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Question 1. [p 77, #26]

Solve the initial value problem

o0 .
cosnt sinnt
where F(t) is the 27-periodic input function given by its Fourier series F'(t) = E [ b2n + (-1 mn
n n
n=1

SoLUTION: Recall that since the differential equation is a linear equation with constant coefficients, then
the general solution to the nonhomogeneous equation is given by

y(8) = yn(t) + yp(t)

where y,(t) is the general solution to the corresponding homogeneous equation and y,(t) is any particular
solution to the nonhomogeneous equation.

In order to solve the homogeneous equation
y'+9 =0,
we try a solution of the form yy () = e, substituting this into the equation, we obtain
M\ +9) =0,

and since e #£ 0, then the auxiliary equation is A> + 9 = 0, which has roots A\; = 3i and Ay = —3i. The
general solution to the homogeneous equation is therefore

yn(t) = ¢1 cos 3t + ¢ sin 3t

where ¢y and ¢ are arbitrary constants.

In order to find a particular solution to the nonhomogeneous equation, we use the method of Fourier series
and solve the equation
y"(t) + 9y(t) = a, cosnt + by, sinnt

for n > 0, where a,, and b,, are the Fourier coefficients of the driving force F'(¢).

Note that for n # 3, from the method of undetermined coefficients, the n*" normal mode of vibration is
Yn(t) = ay, cosnt + B, sinnt
where the constants a,, and (3, are determined from the Fourier coefficients of F'(t) to be

1 ="

=0, on=——"—5v, Pn=—Fc—">
a=" @ n2(9 — n?) b n(9 — n?)

forn>1, n # 3.



While for n = 3, the term in the driving force has the same frequency as the natural frequency of the system,
and we have to solve the nonhomogeneous equation

y4 (t) + 9y3(t) = a3 cos 3t + by sin 3t.
In this case the method of undetermined coefficients suggests a solution of the form
y3(t) = t(az cos 3t + B3 sin 3t).
In order to determine the constants ag and (3, we substitute this expression into the differential equation
Y4 + 9y3 = a3 cos 3t + bs sin 3t
to obtain
_bs as

6 6
The particular solution to the nonhomogeneous equation can then be written as

1 G t 1 1 .
yp(t):; mcesnt—i—msmnt +6 —gcos3t—|—3—2s1n3t ,

n#3

az = and  ff3 =

oo

and the general solution to the nonhomogeneous equation is

. = 1 (-=1)"
t) = 3t 3t — % t
y(t) = ¢1 cos 3t + co sin —&—nil (n2(9—n2) cosnt + -

t 1 1
m sinm‘) + = (—— cosdt+ — sin3t)

: 6\ 3 3
n#3
and the constants ¢; and ¢y can now be evaluated using the initial conditions y(0) = y’(0) = 0.

Applying the initial conditions, we find

> 1 1 I (=)
= — _ d = _ — .
“ ;nQ(Q—nz) o 2756 3;9—712
n#3 n#3
Note: The solution with driving force
=\ sinnt
Piy=3 "
n=1
is also acceptable.
Question 2. [p 107, #8]
Verify that the function
1

4= —
is a solution to the three dimensional Laplace equation  ugy + Uyy + u,, = 0.

SOLUTION: By symmetry, we need only calculate the derivatives with respect to one of the variables, say =z,
and obtain the other derivatives by permuting the variables. For example,

ow_of 1 \__ -
ox Oz /22 + y2 + 22 _(I2+y2+22)3/25

so that
ou —y ou —z
— = and — = .
Ay (2242 +22)3/2 0z (2242 +22)3/2




Similarly,

P*u 0 —x 22 —yr -2
Oz ox (,CC2 + y2 + 22)3/2 (,CC2 + y2 + 2/2)5/27
0%u 2y% — 2?2 — 22 0%u 222 — 2% — 2

—_— = and 5 — .
Oy (z2+y2+z2)5/2 022 ($2+y2+22)5/2

so that

Therefore,

Pu  0%u  *u (227 —y? —2%) + (292 — 2?2 — 2%) + (222 — 22 —¢?)
AR .
o0xr?2  0y? 022 (2 +y2 + 22)5/2

207

that is, u satisfies Laplace’s equation V2u = 0.

Question 3. [p 123, #2]
Solve the one dimensional wave equation with the boundary conditions and initial conditions as given below
0%u 1 0%u
— ===, 0 1,t>0
ot? w2 0x2’ <z<hLt>
u(0,t) =0, t>0
u(l,t)=0, t>0
u(z,0) =sinmrcosma, 0<z <1,
0
a—?(:c,()) =0, 0O<a<l,
using the Method of Separation of Variables.

SOLUTION: As in class, we assume a solution of the form u(x,t) = X (z)T'(¢) and plug this expression in the
differential equation to get

1
.X'T”: ﬁ_X”'T,
and now separate the variables by dividing by X - T to get
TII XI/
— === =-A\
T 72X

Since x and t are independent variables, then A is a constant, and we have two ordinary differential equations
to solve:
X'"+M*X =0 and T"+ AT =0.

We can satisfy the two boundary conditions by requiring that X (0) = 0 and X (1) = 0, and X must satisfy
the ordinary boundary value problem:

X"+ X =0, 0<z<1
X0)=0
X(1) =0.
The cases A = 0 and A < 0 both result in a solution X (z) = 0 for all € [0,1], and the only nontrivial

solution arises when A > 0, say A = u2, where 1 # 0. In this case we have to solve the boundary value
problem

X"+ 2’ X =0, O<z<1
X(0)=0
X(1)=o0.



The general solution to this differential equation is
X (x) = Acos umx + Bsin prz,
and applying the first boundary condition, we see that X (0) = A = 0, and the solution is
X (x) = Bsin prz.

Applying the second boundary condition, we see that X (1) = Bsinum = 0, and in order to get a nontrivial
solution we must have sin ur = 0, but this can only happen if ur = nm, where n is an integer. For each
n > 1 the solution is

X, (z) = sinnmz.

For each integer n > 1, we can solve the corresponding equation
T" +n*T =0
to get
T, (t) = by, cosnt + b, sinnt
for n > 1.

Now, for each integer n > 1, the function
un(x,t) = Xp(2) - T (t) = sinnwa (b, cosnt + b}, sin nt)
satisfies the wave equation and the two boundary conditions:

0%u 1 0%u

gu__Ju L, t>0

02 o CStshte
u(0,t) =0, t>0

w(l,t) =0, ¢>0.

Since the partial differential equation and the two boundary conditions are linear and homogeneous, by the
superposition principle, any linear combination of these solutions

oo oo
u(z,t) = Z un(x,t) = Z sin nwa (by, cosnt + b} sinnt)
n=1 n=1

is also a solution to the partial differential equation and the boundary conditions.

In order to satisfy the initial conditions, we need

u(z,0) = Z by, sinnwz, (1)
n=1
and
6 oo
8—1; (x,0) = ,;1 nb; sinnwx, (2)

and it is clear then that these are just the half-range expansions of the odd periodic extensions of u(z,0)

ou
d — .
and — (z,0)



Therefore, from (1) we have
1
by, = 2/ u(z,0) sinnrx de
0

and

1
nb} = 2/ %(I, 0) sinnrz dx

for n > 1.
0
Note that b7 = 0 for all n > 1, since 8_1;($’O) =0for0<z<1.
Also, we have
1
u(z,0) = sinmx cos max = 3 sin 27z,
so that u(z,0) is its own Fourier sine series, and
1
= ifn=2
by =4 2
0 if n # 2.
Therefore, the solution is
1
u(z,t) = 3 sin 27wz cos 2t
for0<z<1,t>0.
Question 4. [p 123, #4]

Solve the one dimensional wave equation with the boundary conditions and initial conditions as given below

?u  9%u
—=—, 0 1,t>0
2 922 <zrxr<l, t>
u(0,t) =0, t>0
u(l,t)=0, t>0
u(x,0) = sinwx + %sin?nrx—|—3sin771'x7 0<z<l,
%(x,()):sin%m:, 0<z<l,

using the Method of Separation of Variables.

SOLUTION: As in the previous problem, the solution is

oo
u(z,t) = Z sinnmx (by, cosnmt + b} sinnmnt) ,

n=1

where the coeflicients are to be determined using the initial conditions. Differentiating, we have
ou = . . *
e (x,t) = Z sinnmx (—nwb, sinnwt + nwb), cosnwt) ,
n=1

and setting t = 0, we get

ou

u(z,0) = Z by, sinnmwx and E(m,
n=1

o0
.o
0) = E nmb} sin nrz,
n=1

and again these are just the Fourier sine series of f(x) and g(z), the initial displacement and initial velocity.



From the first initial condition
u(x,0) = sinTx + & sin 37z 4 3sin Tz,

we see that

1
b1:17 b3:§7 b7:3a
and b, = 0 for all other values of n.
From the second initial condition
%( 0) =sin2
e z,0) = sin 27z,
so that ]
— if n=2,
b* = 2T
0 if n # 2.

Therefore, the solution is

1 1
u(x,t) = sinmx cosmt + o sin 27z sin 27t + 3 sin 3wz cos 3wt + 3 sin Tmx cos Tt
7T

forO<z<1,t>0.

Question 5. [p 124, #12]

Damped vibrations of a string. In the presence of resistance proportional to velocity, the one dimensional
wave equation becomes

0%y ou 0%y
4+ 2%k—=c*=— 0 L, t>0.
oz T T e Vst

Solve this equation subject to the boundary conditions
u(0,t) =0 and u(L,t) =0 for all ¢ >0,

and the initial conditions

u(z,0) = f(z) and E(I,O) =g(x) for 0<a< L.

SOLUTION:

(a) Assume a product solution of the form u(x,t) = X (2)T'(¢), and plug it into the equation to get
XT" +2kXT = A2X"T,
and now separate the variables by dividing by ¢2XT to get

T// 2kT/ X//

2T e T X
Since z and t are independent variables and the left hand side depends only on ¢, while the right hand
side depends only on x, then both sides must be constant, so that

T// 2kT/ d X//
— = an — =

— A
2T + 2T X ’



so that x and T must satisfy the following ordinary differential equations

X"-2AX =0
T" + 2kT" — \PT = 0.

Now, we can satisfy the boundary conditions by requiring that X (0) = X(L) = 0, so that X must
satisfy the boundary value problem

X" —AX =0
X(0)=0
X(L) =0.

As in the previous problems, we only get a nontrivial solution if the separation constant A is negative,
say A = —u? where i # 0, and in this case, the equations for X and T become

X"+ X =0, X(0)=0, X(L)=0,
T + 2kT" + (uc)®T = 0,

where p # 0 is the separation constant.

The general solution to the equation
X// 4 /LQX =0
is given by
X (x) = Acos ux + Bsin pz,

where the constants are determined from the boundary conditions. Since X (0) = 0, then we must have
A = 0; and since X (L) = 0, the only nontrivial solutions arise when sin L = 0, and this happens if and
only if L = nm, where n is an integer.

Therefore, the only nontrivial solutions to the boundary value problem for X occur for

and the solutions are
X = X, =sin(nmz/L)

forn=1,2,....

For each integer n > 1, the corresponding equation for T is
T" + 2kT" + (nwe/L)* T = 0,

a second order, linear, homogeneous, constant coefficient equation which we know how to solve. As-

suming a solution of the form T'(t) = e, and plugging this into the differential equation we get the

characteristic equation

n?m2c?

2 _
X 4 2kA + = =0,

and the roots of this quadratic equation are

/ n2n2c? 222
Ana = —k+1/k?— 72 and Ao =—k—1\/k?— T3




In order to find the corresponding solutions 75, (t), we need to consider three cases, according to whether

nn?c? . .
k% — —z s zero, positive or negative.
2,2 .2
nmec
Case 1: k? — 77— 0. In this case, we have equal real roots, and the solution is
T,(t) = e ™ (ap + but)
nmwe

here k = — > 0.
where T >

2,22
nmc
Case 2: k? — 22 > 0. In this case, we have two distinct real roots, and the solution is
T.(t) = et (an cosh Ayt + by, sinh A, t)
2.2 2
nmc
where A, = \/k? = —5—.
n?mc?
Case 3: k? — 72 < 0. In this case, we have two distinct imaginary roots, and the solution is
To(t) = ekt (an cos A\pt + by, sin A\, t)
here A 222 — k2
where \,, = {/| ————

L2

Since the partial differential equation and the boundary conditions are linear and homogeneous, then we
can use the superposition principle to write the solution u(x,t) as a linear combination of the solutions
Un(x,t) = Xp(z) - T (t) that we found in part (c).

If % is not a positive integer, then

n?m2c?

T #0,

and either 1 <n < ’;—ﬁ, orn > %, so we are in Case 2 or Case 3, and the solution is

k2

u(z,t) = e * Z sin (nwz/L) (ay, cosh At + by, sinh A, t)

1<n<kL/mc
+e M 3" sin(nwz/L) (an cos At + by sin Ant)
kL/me<n<oo
where these sums run over integers only, and A,, = ‘]@ _ (mrc/L)2‘_

Also, to satisfy the initial conditions, the a,, are the Fourier sine coefficients for the odd periodic extension
of f(z), that is,

2 L
an:—/ f(z)sin (n7z/L) dx
L Jo
forn=1,2,....

If we differentiate this expression for u(x, t) with respect to ¢, and set ¢ = 0, then we see that —ka,, + A\, by,
are just the Fourier sine coefficients of the odd periodic extension of g(z), that is,

L
—kan + A\pby, = %/ g(x)sin (nmwa /L) dx
0

forn=1,2,....



(e) In % is a positive integer, then we have to add the corresponding term in the sum when the index n is
equal to % In this case, if ng = %, the solution is as in (d) with the one additional term

sin (km/c) (akL/ﬂ'ceikt + bkL/Trcteikt)

with a,, and b,, as in (d), except that byy /. is determined from the equation

9 L
—kagrjre + brkLjre = f/ g(x)sin (kz/c) de.
0

Question 6. [p 133, #4]

Use D’Alembert’s solution to solve the boundary value problem for the wave equation

0%u  O%u
—_— == 1,1
BID 972 O0<x<l, t>0
u(0,t) =0, t>0
u(l,) =0, t>0
u(z,0) =0, O0<z<l,
%(x,o):l, 0<z<l

SOLUTION: D’Alembert’s solution to the wave equation is

x+ct

[f*(:zc—ct)—&—f*(x—i—ct)]—&-%/ g (s)ds

r—ct

u(z,t) =

N | =

where f* and g* are the the odd 2-periodic extensions of f and g.
For this problem, we have ¢ = 1, and f(z) =0 for 0 < 2 < 1, so that f*(x) =0 for all x € R.
Also, we have g(z) =1 for 0 < z < 1, so that

{ 1 for 0<z<l1

TO=0U 0 for _1<cz<o

and g*(x + 2) = ¢g*(z) otherwise.

An antiderivative of g*(x) on the interval [—1,1] is given by

G(x):{ x for 0<x<1
- for —1<x<0,
and G(z + 2) = G(z) otherwise.
Therefore, the solution is
1
u(z,t) = 3 (G +10) — Gz — )

where G is as above.



Question 7. [p 133, #8]
Use D’Alembert’s solution to solve the boundary value problem for the wave equation
%u  O%u

o2~ a2
u(0,t)=0, t>0

O<zx<1,t>0

SOLUTION: As in the previous problem d’Alembert’s solution to the wave equation is

N | =

x+ct
() = = [ — ct) + [ (x + et)] + / g (s) ds

20 —ct

where f* and g* are the the odd 2-periodic extensions of f and g.
Again, for this problem, we have ¢ =1, and f(z) =0 for 0 < z < 1, so that f*(z) =0 for all z € R.

Also, we have g(z) = sinmz for 0 < z < 1, so that

g*(z) = sinmx

for z € R.
An antiderivative of g*(x) is given by
1
G(z) = —=cosmx
7T
for x € R.
1 .. . 1 .
u(z,t) = — [sinm(x — t) —sinw(z + t)] = —— cosmx sin wt.
7T 7T

Question 8. [p 134, #16]

D’Alembert’s solution for zero initial velocity. Show that the solution to the wave equation

Pu 0%

W:C@, O<.T<L7t>0
u(0,t) =0, t>0
u(L,t)=0, t>0
u(z,0) = f(z), 0<zx<L,
0
Z2,00=0, 0O<z<L

is given by .
u(z,t) = % Z by, [sin (nm(z — ct)/L) + sin (nw(z + ct)/L)]
n=1

2 L
where b, = Z/ f(z)sin (nmz/L) dz, n=1,2,....
0



SoLUTION: We showed in class that the solution to this problem is given by

= Z sin (na/L) (by, cos (nmet/L) + by, sin (nwet /L) )

n=1

where

2 (* 2 [t
= Z/ f(z)sin (n7z/L) dx and by = — g(x)sin (nwa/L) dx
0

nmwe Jo
for n > 1.

Since g(x) = 0 for 0 < z < L, then b} = 0 for all n > 1, and the solution is given by
= Z by, sin (nma/L) cos (nmet /L),
n=1

and since .
sin Acos B = 3 [sin(A — B) +sin(A + B)],

then

l\D|P—‘

Z [sin(nm(x — ct)/L) + sin(nz(z + ct)/L)] (%)

2 L
where b, = Z/ f(z)sin (nmz/L) dx
0

Now, if f* is the odd 2 L-periodic extension of f, then the Fourier series for f converges to f* at all points
of continuity of f*, so that

= Z by, sin (nmx /L),
n=1

and therefore, from (x) we have

S —et) + fola+ ).

u(z,t) =
Question 9. [p 144, #2]

Solve the boundary value problem for the one dimensional heat equation

ou 9%u
ot 0x2’
u(0, t>0

t)=0
u(m, ) =0, t>0
u(z,0) =30sinz, 0<z<m,

O<z<mt>0

and give a brief physical explanation of the problem.

SoLuTION: Using separation of variables as in class, we obtain the solution (¢ = 1 here)

o0
— 2 .
= E bpe " tsinnz,
n=1

™

2 s
where b, = —/ f(z)sinnzdx for n > 1.
0



Now,
u(z,0) = f(z) = 30sinz

for 0 < < 7, that is, f(x) is its own Fourier sine series, so that b = 30, and b, = 0 for all n > 2. The
solution is
u(z,t) = 30e 'sinz,

and this gives the temperature in a bar whose sides are insulated and whose ends = 0 and x = 7 are kept
at 0 temperature, with an initial temperature distribution given by u(z,0) = 30sinz, 0 < z < 7.
Question 10. [p 144, #6]

Solve the boundary value problem for the one dimensional heat equation

ou  0%u

E—@, 0<1’<1,t>0
u(0,t) =0, t>0
u(l,t)=0, t>0

u(z,0) =" 0<z<l,

and give a brief physical explanation of the problem.

SOLUTION: After separating variables, applying the initial conditions, and using the superposition principle,
we obtain the solution

oo
p— 2.2 .
u(z,t) = E bpe ™™ tsinnm,

n=1
where
1
bn, = 2/ e *sinnmrdr
0
for n > 1.

Integrating by parts, we get

1 P 1
/ e "sinnrrdr = ————— (sinnmz + nw cosnmx)
0 1+ n“m 0
__nm +1,-1
1+ n2w2 [1+(_1)n ¢ }’

so that

s n n _ —n2x2 .
u(z,t) =27 Z T2 1+ (-1)"e e Psinnmz,
n=1

and this gives the temperature in a bar whose sides are insulated and whose ends z = 0 and x = 1 are kept
at 0 temperature, with an initial temperature distribution given by w(z,0) = e %, 0 <z < 1.



