
Math 209
Assignment 8 – Solutions

1. Use Green’s Theorem to evaluate the line integral along the given positively oriented curve.

(a)
∫

C
(y + e

√
x)dx + (2x + cos y2)dy, C is the boundary of the region enclosed by the

parabolas y = x2 and x = y2.

Solution:∫
C

(y + e
√

x)dx + (2x + cos y2)dy =

∫ ∫
D

[
∂

∂x
(2x + cos y2)− ∂

∂y
(y + e

√
x)

]
dA

=

∫ 1

0

∫ √
y

y2

(2− 1)dx dy =

∫ 1

0

(
√

y − y2)dy =
1

3
.

(b)
∫

C
sin y dx + x cos y dy, C is the ellipse x2 + xy + y2 = 1.

Solution:∫
C

sin y dx+x cos y dy =

∫ ∫
D

[
∂

∂x
(x cos y)− ∂

∂y
(sin y)

]
dA =

∫ ∫
D

(cos y−cos y)dA = 0 .

2. If f is a harmonic function, that is ∇2f = 0, show that the line integral
∫

fydx− fxdy is
independent of path in any simple region D.

Solution:

∇2f = 0 means that ∂2f
∂x2 + ∂2f

∂y2 = 0 Now if F = fy i− fx j and C is any closed path in D,
then applying Green’s Theorem, we get∫

C

F.dr =

∫
C

fydx− fxdy =

∫ ∫
D

[
∂

∂x
(−fx)−

∂

∂y
(fy)

]
dA

= −
∫ ∫

D

(fxx + fyy)dA = 0 .

3. Find the area enclosed by the astroid x
2
3 + y

2
3 = 1.

Solution:

The astroid has parametric equations x = cos3 t, y = sin3 t, where 0 ≤ t ≤ 2π.

A =
1

2

∫
C

xdy − ydx =
1

2

∫ 2π

0

cos3 t · (3 cos t sin2 t)dt− sin3 t · (−3 sin t cos2 t)dt

=
1

2

∫ 2π

0

(3 cos4 t sin2 t + 3 sin4 t cos2 t)dt =
1

2

∫ 2π

0

3 cos2 t sin2 t dt

=
3

4

∫ 2π

0

sin2 2t dt =
3

4

∫ 2π

0

1− cos 4t

2
dt =

3π

4
.



4. Let

I =

∫
C

ydx− xdy

x2 + y2

where C is a circle oriented counterclockwise.

(a) Show that I = 0 if C does not contain the origin.

Solution:

Let P = y
x2+y2 , Q = −x

x2+y2 and let D be the region bounded by C. P and Q have
continuous partial derivatives on an open region that contains region D. By Green’s
Theorem,

I =

∫
C

ydx− xdy

x2 + y2
=

∫
C

Pdx + Qdy =

∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy

=

∫ ∫
D

[
x2 − y2

(x2 + y2)2
− x2 − y2

(x2 + y2)2

]
dxdy = 0 .

(b) What is I if C contain the origin?

Solution:

The functions P = y
x2+y2 and Q = −x

x2+y2 are discontinuous at (0, 0), so we can not apply
the Green’s Theorem to the circle C and the region inside it. We use the definition of∫

C
F · dr.

∫
C

Pdx + Qdy =

∫
Cr

Pdx + Qdy =

∫ 2π

0

r sin t(−r sin t) + (−r cos t)(r cos t)

r2 cos2 t + r2 sin2 t
dt

=

∫ 2π

0

−dt = −2π .

5. Find the curl and the divergence of the vector field F = ex sin y i + ex cos y j + z k. Is F
conservative?

Solution:

curlF = ∇× F =

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

ex sin y ex cos y z

∣∣∣∣∣∣∣∣∣∣
= (0− 0) i + (0− 0) j + (ex sin y − ex sin y)k = 0 .

divF = ∇ · F =
∂

∂x
(ex sin y) +

∂

∂y
(ex cos y) +

∂

∂z
(z) = ex sin y − ex sin y + 1 = 1 .

Since curlF = 0 and the domain of F is R3 and its components have continuous partial
derivatives, F is a conservative vector field.



6. Is there a vector field G on R3 such that curlG = xy2 i + yz2 j + zx2 k? Explain.

Solution:

No. Assume there is such a G. Then div(curlG) = y2 + z2 + x2 6= 0, which contradicts
Theorem (If F = P i + Q j + Rk is a vector field on R3 and P, Q and R have continuous
second-order partial derivatives, then div(curlF) = 0).

7. Identify the surface with the given vector equation.

(a) r(u, v) = u cos v i + u sin v j + u2 k

Solution:

r(u, v) = u cos v i + u sin v j + u2 k, so the corresponding parametric equations for the
surface are x = u cos v, y = u sin v and z = u2. For any point (x, y, z) on the surface,
we have x2 + y2 = u2 cos2 +u2 sin2 v = u2 = z. Since no restrictions are placed on the
parameters, the surface is z = x2+y2. Which we recognize as a circular paraboloid opening
upward whose axis is the z-axis.

(b) r(x, θ) = 〈x, x cos θ, x sin θ〉

Solution:

r(x, θ) = 〈x, x cos θ, x sin θ〉, so the corresponding parametric equations for the surface
are x = x, y = x cos θ and z = ux sin θ. For any point (x, y, z) on the surface, we have
y2 + z2 = x cos2 θ + x sin2 θ = x2. Whit x = x and no restrictions on the parameters, the
surface is y2 + z2 = x2, Which we recognize as a circular con opening whose axis is the
x-axis.

8. Find a parametric representation for the surface.

(a) The part of elliptic paraboloid x + y2 + 2z2 = 4 that lies in front of the plane x = 0

Solution:

x = 4 − y2 − 2z2, y = y, z = z, where y2 + 2z2 ≤ 4 since x ≥ 0. Then the associated
vector equation is r(y, z) = (4− y2 − 2z2) i + y j + z k.

(b) The part of sphere x2 + y2 + z2 = 16 that lies above the cone z =
√

x2 + y2

Solution:

Since the cone intersects the sphere in the circle x2 + y2 = 8, z = 2
√

2 and we want the
portion of the sphere above this, we can parameterize the surface x = x, y = y, z =√

4− x2 − y2 where x2 + y2 ≤ 8.

Alternate Solution: Using spherical coordinates, x = 4 sin φ cos θ, y = 4 sin φ cos θ, z =
4 cos φ where 0 ≤ φ ≤ π

4
and 0 ≤ θ ≤ 2π.

9. Find the area of the part of the surface z = y2 − x2 that lies between the cylinders
x2 + y2 = 1 and x2 + y2 = 4.

Solution:



z = y2 − x2 with 1 ≤ x2 + y2 ≤ 4. Then

A(S) =

∫ ∫
D

√
1 + 4x2 + 4y2 dA =

∫ 2π

0

∫ 2

1

√
1 + 4r2 r dr dθ =

∫ 2π

0

dθ

∫ 2

1

√
1 + 4r2 r dr

= [θ]2π
0

[
1

12
(1 + 4r2)

3
2

]2

1

=
π

6
(17

√
17− 5

√
5) .

10. Find the area of the part of the surface z = x2 + 2y that lies above the triangle with
vertices (0, 0), (1, 0), and (1, 2).

Solution:

z = x2 + 2y with 0 ≤ x ≤ 1, 0 ≤ y ≤ 2x. Then

A(S) =

∫ ∫
D

√
1 + 4x2 + 4 dA =

∫ 1

0

∫ 2x

1

√
5 + 4x2 dx dy =

∫ 1

0

2x
√

5 + 4x2 dx

=
1

4

[
2

3
(5 + 4x2)

3
2

]1

0

=
9

2
.


