: limξ→±∞ vξ (ξ) = 0, limξ→∞ v(ξ) = 0, and
limξ→−∞ v(ξ) = g−1(n0) = v0, where g(v) = vf (v)

h(v)
(the transformation in Eq. (29) has

also been used by Nanjundiah, 1973). Multiplying Eq. (29) by dv/dξ , and integrating
with respect to ξ from −∞ to ∞ gives

∫ ∞

−∞

{
d2v

dξ 2
+ vf (v) − n0 exp

(
χ

(
v(ξ) − v0

))
h(v)

}
dv

dξ
dξ = 0. (30)

The first term is integrated directly and the second term is done by using a change of
variables from ξ to v, to get

1

2

(
dv

dξ

)2∣∣∣
∣

∞

−∞
+

∫ v0

0
vf (v) − n0 exp

(
χ(v − v0)

)
h(v)dv = 0. (31)

Applying the boundary conditions and n0 = g(v0) yields

∫ v0

0
vf (v) − g(v0) exp

(
χ(v − v0)

)
h(v)dv = 0, (32)

which determines v0 consistent with a stationary solution.

Right-hand outer solutions. We now consider Eqs. (22), (23) setting ε = 0 and z = x

so that v and n satisfy

0 = vf (v) − nh(v), (33)

0 = nzz − (χvzn)z + γ n
(
h(v) − δ

)
. (34)

From Eq. (33), v = 0 or n = g(v) = vf (v)

h(v)
. Since we are looking for the right-hand outer

solutions, we here focus on v = 0 so that in Eq. (34) vz becomes zero and we get

nzz − γ δn = 0, (35)

with boundary conditions: limz→∞ n(z) = 0 and n(0) = n1 = n0 exp(−χv0). Therefore,
after applying boundary conditions to (35), we get

n(z) = n1 exp
(−√

γ δz
)
, and subsequently

dn

dz
(0) = −n0 exp(−χv0)

√
γ δ.

(36)
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Left-hand outer solutions. We now consider the other outer layer. Recall that with-
out prey-taxis, in the transition layer n(ξ) was constant so that Eq. (36) played the role
of a boundary condition to find left-hand outer solutions. (See Owen and Lewis, 2001
for details.) However, the prey-taxis term makes the procedure of matching the solutions
more complicated. Here, we consider the conserved flux in the transition layer so that
( dn

dx
− χn dv

dx
)|x=0 = ( dn

dξ
− χndv

dξ
)|ξ=∞ = ( dn

dz
)|z=0 = −n0 exp(−χv0)

√
γ δ. The last equal-

ity comes from matching the inner solution and the outer solution of the transition layer
and the right hand outer solution. n = g(v) is put into Eq. (23) to get

nxx − (χvxn)x + γ n
(
h
(
g−1(n)

) − δ
) = 0, (37)

with boundary conditions: n(0) = n0, limx→−∞ n(x) = ns , ( dn
dx

− χn dv
dx

)|x=0 =
−n0 exp(−χv0)

√
γ δ, and dn

dx
(−∞) = 0, which satisfy the conservation of flux in the

transition layer.
Multiplying Eq. (37) by (dn/dx − χndv/dx), and integrating with respect to x from

−∞ to 0 we find
∫ 0

−∞

{
nxx − (χnvx)x + γ n

(
h
(
g−1(n)

) − δ
)}

(
dn

dx
− χn

dv

dx

)
dx = 0. (38)

As we did for the analysis in the transition layer, the first term is integrated directly and
the second term is done by using a change of variables from ξ to n, to get

1

2

(
dn

dx
− χn

dv

dx

)2∣∣
∣∣

0

−∞
+

∫ n0

ns

γ n
(
h
(
g−1(n)

) − δ
)
(

1 − χ
n

g′(g−1(n))

)
dn = 0.

(39)

Using n = g(v) in some parts of the above expression, we can write the integral as into
∫ v0

vs

γg(v)
(
h(v)g′(v) − h(v)χg(v) + δχg(v)

)
dv −

∫ n0

ns

γ δndn. (40)

Applying the boundary conditions to Eq. (39) and n0 = g(v0) yields

γ

∫ vs

v0

g(v)h(v)g′(v) dv + γχ

∫ vs

v0

g2(v)
(
δ − h(v)

)
dv

= −γ δ
(n2

0 − n2
s )

2
+ 1

2

(
dn

dx
− χn

dv

dx

)2∣∣∣
∣
x=0

= γ δ
(g2(vs) − g2(v0))

2
+ 1

2
g2(v0) exp(−2χv0)γ δ,

which gives a condition that the left- and right-hand outer solutions satisfy a flux-balanced
matching if and only if the following matching condition is satisfied

∫ vs

v0

vf (v)g′(v) dv + χ

∫ vs

v0

g2(v)
(
δ − h(v)

)
dv

= δ
(g2(vs) − g2(v0))

2
+ 1

2
g2(v0) exp(−2χv0)δ.
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Theorem 3.1. Consider (1), (2) with χ(v) = χ , f (v) = k(v − a)(1 − v), and type I
functional response, h(v) = v. Then we have a unique coexistence steady state (vs, ns) =
(δ, k(δ − a)(1 − δ)) for 0 < a < δ < 1 and we have the following two conditions in order
for zero wave speed solutions. Those conditions restrict the values of v0, δ, and χ

∫ v0

0
vf (v) − g(v0) exp

(
χ(v − v0)

)
h(v)dv = 0, (41)

∫ vs

v0

vf (v)g′(v) dv + χ

∫ vs

v0

g2(v)
(
δ − h(v)

)
dv

= δ
(g2(vs) − g2(v0))

2
+ 1

2
g2(v0) exp(−2χv0)δ. (42)

For given δ and χ , we can find the critical Allee threshold a0 = a(δ,χ) for prey stopping.

3.3. Critical Allee threshold

If χ is zero, then conditions (41), (41) reduce to conditions (18), (19). In this section,
we consider the relationships of the critical Allee thresholds for the cases of prey-only,
diffusion-only in a predator–prey system, and prey-taxis. We denote the critical Allee
threshold for prey stopping for the diffusion only case by a∗(δ). It is noted that for the
diffusion-only case the predator density is constant in the transition layer, but including
prey-taxis allows the predator density to vary in the transition layer. Therefore, when we
match the right-hand and left-hand outer solutions we need some adjustments. Note that
we have an additional constraint;

vs ≤ v0. (43)

(See Owen and Lewis, 2001 for details.) In addition, it is seen that a < v0 < 1.
Owen and Lewis (2001) found that without taxis the critical Allee threshold a∗(δ)

for prey stopping becomes smaller due to presence of predator. Here, we consider the
relationship between a0 and χ , which is obtained from (41) and (41). Setting ā as the
critical Allee threshold of the prey only case, i.e. vt = εvxx + vf (v) then, in the following
three Lemmas, we will show that a∗(δ) ≤ a0(δ,χ) ≤ ā. For that, we will show that the
critical Allee threshold a0(δ,χ) is an increasing function with respect to χ . Then we will
show that v0 approaches vs as χ → ∞. Finally, we will show that limχ→∞ a0(δ,χ) ≤ ā.

Lemma 3.1. Assume f (v) = k(1−v)(v −a) and h(v) = v. For a given δ we assume that
χ and a0(χ) satisfy condition (41). Then the critical Allee threshold a0(χ) is monotoni-
cally increasing with respect to χ .

Proof: For fixed δ we consider a0 as a function of χ and v0 as a constant. Given g(v0) =
f (v0), we differentiate Eq. (41) with respect to χ and isolate da0

dχ

da

dχ
= 6(1 − v0)(v0 − a0)

χ

F1

F2
, (44)
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where F1 = −2 + 2 exp(−χv0) + χv0 exp(−χv0) + χv0 and F2 = −2χ2v3
0 − 6χv0 −

6v0 − 6 exp(−χv0) + 3χ2v2
0 + 6χv2

0 + 6v0 exp(−χv0) + 6.
From Theorem 3.1, we have a < vs = δ < 1, which combined with condition (43)

leads to a0(χ) < vs ≤ v0. Moreover, for given h(v) and f (v), we have n = g(v) = f (v).
A biologically relevant n0 > 0 indicates that v0 < 1, otherwise n0 would be negative. As
a result a0(χ) < vs ≤ v0 < 1 guarantees 6(1−v0)(v0−a0)

χ
> 0. Now we move on to find the

sign of F1. The derivative and the second derivative of F1 with respect to χ are

dF1

dχ
= −v0

(−1 + exp(−χv0) + χv0 exp(−χv0)
)
, (45)

and

d2F1

dχ2
= v3

0χ exp(−χv0) > 0, (46)

respectively. Since d2F1
dχ2 > 0, dF1

dχ
is increasing function with respect to χ . At χ = 0,

dF1
dχ

= 0. Thus for χ > 0, dF1
dχ

is positive, which implies that F1 is increasing function with
respect to χ . At χ = 0, we obtain F1 = 0. Therefore, we have positive F1 for positive χ .

The derivative, the second derivative, and the third derivative of F2 with respect to χ

are

dF2

dχ
= −2v0

(
2χv2

0 + 3 − 3 exp(−χv0) − 3χv0 − 3v0 + 3v0 exp(−χv0)
)
, (47)

d2F2

dχ2
= 2v2

0

(−2v0 − 3 exp(−χv0) + 3 + 3v0 exp(−χv0)
)
, (48)

and

d3F2

dχ3
= 6v3

0 exp(−χv0)(1 − v0), (49)

respectively. Since 0 < v0 < 1, d3F2
dχ3 is positive, which implies that d2F2

dχ2 is increasing with

respect to χ . At χ = 0, d2F2
dχ2 = 2v3

0 > 0. Thus d2F2
dχ2 > 0 for χ ≥ 0. Thus dF2

dχ
is increasing

function with respect to χ . At χ = 0, dF2
dχ

= 0. Thus for χ > 0, dF2
dχ

is positive, which
implies that F2 is increasing function with respect to χ . At χ = 0, F2 = 0. Hence, we
have positive F2.

Therefore from (44), da0
dχ

is shown to be positive for positive χ . Hence, a0(χ) is in-
creasing as χ increases. �

We showed that the critical Allee threshold a0(χ) is an increasing function with respect
to χ . Now we will show that a0(χ) is bounded by ā from the prey-only case. For that we
will show that v0 approaches vs as χ → ∞.

Lemma 3.2. Assume f (v) = (1 − v)(v − a) and h(v) = v. Then as χ → ∞, v0 ap-
proaches vs .
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Proof: We rearrange Eq. (42)
∫ vs

v0

g2(v)
(
δ − h(v)

)
dv

= δ
(g2(vs )−g2(v0))

2 + 1
2g2(v0)δ exp(−2χv0) − ∫ vs

v0
vf (v)g′(v) dv

χ
, (50)

∣
∣∣
∣

∫ vs

v0

g2(v)
(
δ − h(v)

)
dv

∣
∣∣
∣

≤ |δ (g2(vs )−g2(v0))

2 | + 1
2g2(v0)δ exp(−2χv0) + | ∫ vs

v0
vf (v)g′(v) dv|

χ
. (51)

From the assumption that f (v) = (1 − v)(v − a) and h(v) = v, it is easily seen that
f,h ∈ L2[vs, v0]. Thus there exists positive C1 such that | ∫ vs

v0
vf (v)g′(v)dvt | ≤ C1, which

leads to

∣∣
∣∣

∫ vs

v0

g2(v)
(
δ − h(v)

)
dv

∣∣
∣∣ ≤ C1 + δ(

g2(vs )+2g2(v0)

2 )

χ
, (52)

where the right-hand side of the equation approaches zero as χ → ∞. Thus, we have∫ vs

v0
g2(v)(δ − h(v)) dv = 0. However, g2(v) > 0 and δ − h(v) < 0 for v ∈ [vs = δ, v0]

give
∫ vs

v0
g2(v)(δ − h(v)) dv > 0 unless v0 = vs . Therefore, as χ → ∞, v0 → vs . �

Now we will show that a0(χ) is bounded by ā.

Lemma 3.3. Assume f (v) = (1 − v)(v − a) and h(v) = v. Then as χ → ∞, the critical
Allee threshold a0(χ) is bounded by the Allee threshold ā for prey-only case.

Proof: We rearrange Eq. (41) and obtain
∫ v0

0
vf (v) dv =

∫ v0

0
g(v0) exp

(
χ(v − v0)

)
h(v)dv, (53)

∣∣∣
∣

∫ v0

0
vf (v) dv

∣∣∣
∣ =

∣∣∣
∣

∫ v0

0
g(v0) exp

(
χ(v − v0)

)
h(v)dv

∣∣∣
∣

≤ max
v∈[0,v0]

∣
∣g(v)

∣
∣
(∫ v0

0

∣
∣h(v)

∣
∣2

dv

)1/2(∫ v0

0
exp

(
2χ(v − v0)

)
dv

)1/2

≤ max
v∈[0,v0]

∣∣g(v)
∣∣
(∫ v0

0

∣∣h(v)
∣∣2

dv

)1/2(1 − exp(−2χv0)

2χ

)1/2

. (54)

As χ → ∞, for positive v0 we have (
1−exp(−2χv0)

2χ
) → 0. In addition from the Lemma 3.2,

we know that v0 → vs . Thus the critical Allee threshold a0(∞) satisfies
∫ vs

0
vf (v) dv = 0, (55)
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which can be integrated. With vs = δ, we have

0 = δ2

12

(
3δ2 − 4δa0(∞) − 4δ + 6a0(∞)

)
. (56)

Thus

a0(∞) = δ(3δ − 4)

2(2δ − 3)
, (57)

from which it is easily seen that a0(∞) is an increasing function with respect to δ. In case
of δ = 1, we have a0(∞) = ā and for δ < 1 we find a0(∞) < ā. �

We summarize the results

Theorem 3.2. Let δ > 0, ε > 0, and k > 0 be given. Let a0(χ) denote the critical Allee
threshold that corresponds to a standing wave (c = 0) and satisfies conditions (41), (42).
Let a∗ denote the corresponding critical Allee threshold for the diffusion only model of
Owen and Lewis (2001) (χ = 0) and let ā denote the critical Allee threshold for the
prey-only model. Then a0(χ) is strictly monotonically increasing for positive χ and

a∗ < a0(χ) ≤ ā. (58)

For χ > 0 the predator effect on the prey is reduced as compared to the case of
χ = 0. For instance, if the prey growth rate is described by an Allee effect, f (v) =
k(v −a)(1 − v), and a = a∗ (the critical Allee threshold from a predator–prey model with
diffusion only), then depending on the model used, we have three scenarios. (1) With-
out any interaction with predators, the prey population will invade with a certain positive
speed. (2) The prey may continue invasion with a speed slowed down due to interaction
with predators when diffusion and prey-taxis is included in the predator model. (3) Since
a = a∗, the diffusion only model will predict that the prey invasion stops. In the following
section, we will take a non-constant prey sensitivity into account.

3.4. Non-constant prey sensitivity

For the case of non-constant prey sensitivity, we have similar results for prey stopping
with a constant prey sensitivity. We follow the similar analysis as in Section 3.2. (See
Appendix A for details.) As a result, we have the following theorem.

Theorem 3.3. Consider (1), (2) with χ(v) = b
v+τ

, f (v) = k(v − a)(1 − v), and type I
functional response, h(v) = v. Then we have a unique coexistence steady state (vs, ns) =
(δ, k(δ − a)(1 − δ)) for 0 < a < δ < 1 and we have the following two conditions in order
for zero wave speed solutions. Those conditions restrict the values of v0, δ, and b.

∫ v0

0
vf (v) − g(v0)h(v)

(
v + τ

v0 + τ

)b

dv = 0, (59)

∫ vs

v0

vf (v)g′(v) dv + b

∫ vs

v0

g2(v)

v + τ

(
δ − h(v)

)
dv = δ

(g2(vs) − g2(v0))

2
. (60)

For given δ and b, we can find the critical Allee threshold a0 = a(δ, b) for prey stopping.
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We now consider the relationship between a0 and b. We will follow the steps in Sec-
tion 3.2 to show that a∗(δ) < a0(δ, b) ≤ ā.

Lemma 3.4. Assume f (v) = (1 − v)(v − a) and h(v) = v. For a given δ we assume that
b and a0(b) satisfy condition (59). Then there is a τ ∗ such that for 0 ≤ τ ≤ τ ∗ the critical
Allee threshold a0(b) is monotonically increasing with respect to b.

Proof: See Appendix B. �

It is noted by simulations that when τ is big, the function a0(b) is not monotonically
increasing with respect to b.

Now we will show that a0(b) is bounded by ā from the prey-only case. For that we
will show that v0 approaches vs as b → ∞.

Lemma 3.5. Assume f (v) = (1 − v)(v − a) and h(v) = v. Then as b → ∞, v0 ap-
proaches vs .

Proof: The proof is similar to the proof of Lemma 3.2. We just omit the exponential term
and replace χ by b. �

Now we will show that a0(b) is bounded by ā.

Lemma 3.6. Assume f (v) = (1 − v)(v − a) and h(v) = v. Then as b → ∞, the critical
Allee threshold a0(b) is bounded by the Allee threshold ā for prey-only case.

Proof: See Appendix B. �

We summarize the results

Theorem 3.4. Let δ > 0, ε > 0, and k > 0 be given. Let a0(b) denote the critical Allee
threshold that corresponds to a standing wave (c = 0) and satisfies conditions (59), (60).
Let a∗ denote the corresponding critical Allee threshold for the diffusion only model of
Owen and Lewis (2001) (b = 0) and let ā denote the critical Allee threshold for the prey-
only model. Then there is a τ ∗ such that for 0 ≤ τ ≤ τ ∗, a0(b) is strictly monotonically
increasing for positive b and

a∗ < a0(b) ≤ ā. (61)

For b > 0 the predator effect is also not as strong as for b = 0. Or, it dilutes the predator
effect at the wave front. It was noted that prey-taxis inhibits predators from stopping the
prey spread. (See Theorem 3.4 for details.)

4. Conclusion

In this paper, we studied the role of prey-taxis in controlling prey invasion. Hence, we
considered traveling wave solutions to the prey-taxis model

vt = εvxx + vf (v) − nh(v), (62)
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nt = nxx − (
χ(v)vxn

)
x
+ γ n

(
h(v) − δ

)
, (63)

where ε � 1.
When the predator interact spatially with the prey by means of a diffusion process,

predators may not slow down prey spread without an Allee effect in the prey dynamics
(Owen and Lewis, 2001). In Sections 2.1, 2.2, we considered growth without an Allee
effect, with standard functional responses, and ratio-dependent functional responses. We
used linear analysis to investigate whether the predator may slow down and stop the prey
spread. It was shown that without an Allee effect, the predator with any type of standard
functional response cannot stop the prey spread. However, it was seen that the predator
with a linear ratio-dependent functional response of h(v,n) = μv

n
can slow down the prey

spread while a linear ratio-dependent functional response of h(v,n) = μv

n+τ
cannot slow

down the prey spread. We found that in the case of growth with no Allee effect, the prey-
taxis term does not slow the wave.

In Sections 3.2 and 3.4, we considered an Allee effect in the prey growth term and
derived the conditions for stopping the prey spread with prey taxis. For the case of constant
and non-constant prey sensitivities, we found prey-taxis inhibits predators from stopping
the prey spread. (See Lemmas 3.1–3.3 for a constant prey sensitivity and see Lemmas
3.4–3.6 for a non-constant prey sensitivity.)

An invading species may stop due to an Allee effect (see Lewis and Kareiva, 1993).
When the species interacts with its predator with a much faster diffusion rate, the invading
species may stop at a smaller critical Allee threshold a∗ than the critical Allee threshold
ā of the prey-only case (see Owen and Lewis, 2001). Here, we incorporated prey-taxis
into predator dispersal and investigated the role of the prey-taxis term for stopping the
prey spread. Prey-taxis was seen to play an opposite role in stopping the prey spread with
respect to a diffusion only model of predators. That is, prey-taxis dilutes the diffusion
dispersal of predators at the front of prey spread so that invading prey have more chance
to survive due to less predators as the prey sensitivity is biggest.

Natural enemies have been considered as biological control agents (Crawley, 1992;
Shigesada and Kawasaki, 1997). In some cases, natural enemies have worked well for
suppressing the outbreak of a pest, but it does not work well in many other cases (Dixon,
2000). For predators, there has been a dichotomy between a generalist and a specialist,
which are correlated with type II or type III functional responses (Turchin, 2003). How-
ever, in this research, we found that the dispersal behaviors (diffusion or prey-taxis) of
the predators are more important for the biological control than the type of functional
responses for prey stopping. Thus it is noted that further research on the dispersal behav-
ior of predators interacting with spatially distributed prey is needed to understand some
predators as proper and efficient control agents. Not including prey-taxis might overesti-
mate the success of a control agent.
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Appendix A: Derivation of stopping conditions for non-constant prey sensitivity

Here, we consider χ(v) = b
v+τ

for τ > 0 and derive the corresponding stopping condi-
tions. Then from the transition layer analysis, we have

∫ v0

0
vf (v) − g(v0)h(v)

(
v + τ

v0 + τ

)b

dv = 0. (A.1)

In the transition layer, the predator–prey relationship is

n = n0

(
v + τ

v0 + τ

)b

, (A.2)

and as v → 0, we have n → 0. Thus the right-hand outer solution is

n(x) = 0, and subsequently
dn

dx
(0) = 0. (A.3)

For the left-hand outer solution, we can follow similar steps as before. Conservation
of flux across n = n0 gives dn

dx
− b

v+τ
dv
dx

n|(v0,n0) = dn
dx

− b
v+τ

dv
dx

n|(0,0) = 0. Then a flux-
balanced matching condition gives

∫ vs

v0

vf (v)g′(v) dv + b

∫ vs

v0

g2(v)

v + τ

(
δ − h(v)

)
dv = δ

(g2(vs) − g2(v0))

2
. (A.4)

Appendix B: Proof of Lemmas

Proof of Lemma 3.4: Given τ ≥ 0 we consider a0 as a function of b and v0 as a constant.
Given g(v0) = f (v0), we can compute (59) explicitly (by using Maple). Even though the
result is long and complicated, we can isolate a, which is denoted by a0, and compute

da0

db
= 3v3

0(v0 + τ)b(1 − v0)(2 − v0)
A

B2
, (B.1)

with B = −6τ 2+b(1 − v0) − (v0 + τ)b(2v3
0b

2 − 3b2v2
0 − 3bv2

0 + 6v0τ
2 − 6τ 2 − 2v3

0 +
6τbv0 − 6τbv2

0) and A = τ 2+b(2 + b)(1 + b) ln(
v0+τ

τ
) + (3 + 2b)τ 2+b + (v0 + τ)b(v0 +

τ)(−3τ − 2τb + v0 + v0b
2 + 2v0b).

The derivative of a0 with respect to b is seen to be continuous for all τ ≥ 0. In addition,
at τ = 0, the derivative is

da0

db

∣∣
∣∣
τ=0

= (1 − v0)(2 − v0)v0

(2v0b − 2v0 − 3b)2
> 0, (B.2)

for v0 < 1 and b > 0. Therefore, da0
db

is shown to be positive at τ = 0. Let

A =
{
y : y ∈ [0,∞) and

da0

db

∣
∣∣
∣
τ=y

≥ 0

}
. (B.3)
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Then, we consider a connected subset of A, which includes τ = 0 and is denoted by A0.
Then A0 is non-empty set since τ = 0 ∈ A0. If A0 is unbounded, that is for all y ≥ 0,
da0
db

|τ=y ≥ 0, then we can choose any number bigger than zero as a value τ ∗. If A0 is

bounded, let τ ∗ = supA0. Then for τ ≤ τ ∗, we obtain da0
db

|τ ≥ 0. Hence, there exists a
τ ∗ ≥ 0 such that for τ ≤ τ ∗, the critical Allee threshold a0 is increasing as b increases. �

Proof of Lemma 3.6: We rearrange Eq. (59) and obtain

∫ v0

0
vf (v) dv =

∫ v0

0
g(v0)h(v)

(
v + τ

v0 + τ

)b

dv, (B.4)

∣
∣∣
∣

∫ v0

0
vf (v) dv

∣
∣∣
∣ =

∣
∣∣
∣

∫ v0

0
g(v0)h(v)

(
v + τ

v0 + τ

)b

dv

∣
∣∣
∣

≤ max
v∈[0,v0]

∣
∣g(v)

∣
∣
(∫ v0

0

∣
∣h(v)

∣
∣2

dv

)1/2(∫ v0

0

(
v + τ

v0 + τ

)2b)1/2

≤ max
v∈[0,v0]

∣
∣g(v)

∣
∣
(∫ v0

0

∣
∣h(v)

∣
∣2

dv

)1/2(
v0 + τ

2b + 1

)1/2

. (B.5)

As b → ∞, for positive v0 we have (
v0+τ

2b+1 ) → 0. In addition, from the Lemma 3.5, we
know that v0 → vs . Thus the Allee threshold a0(∞) satisfies

∫ vs

0
vf (v) dv = 0. (B.6)

Here we can use the same argument as in Lemma 3.3 to show that in the case of δ = 1,
we have a0(∞) = ā and for δ < 1 we find a0(∞) < ā. �
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