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Abstract Gliomas are primary brain tumours arising from the glial cells of the nervous
system.Thediffuse nature of spread, coupledwith proximity to critical brain structures,
makes treatment a challenge. Pathological analysis confirms that the extent of glioma
spread exceeds the extent of the grossly visible mass, seen on conventional magnetic
resonance imaging (MRI) scans. Gliomas show faster spread along white matter tracts
than in grey matter, leading to irregular patterns of spread.We propose a mathematical
model based on Diffusion Tensor Imaging, a new MRI imaging technique that offers
a methodology to delineate the major white matter tracts in the brain. We apply the
anisotropic diffusion model of Painter and Hillen (J Thoer Biol 323:25–39, 2013) to
data from 10 patients with gliomas. Moreover, we compare the anisotropic model to
the state-of-the-art Proliferation–Infiltration (PI) model of Swanson et al. (Cell Prolif
33:317–329, 2000). We find that the anisotropic model offers a slight improvement
over the standard PImodel. For tumourswith low anisotropy, the predictions of the two
models are virtually identical, but for patients whose tumours show higher anisotropy,
the results differ. We also suggest using the data from the contralateral hemisphere to
further improve the model fit. Finally, we discuss the potential use of this model in
clinical treatment planning.
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1 Introduction

Gliomas are a type of primary brain tumour arising from the glial cells of the
nervous system. The most aggressive subtype of glioma, grade IV astrocytoma,
or Glioblastoma multiforme (GBM), carries a poor prognosis, with a median sur-
vival of just 14 months despite treatment with surgery, radiation, and chemotherapy
(American Brain Tumor Association). Glioma cells have a tendency to spread
into the surrounding brain tissue, making the boundaries of gliomas very diffuse,
with a large amount of spread beyond what can be seen on scans. This phe-
nomenon, coupled with the delicate nature of brain tissue, makes treatment of
gliomas a challenge. As such, clinicians typically target a treatment region that
includes the grossly visible mass plus an additional uniform margin of approx-
imately 2 cm for radiation therapy. We propose that a mathematical model can
help define a more accurate extension based on an individual patient’s brain struc-
ture.

The heterogeneity of brain tissue has an effect on glioma spread, with differ-
ent movement mechanisms occurring in the grey matter than in the bundles of
nerve fibres that make up the white matter tracts. It has been shown that the can-
cer cells have a preferential movement direction aligned with the white matter
tracts (Rao 2003; Giese and Westphal 1996; Gritsenko et al. 2012), using them
as “highways” for their spread. When cancer cells move along these fibres, their
pattern of spread leads to tumour shapes that often show projections in certain
directions. This directed movement can be modelled through the use of anisotropic
diffusion, where the rate of spread is allowed to vary with direction (Painter and
Hillen 2013), with an increased rate of spread along the white matter tracts. The
advent of Diffusion Tensor Imaging (DTI) has allowed clinicians to measure the
rates of diffusion in each direction, at each location within the brain, thereby cre-
ating a map of the white matter tracts within an individual patient’s brain. DTI
technology therefore allows us to apply an anisotropic diffusion model to simu-
late for each individual patient the spread of glioma cells along the white matter
tracts. Such a model was derived by Painter and Hillen (2013), and in this paper
we will validate this anisotropic diffusion model on data from 10 recent glioma
patients.

We find that the anisotropic diffusion model of Painter and Hillen (2013) performs
well in reproducing most observed tumours with a good degree of success, showing
a slight improvement over the state-of-the-art Proliferation–Infiltration (PI) model of
Swanson et al. (2000). However, we also identify situations where neither of these
models give a good fit and offer an explanation as to why this is the case. We then
suggest future model modifications that could further improve upon either glioma
model. We argue that the inclusion of anisotropy, as measured through DTI imaging,
provides an advance in glioma modelling, although it does not provide a final answer,
and further research is necessary.
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1.1 Gliomas

Gliomas are so named because they arise from the glial cells of the central nervous
system. Glial cells are those cells that surround the nerve cells, providing the support
necessary for proper functioning. There are three types of glial cells of particular
importance: astrocytes, oligodendrocytes and ependymal cells (Kleihues et al. 1995).
Each of these cell types can undergo malignant transformations to form astrocytomas,
oligodendrogliomas and ependymomas, respectively. The most aggressive subtype,
grade IV astrocytomas, also called Glioblastoma multiforme (GBM), are the focus of
our modelling. GBMs may develop de novo, as primary GBMs, or result from the
transformation of lower grade astrocytomas, as secondary GBMs.

The main challenge in treating gliomas is the fact that a significant portion of the
tumour is “invisible” from a clinician’s perspective. Since this is known, treatment
regions typically include not only the visible mass, but also some of the surrounding
tissue. In Fig. 1, we show several regions that are typically used for radiation treatment.
The GTV, or Gross Tumour Volume, corresponds to the visible tumour mass as it
appears on a scan. The CTV, or Clinical Target Volume, is usually defined as a uniform
1.5 cm extension that is chosen to account for clinically occult extension. The PTV,
or Planning Target Volume, includes an additional 0.5 cm margin to account for any
uncertainties in the delivery of the prescribed dose. While using a uniform extension
of the GTV is a good starting point, the anisotropic nature of glioma spread implies
that cancer cells will have invaded further in some directions than in others, meaning
that it may be more beneficial in terms of both survival and quality of life to treat
further in some directions, and not as far in others. This is where mathematical models
offer the potential to improve treatment. Through simulating the growth of a tumour,
we can predict cell density levels in regions that cannot be seen on a scan.

1.2 Anisotropic Diffusion

The brain is made up of twomain types of tissues: white matter and grey matter. White
matter has a fibrous structure, consisting of the myelinated axons along which nerve

Fig. 1 The different treatment
regions for a glioma patient. The
Gross Tumour Volume (GTV) is
the visible tumour mass
delineated on a scan (green), the
Clinical Target Volume (CTV) is
a 1.5 cm extension of this region
to account for undetectable
cancer cell invasion (red), and
the Planning Target Volume
(PTV) is a 0.5 cm extension to
account for uncertainties in the
setup or delivery of the
prescribed dose (blue)
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cells send signals, and contains relatively few cell bodies. Conversely, grey matter
consists of the glial cells and nerve cell bodies, with a relatively low concentration
of both myelinated and unmyelinated axons (Purves et al. 2008; Kolb and Whishaw
2003). There is a growing body of evidence indicating that cancer cells will use the
fibrous white matter tracts to migrate, leading to spread that is decidedly not uniform
(Rao 2003; Giese and Westphal 1996; Gritsenko et al. 2012). The tendency of cancer
cells to follow white matter tracts results in an apparent increased rate of spread along
the direction aligned with the tract. Mathematically, we model this by assigning a
higher rate of spread in this direction than in the perpendicular directions.

Since the rate of spread is direction-dependent (anisotropic), a scalar diffusion coef-
ficient is insufficient to encode the diffusion parameters; hence, we use a symmetric,
positive-definite, second-order tensor D ∈ R

3×3 with entries corresponding to the
relative rates of spread in the associated directions. The easiest way to interpret a
tensor is through its principal directions and corresponding principal values. The use
of geometrical representations allows us to visualize the information contained within
the diffusion tensors.

The diffusion ellipsoid is defined as a level set of the inverse diffusion tensor:

Ec :=
{
v ∈ R

3 : vT D−1v = c
}

. (1)

It defines the set of equal probability of finding a randomwalker that starts at the origin
and undergoes anisotropic diffusion according to the tensor D.

The same tensor D can be visualized via the diffusion peanut obtained by plotting
the apparent diffusion coefficient, given by the map (Painter and Hillen 2013; Jones
and Basser 2004)

θ �→ θT Dθ : θ ∈ S
2, (2)

where S
2 is the 2-sphere consisting of all points of unit distance from the origin.

Peanuts will have their axes aligned in the direction of highest diffusivity and will
be pinched in directions having lower diffusivity (Painter and Hillen 2013). As an
example, consider two diagonal diffusion tensors D1 and D2 given by

D1 =
⎡
⎣
5 0 0
0 3 0
0 0 1

⎤
⎦ , D2 =

⎡
⎣
8 0 0
0 1 0
0 0 0.2

⎤
⎦ . (3)

The resulting ellipsoids and peanuts, as determined via Eqs. 1 and 2, respectively, are
shown in Fig. 2. Note that D1 produces an oblate ellipsoid and a peanut that is pinched
in one direction, while D2 produces a prolate ellipsoid and a peanut that is pinched
in two directions. For the special case of an isotropic tensor, which has three equal
principal values, both the diffusion ellipsoid and the diffusion peanut are spherical.
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Fig. 2 The oblate diffusion ellipsoid (a) and diffusion peanut (b) corresponding to D1 [see Eq. (3)] and
the prolate diffusion ellipsoid (c) and diffusion peanut (d) corresponding to D2 [see Eq. (3)]

1.3 Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) uses magnetic resonance imaging (MRI) technology
to measure the rate of diffusion of water molecules in different directions within
the brain (Jones and Leemans 2011). Diffusion is a naturally occurring phenomenon
and is unaffected by the magnetic field employed in MRI (Bihan et al. 2001). In
the regions around white matter tracts in the brain, the movement of water molecules
along the fibres is relatively unimpeded, while movement perpendicular to these fibres
is much more difficult. As such, DTI can be used to map the fibre network (Alexander
et al. 2007; Jones and Leemans 2011). The diffusion rate is only measured in the
direction of an applied gradient; thus, in order to determine the full three-dimensional
diffusion tensor, gradients must be applied in at least six directions, corresponding
to the six degrees of freedom of the symmetric tensor (Jiang et al. 2006; Jones and
Leemans 2011). However, applying the gradient in additional directions results in a
more accurate measurement (Jiang et al. 2006).

We can quantify the degree of anisotropy of a given tensor D ∈ R
3 in a single index

called a diffusion anisotropy index. While there are different options available for such
an index, here we use theFractional Anisotropy (FA) (Kingsley 2006). This is themost
common choice. The FA ranges between 0, corresponding to fully isotropic diffusion,
and 1, for fully anisotropic diffusion (Kingsley 2006). The fractional anisotropy FA2
for a two-dimensional tensor is

FA2 =
√
2

[
(λ1 − Dav)2 + (λ2 − Dav)2

]

λ21 + λ22
(4)
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Fig. 3 A sample 2D slice from
Patient 10 showing the fractional
anisotropy (FA). Note that
regions having high FA (white)
correspond to the white matter
tracts, while regions having low
FA (black) correspond to the
surrounding grey matter

and the three-dimensional fractional anisotropy FA3 is given by

FA3 =
√
3
[
(λ1 − Dav)2 + (λ2 − Dav)2 + (λ3 − Dav)2

]

2
(
λ21 + λ22 + λ23

) , (5)

where λ1, λ2 and λ3 are the principal values of a given tensor D in descending order,
and Dav = tr D/2 for the 2D case, and Dav = tr D/3 for the 3D case (Kingsley
2006). Note that for the isotropic case, Dav = λ1 = λ2 = λ3 and FA = 0. For the
fully anisotropic case, where FA = 1, the diffusion tensor is singular and only one
eigenvalue is non-zero. Figure 3 shows the sample FA variation for an axial brain slice
taken from Patient 10.

1.4 Established Work

Inspired by Mosayebi et al. (2012), we provide a table summarizing the state of the
art in modelling of spatial glioma spread in Table 1. In describing previous work, we
will make several distinctions between existing glioma models. The first distinction
will be whether or not the model uses diffusion tensors D ∈ R

n (anisotropic), or a
diffusion coefficient d ∈ R (isotropic). Models that use diffusion tensors can be of
“Fickian” form,

ut = ∇ · (D∇u) + f (u), (6)

or of “Fokker–Planck” form,

ut = ∇∇ : (Du) + f (u), (7)

where u(x, t) denotes the cancer cell density at time t ≥ 0 and location x ∈ Ω , andΩ

is a smooth n-dimensional domain. The reaction term f (u) denotes cell growth and
will be specified later. The index t denotes the partial time derivative and ∇ contains
the spatial derivatives. The colon : denotes the contraction of two tensors, specifically
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Table 1 Table modified from Mosayebi et al. (2012) summarizing previous models and contributions

Paper Model Tensor Source of tensor Comparison

Swanson et al. (2000–2016) D Isotropic N/A Many patients

Jbabdi et al. (2005) D DT Healthy case Visual

Clatz et al. (2005) DM DT Atlas 1 patient

Konukoglu et al. (2006) D DT Atlas Synthetic

Hogea et al. (2007) DM DT Atlas 1 patient

Bondiau et al. (2008) DM DT Atlas 1 patient

Konukoglu et al. (2010) D DT Real tensors 2 patients

Mosayebi et al. (2012) D DT Real tensors 11 patients

Painter and Hillen (2013) D DT Real tensors 1 patient

Engwer et al. (2016) D DT Atlas 1 patient

This Paper D DT Real tensors 10 patients

We have added several other relevant models, most of which have been developed since their paper was
published. For model categorization, D Diffusion, DM Diffusion and Mass Effect, DT Diffusion Tensor

∇∇ : (Du) =
n∑

i=1

n∑
j=1

∂

∂xi

∂

∂x j
(Di ju). (8)

Of course, eq. (7) can be expanded into a Fickian term plus an advection term:

ut = ∇∇ : (Du) + f (u) = ∇ · (D∇u) + ∇ · ((∇T D)u) + f (u). (9)

The Fokker–Planck version of anisotropic diffusion (7) is less well known; however,
it has been derived in many biologically related contexts (Okubo and Levin 2001;
Othmer and Stevens 1997; Painter and Hillen 2013; Hillen 2006; Belmonte-Beitia
et al. 2013) and is the basis for our anisotropic glioma model.

The cell growth term f (u) is often one of the following three types (Swanson et al.
2000; Painter and Hillen 2013; Marusic et al. 1994): exponential growth f (u) = ru
with a constant growth rate r > 0, logistic growth f (u) = ru(1 − u/K ) for carrying
capacity K > 0, or Gompertzian growth f (u) = −ru ln(u/K ).

The first application of a diffusion model to glioma spread was in 2000 by Swanson
et al. (2000) in the form of the PI model. While this model includes both cell growth
and diffusion, it uses, instead of the full diffusion tensor, a Fickian (6) scalar diffusion
coefficient that varies between white and grey matter. The growth is modelled using
an exponential function. The full PI model is therefore given by

ut = ∇ · (d(x)∇u) + ru, (10)

where d(x) is the diffusion coefficient, r is the growth rate, and u(x, t) is the cancer
cell density. Swanson’s group went on to lead the way in terms of applying mathemat-
ical models to glioma treatment planning. They have made great strides to apply their
models in a personalized medical framework, including diagnosis and treatment plan-
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ning (Swanson et al. 2000, 2003, 2008; Gu et al. 2012; Corwin et al. 2013; Jackson
et al. 2015; Wang et al. 2009; Rockne et al. 2010; Neal et al. 2013).

In 2009, the group looked at quantitative measures for proliferation and invasion
rates for individual patients, and how to connect these to a prognosis (Wang et al. 2009).
In 2010, they used these results, coupled with a model for cell killing by radiation, to
predict response to external beam radiotherapy on a patient-specific basis, with a high
degree of accuracy (Rockne et al. 2010). Jbabdi et al. (2005) incorporated anisotropy
into the glioma growth model, replacing the diffusion coefficient d(x) with a tensor
D(x). This anisotropic glioma growthmodel was used to simulate brain tumour spread
using a DTI scan of a healthy individual, and the resulting shapes were compared to
real gliomas.

Glioma modelling was moved along further in 2005 by Clatz et al. (2005) with
the first appearance of a mass effect. The mass effect refers to the result of physical
pressure build up and includes models for tissue strains and stresses. Growth and
infiltration are modelled using the PI model with the addition of diffusion tensors
(Jbabdi et al. 2005), plus a mass effect equation derived via a momentum balance
equation. The same research group carried this work further in 2008, introducing
parameters that allow for the mechanical aspects of growth, as well as diffusion, to be
tuned to a specific patient (Bondiau et al. 2008). While the results of their simulations
were eventually compared to the growth of an actual patient’s tumour, the simulations
used atlas data (Mosayebi et al. 2012), which provides a general map of a human brain
that is not specific to a particular patient.

In 2008, Hogea et al. (2008) proposed a modified model that includes both growth
and infiltration, as well as a mass effect modelled with an advection term. Here, the
cell density is modelled using a reaction–diffusion–advection equation, given by

ut = ∇ · (D∇u) − ∇ · (uv) + r(u), (11)

where once again, u(x, t) represents the space- and time-dependent cancer cell density.
The advective velocity v is determined via a continuummechanics derivation. Amajor
contribution was the method for fitting the parameters, which involved deriving and
solving a PDE constrained optimization problem.

While previous models had focused on modelling cell density, Konukoglu et al.
(2006) developed in the first model that focussed instead on invasion margins. This
is done by matching travelling wave solutions of the classic Fisher–KPP equation
to the tumour mass data. Konukoglu et al. (2010) extended this work, incorporating
real patient DTI data, and validating their model for two real patients. This idea was
taken a step further by Mosayebi et al. (2012), who proposed a model for the tumour
boundary using a geodesic distance measure on the Riemann metric induced by brain
fibres. This group was able to test their model using data from 11 patients, something
that few of the other groups had access to.

Although some of the above models use anisotropic diffusion, the connections of
the tumour diffusion tensors to the DTI measurements are not well justified. Painter
and Hillen (2013) developed a cell-based approach to clearly connect the measured
water diffusion tensor (DTI) to an effective tumour diffusion tensor D. It is the only
glioma model based on individual movement of cells along fibrous structures, and it
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uses a Fokker–Planck diffusion operator as discussed in Eq. 7. The derivation of the
anisotropic model from the cell-level transport framework also provides a method for
scaling the measured water diffusion tensors to cell movement anisotropies (Painter
and Hillen 2013). The scaling introduces a new anisotropy parameter that can be
estimated specifically for each patient. The anisotropic glioma spread model is given
by the PDE

ut = ∇∇ : (Du) + ru(1 − u), (12)

where r is the growth rate, and D is the anisotropic diffusion tensor.
The most recent model for glioma spread was developed by Engwer et al. (2015,

2016). It is an extension of the model of Painter and Hillen (2013) that explicitly
includes the adhesion mechanisms connecting glioma cells to white matter tracts. The
model derivation results in additional advective terms that are due to cell adhesions
with the brain tissue. Since several details that were assumed in Engwer’s model
(Engwer et al. 2015) have not yet been confirmed experimentally, we prefer to use the
simpler model (12).

1.5 Patient Data

We chose toworkwithDTI data from 10 cancer patients observed between 2006–2011
at a cancer hospital. By the time we received the patient data, they had already under-
gone several preprocessing steps for skull stripping and tumour segmentation, making
application of the anisotropic glioma growth model much easier. This processing was
done by Dr. R. Greiner and his team (Diaz et al. 2013; Salah et al. 2013).

Skull stripping serves to remove the skull from the image data. An automated
algorithm was used that removes the skull, creating a suitable domain for model
simulations (Diaz et al. 2013; Salah et al. 2013), so that the boundary of the domain
is really the boundary of the brain. Tumour segmentation refers to the delineation
of a tumour boundary using an MRI image. This process is often done manually
by a clinician; however, this can introduce bias and human error into the process.
Additionally, these segmentations are not reproducible. Instead, an automated tumour
segmentation tool based onMRI histograms was applied to the patient data (Diaz et al.
2013; Salah et al. 2013).

All of the patient data were segmented and include the tumour boundaries. Figure 4
displays two-dimensional cross sections through the centre of each patient’s tumour,
showing the slice containing the largest portion of the tumour. These images indicate
the shape and size of each tumour as a black outline. The colourful background shows
the fractional anisotropy (5) as computed from the corresponding DTI data. Light
colours represent high anisotropy, and dark colours represent low anisotropy.

Looking at these images, we see already that some tumours (in Patients 1, 4, 7,
8, and 10) are more spherical than others. We also observe areas of high anisotropy
inside or near the tumour, where anisotropic spread is seen to be significant.
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Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

Fig. 4 Segmentations through the largest two-dimensional slice of each patient’s glioma are shown. The
segmentations are done using an automatic procedure. The underlying colours correspond to the fractional
anisotropy with yellow = high FA, blue = low FA, and the tumour boundary is shown in black. A large
variation in tumour shape and size is observed

1.6 Outline

In the next section, we will describe the cell-based modelling approach of Painter
and Hillen (2013) and briefly derive the anisotropic model (12). We make use of the
von Mises and Fisher distributions as tools to describe oriented movement of cells in
aligned tissues and discuss how to transform the measured DTI data into cancer cell
diffusion tensors. We then briefly outline the numerical methods used to simulate the
anisotropic model in Sect. 2.1.

In Sect. 3, we discuss how to apply the anisotropic diffusion model to patient data
and describe the details of how the model is fit. We introduce a quantitative measure to
objectively evaluate model performance, by comparing the model-predicted tumour
to the real segmented tumour. Also discussed are the initial condition and parameter
selection.

The Swanson PI model is discussed in Sect. 3.1. We describe how the grey and
white matter are delineated on actual patient data using a thresholding value of the FA
of Eqs. (4) and (5).

The main results are showcased in Sect. 4, where we apply the anisotropic model
of Eq. (12) to data from ten patients and compare the model fitting with that of the
established PI model of Swanson (10). The results of these simulations show that
the anisotropic model offers some improvement over the original PI model. We also
introduce the idea of estimatingmissingDTI data by taking advantage of the symmetry
of the brain. We perform simulations on these new data for a subset of the original
patient set, finding that this technique can offer further improvement to the anisotropic
model. After establishing the validity of the anisotropic model, we discuss how it may
be applied in a clinical setting.

2 The Anisotropic Spread Model

In this section, we review the derivation of the anisotropic model of Eq. (12) from
Painter and Hillen (2013). For this model, we are considering how cancer cells migrate
in a heterogenous environment by contact guidance along white matter tracts (Hillen
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and Painter 2012). The fully anisotropic diffusion model of Eq. (12) was developed
from scaling arguments, and was built up from a cell-level transport model incorpo-
rating the underlying biological fundamentals (Hillen 2003, 2006; Hillen and Painter
2012; Painter and Hillen 2013). The diffusion tensor D(x) arises as the variance–
covariance matrix of an underlying fibre distribution q(x, t, v). Here x denotes space,
t is time, and v ∈ S

n−1 denotes a unit vector. The density q(x, t, v) measures the
directional distribution of white matter fibres at location x and time t , as determined
through DTI imaging. Given q(x, t, v), we can compute the diffusion tensor

D(x, t) = 1

μ

∫

Sn−1
vvT q(x, t, v) dv, (13)

with μ denoting the average turning rate of moving cells (Hillen and Painter 2012).
We mentioned above that DTI measures the diffusion of water molecules; hence,

while it may be used to determine q(x, t, v), it is not immediately clear how this should
be done. DTI performs an averaging over directions in each given tissue volume and
does not distinguish between individual fibres; the resultingmeasured tensor represents
an idealized fibre distribution for each voxel. There are several ways to transform the
measured DTI data into a fibre distribution, with both the Q-ball methodology and the
diffusion peanut discussed in a recent paper by Engwer et al. (2016). Here, we choose
two distributions that have a prominent role in directional statistics: the vonMises (2D)
and the Fisher (3D) distributions. The von Mises and Fisher distributions are normal
distributions wrapped around a circle or a sphere, respectively, each having a peak in a
given direction. The width of this peak is determined by a concentration parameter.We
assume that the dominant direction is given by the leading eigenvector of the diffusion
tensor and that the concentration parameter is proportional to the fractional anisotropy
of the DTI tensor. The constant of proportionality introduces a new parameter κ , the
anisotropy parameter, which can be estimated on a patient-specific basis.

Given a preferred direction γ ∈ S
n−1 for n ∈ {2, 3}, the bimodal 2D von Mises

distribution is

q(v) = 1

4π I0(k)

(
ekv·γ + e−kv·γ )

and the 3D Fisher distribution is

q(v) = k

8π sinh(k)

(
ekv·γ + e−kv·γ )

,

where I0 denotes the zero-order modified Bessel function of the first kind. The two-
dimensional bimodal von Mises distribution for γ = (1, 0)T and k = 5 is shown
in Fig. 5. Computing the variance–covariance matrices for the von Mises and Fisher
distributions according to Eq. (13) is not trivial and has been done in Hillen et al.
(2017). These are given as
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Fig. 5 An example of a
bimodal von Mises distribution.
This distribution can be
interpreted as two normal
distributions, each wrapped
around the unit circle, and
having peaks at γ = ±(1, 0)T

(Var q)2D = μD(x, t) = 1

2

(
1 − I2(k)

I0(k)

)
I2 + I2(k)

I0(k)
γ γ T , (14)

(Var q)3D = μD(x, t) =
(
coth k

k
− 1

k2

)
I3 +

(
1 − 3 coth k

k
+ 3

k2

)
γ γ T ,

(15)

where I j (k) denotes the modified Bessel function of order j of the first kind, and
I2 and I3 denote the two- and three-dimensional identity matrices, respectively. The
concentration parameter k is spatially dependent and is given as

k(x) = κFA(DTI(x)), (16)

where FA denotes the fractional anisotropy of Eqs. (4) and (5) given by the DTI mea-
surements DTI(x), and κ is a patient-specific anisotropy parameter. The anisotropy
parameter can roughly be interpreted as the sensitivity of the cancer cells to the under-
lying brain structure. For some patients, the cancer cells largely ignore the fibres
and the tumour grows spherically, corresponding to a low κ value and consequently
isotropic spread. Conversely, for some patients, the cancer cells closely follow the
structure of the brain, resulting in highly irregular tumour shapes, corresponding to a
high κ value and anisotropic spread. If the model is applied to patient data, then γ is
also spatially dependent and denotes the leading (normalized) eigenvector of DTI(x).

2.1 Numerical Methods

The numerical implementation of the fully anisotropic model (12) is straightforward.
We expand the anisotropic part into individual diffusive second derivative terms, and
we use operator splitting for the resulting diffusion and reaction terms. We use mass
conserving schemes for the diffusion terms and zero flux boundary conditions.
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Fig. 6 Two examples showing sets having (a) Jaccard index = 0.100 and (b) Jaccard index=0.634

Fig. 7 A sample initial
condition u0(x) for Patient 10 as
defined by Eq. (18) with
x0 = (6.2, 10.2). The cancer
cell density is shown, with
yellow = high density and blue
= low density. This initial
condition models a single cell,
or small group of cells, that
initialize the tumour growth

3 Model Implementation on a Real Brain Domain

In this section, we describe details of the Jaccard index for model fitting and our
method to find the initial condition andmodel parameters. The use of the Jaccard index
is inspired by Mosayebi et al. (2012). The Jaccard index is a measure of similarity
between finite sample sets. Taking A and B to be two sets of finite measure, the Jaccard
index J (A, B) is (Mosayebi et al. 2012)

J (A, B) = |A ∩ B|
|A ∪ B| . (17)

When the union of the two sets approaches their intersection, the ratio approaches
1. When the union is large relative to the intersection, the ratio approaches 0. As such,
in order to obtain the best model fit, we aim to maximize the Jaccard index between
the real and simulated tumour domains. Figure 6 shows an example of two sets with
a low Jaccard index (a) and two sets with a high Jaccard index (b).

The Jaccard index offers a couple of advantages over other possiblemetrics. For one,
it penalizes both undergrowth and overgrowth, so that in order to obtain a truly good
model fit, the sets must match up everywhere. The second advantage is its simplicity
and ease of implementation.

In order to fit the cell density models to the patient data, we must specify which
two sets will be compared via the Jaccard index. The first set contains all of the points
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located within the actual segmented tumour. For the cell density function u(x, t), we
use a level set of u = 0.16 to represent the simulated tumour boundary. This threshold
value is chosen to be roughly the cell density that appears on a T2MRI scan (Swanson
et al. 2008) used to segment the data. As such, the second set will contain all points x
for which u(x, t) ≥ 0.16.

For our simulations, we assume that the tumour started in a small area inside the
detected tumour. We choose the initial condition

u0(x) = e
−

(
(x−x0)·(x−x0)

ε

)
, (18)

where ε = 0.0001 cm2 controls the standard deviation of the distribution, with
x0 = (x0, y0) in two dimensions and x0 = (x0, y0, z0) in three dimensions. The
initial distributions are then scaled so that the maximum value of the cell density is
1, representing a cell or small group of cells where the tumour started to grow. A
sample initial condition for Patient 1 can be seen in Fig. 7. In this particular case,
x0 = (6.2, 10.2).

For the growth and diffusion rates, it is important to use realistic values. For the
growth rate r , this is straightforward, as we use r = 0.012/day in two dimensions
(Swanson et al. 2000). In three dimensions, we use a slightly higher value of r =
0.029/day to maintain a comparable growth/diffusion balance. The same paper gives
a biologically realistic value for the diffusion coefficient within the brain of dref =
0.0013 cm2/day for isotropic spread. Because the anisotropic model (12) uses not
only a spatially varying diffusion coefficient, but diffusion tensors having different
rates of diffusion in different directions, the tensors are scaled so that the average rate
of diffusion is equal to dref.

As an example, some of the tensor coefficients for Patient 1 are plotted in Figs. 8 and
9. For the two-dimensional simulations, the axial slice of consideration is chosen to
be that with the largest section of the tumour present. Figure 8 shows the two diagonal
components of the two-dimensional tensor, with images 8a and b showing D11(x) and
D22(x), respectively, for κ = 2 and images 8c and d showing D11(x) and D22(x),
respectively, for κ = 20. The value for D11(x) is higher when the dominant direction
of diffusion is horizontal, while D22(x) is higher when the dominant direction is
vertical. We see that the fibre structure is more strongly defined for a larger value
of κ .

Figure 9 shows similar plots for Patient 1 in three dimensions. Slices are shown
through the same axial slice of consideration, but now the three diagonal components
D11(x), D22(x), and D33(x) of the three-dimensional diffusion tensor are shown.
These quantities correspond roughly to fibres in the x, y and z directions. Images
9a–c show the results for κ = 2, while images 9d–f show the results for κ = 20.
Images 9a and d show D11(x), images 9b and e show D22(x) and images 9c and f
show D33(x). Again, the fibres are much more distinct for the higher κ value. This
emphasizes that the concentration parameter k(x) = κFA(x) depends on the structure
of the brain, incorporated through both the fractional anisotropy (16) and through the
patient-specific anisotropy parameter κ .
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Fig. 8 The spatial distribution of the diagonal elements of the two-dimensional diffusion tensors for Patient
1. The axial slice of consideration is chosen as the slice containing the largest portion of the tumour. Images
(a) and (c) show D11(x) and images (b) and (d) show D22(x). Images (a) and (b) correspond to κ = 2,
while images (c) and (d) correspond to κ = 20. Note that the fibres are far more pronounced for higher
values of κ

3.1 Swanson’s PI Model Implementation

Let us outline in more detail the implementation of the PI model in Eq. (10). The
spatially dependent diffusion coefficient d(x) is defined as

d(x) =
{
dg if x ∈ grey matter,

dw if x ∈ white matter.

Because of the increased diffusivity in white matter, Swanson takes dw = 5dg
(Swanson et al. 2000). Note also that this model uses exponential growth, while
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Fig. 9 The spatial distribution of the diagonal elements D11(x), D22(x) and D33(x) of the three-
dimensional diffusion tensors for Patient 1. These plots are shown for the same axial slice as considered
for the two-dimensional case. The images are as follows: (a), (d): D11(x), (b), (e): D22(x), and (c), (f):
D33(x). Images (a), (b) and (c) show results for κ = 2, while images (d), (e) and (f) show results for
κ = 20. Note that the fibres are more pronounced for the higher value of κ

our anisotropic model (12) uses logistic growth. It will be seen in the cell
density plots that this growth will make a difference in the tumour composi-
tion.

There remains the question of how to separate the brain into white matter and grey
matter. In Swanson et al. (2000), an online database that distinguishes between grey
and white matter is used; however, since we apply this model to patient data, we
need to make this distinction for each patient individually. This will be done using
a threshold FA value, with the assumption that white matter will have an FA value
greater than 0.25, while grey matter will have an FA value less than 0.25. This value
is consistent with that used in fibre tracking; see, for example, Mori and Zijl (2012)
and Lebel and Beaulieu (2011). The results of such a division are shown in Fig. 10 for
a sample three-dimensional axial slice for Patient 1.
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Fig. 10 (a) The FA on a scale from 0 (dark blue) to 1 (yellow) for Patient 1. Note that anything with a
value above 0.25 will be classified as white matter. (b) The corresponding distinction between grey and
white matter. The white matter appears white, while the grey matter appears grey

Fig. 11 The Jaccard index
plotted over the (x0, y0)
parameter space for the PI
model. Patient 1 is shown as an
example. A simulation is
initialized at each point and run
to completion, and the Jaccard
index corresponding to that
simulation is plotted. The
optimum value occurs at
(x0, y0) = (13.6,8.1); hence,
this is selected as the initial
condition. This is marked on the
plot as a black point

3.2 Parameter Estimation

For the anisotropic model of (12), there are either three (in two dimensions) or four
(in three dimensions) parameters that can be used to fit the model. These are the initial
condition (x0, y0) and (x0, y0, z0), respectively, plus the anisotropy parameter κ . This
parameter controls the width of the peaks in the fibre distributions, and we tune it to
each specific patient. We assume that κ is spatially consistent for each patient and
is a characteristic of the cancer cells. We will also fit the PI model (10), which only
depends on the initial tumour location (x0, y0) and (x0, y0, z0), respectively.

To fit the models to data, we sweep the parameter values over a plausible domain
and maximize the Jaccard index. In Fig. 11, we give an example of this procedure
for a fit of the PI model to a two-dimensional slice of the data for Patient 1. The
Jaccard index over a range of possible initial conditions shows a clear maximum at
(x0, y0)=(13.6,11.9), which is selected as the initial condition.

Unfortunately, it is not known how old each tumour is and how long it took to grow
to its current size. As such, in our model, we use the Jaccard index to determine an
appropriate stopping criterion. As the simulated tumours begin to grow, they will first
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Fig. 12 Figure showing how the Jaccard index of Eq. (17) changeswith time.As an example, the anisotropic
model is applied in two dimensions to Patient 1. As more iterations are run, the Jaccard index increases;
however, after some maximum is reached, it will begin to decrease again as the simulated tumour outgrows
the actual tumour. (a) The Jaccard score as a function of time. The other three images show the computed
tumour boundary (white outline) compared to the registered tumour (black outline) for (b) t = 200 days,
(c) t = 258 days and (d) t = 400 days. The background colours of the last three images show the fractional
anisotropy

be smaller than the actual tumour; as they grow larger, the Jaccard index will increase.
At some point, this index is maximized, and after this point, the simulated tumour will
outgrow the actual tumour, causing the Jaccard index to decrease. It is at this point
of optimal Jaccard index that the simulation is stopped. Figure 12 illustrates how this
works for Patient 1. Notice that there is some transient behaviour for small times,
before the diffusion and growth find an appropriate balance.

4 Results

4.1 Two-Dimensional Results

Here we show the simulation results of the anisotropic model (12) and the PI model
(10) on a two-dimensional slice through the middle of each patient’s tumour. Each plot
in Figs. 13, 14, 15 and 16 corresponds to the results for a patient, with the anisotropic
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Fig. 13 Two-dimensional simulation results for Patients 1–3. The results on the left are for the anisotropic
model,while the results on the right are for the PImodel. In each case, the black contour shows the segmented
tumour, and the white contour the model-predicted boundary. The first row shows the boundaries overlaid
on the FA for the patient, and the second row shows the model-predicted cell density, with yellow = high
and blue = low
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Fig. 14 Two-dimensional simulation results for Patients 4–6. The results on the left are for the anisotropic
model,while the results on the right are for the PImodel. In each case, the black contour shows the segmented
tumour, and the white contour the model-predicted boundary. The first row shows the boundaries overlaid
on the FA for the patient, and the second row shows the model-predicted cell density, with yellow = high
and blue = low
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Fig. 15 Two-dimensional simulation results for Patients 7–9. The results on the left are for the anisotropic
model,while the results on the right are for the PImodel. In each case, the black contour shows the segmented
tumour, and the white contour the model-predicted boundary. The first row shows the boundaries overlaid
on the FA for the patient, and the second row shows the model-predicted cell density, with yellow = high
and blue = low
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Fig. 16 Two-dimensional simulation results for Patient 10. The results on the left are for the anisotropic
model, while the results on the right are for the PI model. The black contour shows the segmented tumour,
and the white contour the model-predicted boundary. The first row shows the boundaries overlaid on the
FA for the patient, and the second row shows the model-predicted cell density, with yellow = high and
blue = low

simulation on the left and the PI model simulation on the right. The actual segmented
tumour boundary is plotted in black, while the model-predicted boundary is shown
in white. The top row of each figure shows these boundaries overlaid on the FA plot
to indicate the location of the white matter tracts for that particular patient, and the
bottom row shows the cell density function u(x, t).

In Table 2, the Jaccard index for each model and for each patient is shown, as well
as the value of the anisotropy parameter, κ , for the anisotropic model. The same results
are represented visually in Fig. 17.

We make the following observations:

– We notice from the two-dimensional results that the anisotropic model shows an
improved fit over the PI model in nine out of ten cases.

– We also notice that the optimal value of the anisotropy parameter κ is relatively low
in general, indicating a weak dependency of the tumour growth on the underlying
structure.

– Looking at the population contours in the second row of each patient simulation,
we notice a difference between the anisotropic model and the PI model, related to
the different growth functions used in each model. For the PI model, which uses
an exponential growth function, the tumours have very dense centres that taper off
very quickly. For the logistic growth function used in the anisotropic model, the
transition in cell densities is more gradual.

– Considering certain patients specifically, we can see that the anisotropic model is
able to replicate certain irregularities in tumour shape. For example for Patient 2, as
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Table 2 Jaccard indices for 10
patients for the anisotropic
model (12) and the PI model
(10) in two dimensions

Pnt. Aniso. κ PI

1 0.8811 0 0.8803

2 0.7809 3 0.7786

3 0.6467 1 0.5639

4 0.8633 1 0.8377

5 0.6424 0 0.6582

6 0.6263 5 0.6072

7 0.9241 0.5 0.9057

8 0.9075 0.5 0.8819

9 0.7994 0.5 0.7689

10 0.8406 2.5 0.7581

The corresponding κ value that
maximized the Jaccard index for
the anisotropic model is also
shown

seen in Fig. 13, the contour for the anisotropicmodel closely follows the segmented
tumour boundary in the top right corner.

– Patient 3 was a particularly difficult patient to fit, due to the irregular shape of the
tumour, as seen in Fig. 13.While neither model obtained a good fit, the anisotropic
model offered an advantage over the PI model, displaying the importance of the
anisotropy. We will see later, in Sect. 4.3, that it is possible to achieve better fit for
this patient using the anisotropy of the other brain hemisphere.

– Patients 5 and 6 represent a failure of both models, as seen in Fig. 14. Since the
fitting was done in a completely objective, quantitative manner, the best fit was
obtained by growing a tumour out from the boundary, which does not match the
segmented tumour shape. A large part of the reason for this is due to the absence
of mechanical effects in both the anisotropic model and the PI model. If a real
tumour was growing near the skull, there would be a build-up of pressure, causing
it to progress more slowly in that direction. Several ideas for inclusion of the mass
effect have been discussed in the literature (see Sect. 1.4), and the model needs to
be extended if the tumour grows close to the skull.

4.2 Three-Dimensional Results

In this section, we apply both the anisotropic model of Eq. (12) and the PI model of
Eq. (10) in three dimensions to the same ten patients. This is a more realistic situation;
however, we expect the fits to be poorer, since it is more difficult to fit full three-
dimensional domains. To fit the full three-dimensional model, a series of axial slices
must be considered simultaneously, which is more challenging than fitting a single
axial slice.

For brevity, we choose three patients (Patients 1,2,6) to illustrate the three-
dimensional model, but the remaining simulations are not shown individually, but
the results are summarized in Table 3 and Fig. 21. In the following Figs. 18, 19 and 20,
the first row shows the 0.16 isosurface of the cancer cell density u(x, t), intended to
represent the tumour boundary as it would appear in a scan. For each patient, the first
column shows the best fit of the anisotropic model, while the second column shows the
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Fig. 17 Visual comparison of
Jaccard indices for both the
anisotropic model (blue) and the
PI model (green) in two
dimensions

Fig. 18 Simulation results for Patient 1 in three dimensions. The first column shows the results for the
anisotropic model, the second column for the PI model. The third column shows the tumour segmentation
in the first row and a two-dimensional slice of the FA in the second row. The first row shows the tumour
boundary as an isosurface of the model-predicted cell density in green, along with the brain for reference in
pink. The second row shows a two-dimensional slice through the largest portion of the tumour. The model-
predicted cell density is plotted with yellow = high and blue = low, along with the tumour segmentation
in black, and the model-predicted tumour boundary in white

best fit of the PI model. The last column shows the actual tumour as it was segmented
from the scans. The second row shows a two-dimensional slice through the largest
part of the tumour, to show specifically how close the fit is. As in the two-dimensional
results, the white line corresponds to the simulated tumour boundary (0.16 level set
of u(x, t)), while the black line shows the actual tumour segmentation. The first col-
umn shows this image for the anisotropic model, while the second column shows the
same for the PI model. The last image shows the fractional anisotropy in the slice
in which the simulated anisotropic tumour was initiated. The black dot indicates the
initial condition (x0, y0) within this slice.
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Fig. 19 Simulation results for Patient 2 in three dimensions. The first column shows the results for the
anisotropic model, and the second column displays those for the PI model. The third column shows the
tumour segmentation in the first row and a two-dimensional slice of the FA in the second row. The first row
shows the tumour boundary as an isosurface of the model-predicted cell density in green, along with the
brain for reference in pink. The second row shows a two-dimensional slice through the largest portion of
the tumour. The model-predicted cell density is plotted with yellow = high and blue = low, along with the
tumour segmentation in black, and the model-predicted tumour boundary in white

Fig. 20 Simulation results for Patient 6 in three dimensions. The first column shows the results for the
anisotropic model, and the second column displays the results for the PI model. The third column shows
the tumour segmentation in the first row and a two-dimensional slice of the FA in the second row. The first
row shows the tumour boundary as an isosurface of the model-predicted cell density in green, along with
the brain for reference in pink. The second row shows a two-dimensional slice through the largest portion
of the tumour. The model-predicted cell density is plotted with yellow = high and blue = low, along with
the tumour segmentation in black, and the model-predicted tumour boundary in white
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Table 3 Jaccard indices for
each of 10 patients for both the
anisotropic model and the PI
model in three dimensions

Pnt. Aniso. κ PI

1 0.6506 0.5 0.7002

2 0.6063 5.5 0.5669

3 0.4888 8 0.4357

4 0.6887 1 0.6332

5 0.6663 4.5 0.6453

6 0.4912 1 0.4794

7 0.6664 4 0.6149

8 0.6368 0 0.5930

9 0.6275 0.5 0.5719

10 0.7399 2.5 0.7156

The corresponding κ value that
maximized the Jaccard index for
the anisotropic model is also
shown

Fig. 21 Visual comparison of
Jaccard indices for both the
anisotropic model (blue) and the
PI model (green) in three
dimensions

The results of the three-dimensional simulations are summarized in Table 3. The
Jaccard index for the best fit for each patient for both the anisotropic and the PI model
is shown. Additionally, the value of the anisotropy parameter κ that achieved the best
fit for the anisotropic model is shown. Figure 21 also shows a visual representation of
these results.

We make the following observations:

– We see directly that the anisotropic model reliably performs better than the PI
model. This is to be expected, since more biological detail was included.

– We further observe that frequently a very low κ value optimizes the fit,meaning that
the anisotropic model does better when it is tuned to resemble isotropic spread.
Fortunately, there is a good explanation for this phenomenon. Looking back to
Fig. 4, we observe that the fibre networks within the tumours are displaced or
destroyed, leaving behind tissue that is in many cases almost isotropic. This effect
causes the tissue within the tumour regions (inside the black contour) to show
as mostly blue on the FA plots, meaning that the FA value here is very low. The
fibres appear yellow on the FA plots, and can be seen primarily outside the tumour
regions, as they have been displaced. Running the model using these DTI data then
does not give much advantage over an isotropic method, which is not surprising.
This issue will be addressed and remedied in the next section.
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– Looking deeper at these results, we can see that generally the anisotropy parameter
was higher than in two dimensions, giving tumour shapes that are more dependent
on the brain architecture.

– Overall, however, we notice that the fits are quantitatively poorer than they were
in two dimensions. This is due to the difficulty in fitting the full three-dimensional
model, as this amounts to simultaneously fitting many axial slices. With that said,
many of the Jaccard indices achieved an impressive level of accuracy.

– Looking specifically at Patient 2, i.e. Fig. 19, we can see that both model fits
are significantly smoother than the segmented tumour. This is due to the fact
that segmentations are done on individual two-dimensional slices and then recom-
bined to form the three-dimensional tumour. This highlights the potential problems
with using a two-dimensional segmentation technique, since any error in a two-
dimensional segmentation creates a discontinuity between that slice and those
adjacent to it. This suggests that a full three-dimensional model may more ade-
quately capture the real tumour shape.

– Also of note for all of the patients is the difference in cell density ranges. Due to
the exponential growth of the PI model, the resultant tumours possess very dense
cores that rapidly drop off in density. The exponential growth also generates very
high density values, in contrast to the anisotropic model, which does not predict
growth at densities greater than one.

– We encounter a failure of the model with Patient 6, as we did in two dimensions.
We can see in the third column of the second row of Fig. 20 that the initial condition
(black dot) is not actually contained within the brain domain, which is obviously
not realistic. This occurred due to the objective nature of the model fit, as this was
the configuration that gave the highest Jaccard index. The main problem is that as
we saw in two dimensions, both the anisotropic model and the PI model do not
include a mass effect. In actuality, the longitudinal shape of the tumour would be
due in large part to the increased pressure inhibiting further growth towards the
skull. Because the models do not include this effect, it is difficult to capture the
true shape of the tumour.

4.3 Reflected DTI

We saw above that there is an issue with the fitting of some of the patient data. Looking
back at Fig. 4, we saw that much of the directional information is lost as the tumours
grow and displace the fibre network. If we then use theseDTI data to simulate tumours,
we see mostly isotropic growth, which does not reflect the actual growth history of
the tumour. As a remedy for this, we use the symmetry of the brain to estimate the
anisotropy of the tumour region at the time when the tumour started growing. There
were some simulations above that achieved very good fits even with the original DTI
data. We select the 5 patients (2, 3, 5, 6 and 9) with the lowest Jaccard indices from
Table 2 and try to improve them by implementing the reflected DTI technique. A
similar technique was employed in Popuri et al. (2012), where brain symmetry was
used for tumour segmentation using MRI scans. For the remaining 5 patients, the κ

values are generally low. As such, the results depend very weakly on the underlying
structure and reflecting the DTI data produces only negligible change in the result.
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Table 4 Jaccard indices for Patients 2, 3, 5, 6 and 9 for the anisotropic model with both original and
reflected DTI data in two and three dimensions

Patient Original DTI Reflected DTI Original DTI Reflected DTI
2D 2D 3D 3D

2 0.7809 0.7886 0.6063 0.6146

3 0.6467 0.7194 0.4888 0.4900

5 0.6426 0.6156 0.6643 0.6567

6 0.6269 0.5571 0.4912 0.4576

9 0.7990 0.8209 0.6275 0.6371

Using reflected DTI data further improved the fits in three out of the five cases

Fig. 22 Visual comparison of
Jaccard indices for both the 2D
anisotropic results (blue), the 2D
anisotropic results with
reflection (green), the 3D
anisotropic results (yellow) and
the 3D anisotropic results with
reflection (red)

We present the results for the anisotropic model, using the reflected DTI data in
two and three dimensions, in Table 4. These results are also summarized in Fig. 22,
where a visual representation is provided. We only show two of these results visually
for Patients 3 and 9 in Fig. 23.

Application of the reflected DTI technique improved the results for three out of the
five patients for which it was attempted. It should be noted that the two for which it did
not lead to an improvement were the same two patients for which the models failed
originally, i.e. Patients 5 and 6. Patient 3 is perhaps the most successful application of
this technique and was also one of the most challenging patients to fit initially. It is
interesting to look at the FA plot in the top row of Fig. 23 and to see how the tumour
segmentation matches up with the fibre directions. For Patient 9, a slight improvement
in Jaccard index was seen when the reflected DTI technique was implemented. How-
ever, the qualitative improvement in this case was significant, as can be seen in the
bottom rowof Fig. 23. Overall, these results seem to indicate that formore challenging,
more anisotropic tumour shapes, filling in the DTI data by reflecting it over the brain’s
centreline seems to offer the potential for improved model performance. It should be
noted, however, that the use of the reflected DTI technique should be evaluated on a
patient-by-patient basis to determine its utility.
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Fig. 23 Two-dimensional simulation results using original and reflectedDTI data for the anisotropicmodel.
Results are displayed for Patient 3 (top) and Patient 9 (bottom), with both the original FA and the reflected
FA displayed. The model fits can be improved for some patients by reflecting the DTI data from the other
brain hemisphere to replace the structures that have been displaced by the growing tumour

5 Towards Anisotropic Treatment Regions

The goal of the anisotropic model is to simulate glioma invasion in a manner that
will be useful to clinicians during treatment planning. In this section, we outline how
the anisotropic model may be used to delineate clinical target volumes for radiation
therapy. However, further model validation is needed before the model can be applied
in a clinical setting.

As discussed in the introduction, typical treatment for glioma involves treating the
visible tumour as well as an extension to account for microscopic disease spread.
Clinically, these are referred to as the Gross Tumour Volume (GTV) and the Clinical
Target Volume (CTV), respectively (Burnet et al. 2004) (see Fig. 1). The GTV is
defined as the mass that “can be seen, palpated, or imaged” (Burnet et al. 2004).
Defining the CTV for a glioma patient is not a trivial task and is usually done in a
naive, non-patient-specific manner by extending the GTV uniformly to a distance of 2
cm. While this is a valid method, our anisotropic diffusion model can be used as a tool
by clinicians to predict where the most invasion has occurred, and thus advise where
the CTV should extend the furthest. We compare this modified, model-suggested
region to the traditional uniform extension for two of our patients, shown in Fig. 24.
The GTV is outlined in black, the traditional CTV in white, and the modified CTV
in red for Patients 2 and 8. The modified CTV was drawn using a level set of the
anisotropic simulation results, while the traditional CTV is simply a 2 cm extension
of the segmented tumour. The appropriate level set was chosen so that the regions
contained the same area, so that the same amount of tissue would be treated in each
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Fig. 24 The GTV in black, the traditional CTV in white, and the modified model-suggested CTV in red
are shown for Patients 8 (left) and 2 (right) in two dimensions. For patients whose tumours display more
isotropic spread, such as Patient 8 above, there is little difference between the traditional and modified
CTVs; however, some patients show a large discrepancy between the two, like Patient 2 above, suggesting
a potential benefit in using mathematical models to help determine the CTV and PTV

case. Note that the reflected DTI results were used to determine the treatment region
for Patient 2. For tumours with a low anisotropy coefficient κ (i.e. Patient 8), the two
CTVs are very similar; however, for patients with a more anisotropic tumour (larger
κ), such as Patient 2, there may be large discrepancies.

6 Conclusions

In this study, we propose a fully anisotropic cell density model for glioma growth and
spread, with the model given in Eq. (12). While the detailed modelling and mathe-
matical analysis was done elsewhere Hillen (2006), Painter and Hillen (2013), Hillen
et al. (2010), here we focus on a comparison of the anisotropic model simulations to
those of the state-of-the-art PI model of Swanson et al. We show simulation results for
ten patients for both the PI model of Eq. (10) and the anisotropic model of Eq. (12)
and compare these model simulations to the patient data by computing the optimal
Jaccard index for both models in two and three dimensions. The anisotropic model
shows some improvement on the PI model in nine out of ten cases in both two and
three dimensions. We therefore conclude that the inclusion of anisotropy allows for
better resolution of glioma growth.

A critical parameter in the model fit is the patient-specific anisotropy coefficient κ ,
which indicates the significance of anisotropy in the spread of a given brain tumour.
Values below 0.5 indicate isotropic spread, while values above 2 indicate anisotropic
spread.We initially found that many of the fits feature anisotropy parameter values that
are low, indicating that there is only a small advantage over the isotropic model. The
reason for this is that the DTI data are altered within the tumour segmentations, with
many of the fibre tracts missing, as they have been dislodged by the growing tumour
or even destroyed completely. To remedy this, we take advantage of the symmetry
present in a healthy brain, reflecting the DTI data from the other brain hemisphere to
approximate the missing data.
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We considered the results of simulating both the PImodel and the anisotropicmodel
on the reflected data for a subset of five patients, in both two and three dimensions.
To choose this subset, we took the lowest five Jaccard indices, to see if the reflected
DTI technique could improve upon the fits. In the two-dimensional case, this process
improved the Jaccard index for three out of the five patients. In some cases, the advan-
tage was substantial, particularly where the tumours had an elongated shape. In three
dimensions, the advantage was not so substantial: although the reflected DTI tech-
nique improved the Jaccard index in three out of the five patients, the improvement
was less pronounced than in the two-dimensional case. We postulate that this is due to
the fact that in two dimensions, when the fibres are dislodged by the tumour, they are
no longer present in the plane of consideration. In three dimensions, while the fibre
network may be distorted, the displaced fibres remain within the domain.

A critical modelling component that is still missing from our model is the mass
effect. The mechanics of brain tissue is far from being trivial; the literature offers at
least threemodels for themass effect in the brain (seeAmbrosi andPreziosi 2002;Clatz
et al. 2005; Macklin and Lowengrub 2007; Preziosi and Tosin 2008). It is the aim of
future research to compare and contrast the different mechanical models and to apply
them to the same patient data as studied here. In particular, we expect improvements
upon accounting for the mass effect in Patients 5 and 6.
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