_ Math 209
Solutions to assignment 3

Due: 12:00 Noon on Thursday, October 6, 2005.

1. Find the minimum of the function f(z,y,2) = x? + y? + 2? subject to the condition
T+ 2y+ 3z =4.

Solution. Let’s define ¢g(z,y,2) = x + 2y + 3z, so the problem is to find the minimum
of f(z,y, z) subject to the constraint g(x,y, z) = 4. We have

Vf=AVg < (22,2y,2z) = \(1,2,3);

and reading this component by component we obtain z = %, Yy=A z= % Plugging this
into the constraint we have

A 3\ 4
2+ )\+3(2) = A -

Thus x = %, Yy = %, z = S, and (%, %, g) is the only critical point. Now we could use the
Hessian matrix of f and see that it is positive definite to justify that this critical point
gives the minimum. Alternatively, we can note that the function f is unbounded above
(even subject to the restriction) and therefore has no maximum, but it has a minimum
since it is bounded below by 0. Therefore the minimum subject to the given restriction is

f(3:7:9) = %)

2. Find the maximum value of the function F(x,y,2) = (z+y+2)?, subject to the constraint
given by 2?4+ 2y? 4+ 322 = 1.

Solution.

Let’s define g(z,y, 2) = 2% +2y?+ 322, so the problem is to find the maximum of F'(z,y, 2)
subject to the constraint g(x,y, z) = 1. We have

VF=XMVg & Q2ue+y+2),2(x+y+2),2(r+y+2)=A2z,4y,62).

Reading this component by component and including the restriction we get the system of
equations

rT+y+z=Av (A)
T4y+z=2\y (B)
r+y+z=3\ (C)
x® +2y° + 32 = 1. (D)



Subtracting (A)—(B) we get A\(x — 2y) = 0, so either A = 0 or z = 2y. But A = 0 would
give x =y =2z =0, and f(0,0,0) = 0 is obviously not the maximum. Therefore we work

with .

Subtracting (B)—(C) we get A\(2y — 3z) = 0, and since we already discarded the case A = 0

we are left with |z = %y .

Using the results in the two frames into (D) we get

2 \? 3 3 2 [3
2)? + 292 = =1 = 44/ — = 4%/ —, 2=+ —.
(2y)" +2y +3<3y) - Y 2 TTEN T3V

It is clear that the maximum of F' occurs when z,y, z are all positive, or when they are
all negative. Therefore the maximum value is

2
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. Find the maximum and minimum values of the function

f(z,y,2) =3z —y — 3z,
subject to the constraints

r+y—z=0, 2?4+ 222 =1.

Solution. Let’s define g(z,y,2) = x+y—2z and h(z,y, 2) = £?+222, so the problem is to
find the maximum of f(z,y, z) subject to the constraints g(z,y,2) = 0 and h(zx,y, z) = 1.
We have

Vf=AVg+uVh < (3,—1,-3)=A(1,1,—1)+ u(2z,0,4z).

Reading this component by component and including the restrictions we get the system
of equations

3=+ 2ux A

—1 =\ B

D

(A)

(B)

—3=-A+4uz (C)
r+y—2=0 (D)
(E)

22 +222 =1. E



Note that (B) already gives . Using this in (A) and (C) we obtain z = % and
z= —i respectively. Plugging these expressions for x and z into (E) we get

B (- - e

Now, from (D) we have y = z — x, so we get

2 1 3
V6 = r=-"— z=—2 y=-—1.

2 1 3
—, 2= =, Y= —F.
NG NG

Since the intersection of z +y — 2 = 0 and 2%+ 22? = 1 is closed and bounded, all we need
to do now is evaluate f at the critical points we have found.

S

p=-V6 = z=-

2 3 1
—_— | = 2v/6 is the maximum value,
(v v)

2 3 1
f (__67 —6, —6) = —2V6 is the minimum value.

. Find the extreme values of the function f(z,y,z) = zy + z* on the region described by
the inequality 2% + y? 4+ 22 < 1. Use Lagrange multipliers to treat the boundary case.

Solution. First we work in the interior: 22 + % 4 22 < 1. to find the critical points we
set Vf = 0. This yields z = y = 0, so the only critical point in the interior is (0,0,0).
But clearly f(0,0,0) = 0 is neither a maximum nor a minimum. It is also clear that there
are no singular points.

Now we work on the boundary: z%+y*+ 22 = 1. Here we can define g(z,y, 2) = 22 +y*+ 22,
so the problem is to find the extreme values of f(x,y, z) subject to g(z,y,z) = 1. We have

Vf=AVg < (y,z,22) = \(2x,2y,22).

Reading this component by component and including the restriction we get

y=2\r (A)

T =2\y (B)

2z =2\z (C)

4yt + 22 =1, (E)

Note that (C) implies 2z(1 — X\) = 0, so either z =0 or A = 1.

Case 1: z=0. Note that (A) and (B) imply 2> = y?, and then from (D) we get 2% =

2 __ 1 : e 1 1
Yy =3. this way we get four points: (iﬁa iTi’ 0).



Case 2: A=1. Now (A) and (B) imply x = y = 0, and then from (D) we get z = +£1.
This way we get the two points (0,0, £1).

Since 224+ y?+ 22 = 1 is closed and bounded, all we need to do now is evaluate the function
at the points we have found:

f( 1 1 O) B f( 1 1 0) 1
vV2'V2T) V2 V22
1 1 1 1 1
—,——,0] = ———,—,0) = —= (this is the global minimum
(5701 () =2 ; )
f(0,0,4£1) =1 (this is the global maximum).

. Use Lagrange multipliers to prove that a rectangle with maximum area, that has a given
perimeter p, is a square.

Solution. Let the sides of the rectangle be z and y, so the area is A(z,y) = xy. The
problem is to maximize the function A(x,y) subject to the constraint g(z,y) = 2z + 2y =
p (p > 0 is a fixed number). We have

VA=XVg & (y,z)=A2,2).

Reading this component by component we get

=2
Y A = x=y
T =2\

so the rectangle with maximum area is a square with side length Z.

2
xr
dy.
/0y2+1y

Solution. Since we are integrating with respect to y, the letter x in the integrand is
treated as a constant. We have

2 s 2 1 y=2
v 1dy ==z v 1dy = z arctan(y)|,

= z(arctan(2) — arctan(0)) = |z arctan(2) |.

. Evaluate




7. Calculate the iterated integral
2 1
/ / (z +5y) dxdy.
1 Jo

Solution. We have

/12 /Ol(m +y) 2dady = /12 (—(w + y)ﬂij) dy
_ /12 (1 +9) " + v dy = —In(1 + y)"= + In(y) =

— —(In(3) = In(2)) + In(2) — In(1)

= —In(3) +2In(2) =|In (3) |

8. Calculate the double integral

//Rxsin(xﬂLy) dA, where R =1[0,7/6] x [0,7/3].

Solution. In this case it is convenient to integrate first with respect to the variable y.

We have
w/6 pm/3
//xsin(x+y)dA:/ / xsin(z + y) dy dx
R 0 0
/6
— / <—x cos(z + y)!ZZZ{/g) dx
0
/6
= / (—x cos(x + z) +x cos(x)) dx
0 3

/6 /6 T
= / x cos(z) dx — / xcos(z + =) dx.
0 0 3

These two single integrals can be computed easily using integration by parts, and this way
we get

ffosin(x—i—y)dA:\/?g—%—%.

9. Calculate the double integral

// g4 where R=[12x[0,1]
R

2 + y?



Solution. We will need to use the identity
/ln(a2 + %) dx = r1n(a® + 2%) — 22 + 2a arctan (g) : (*)

which can be obtained using integration by parts.

Integrating first with respect to the variable z, we have

€T L2 x 1 2 ox
—— _dA= — _dedy= | = | =——dad
//R:c2+y2 /0/1 21y Y /0 2/1 21y
1 2
/ :U + 9/ |z )dy
0
1
(/ In(4 + y?) dy — /ln(1+y2)dy>
0
y=1
y=0>

(y In(1 + y?) — 2y + 2arctan(y) |z:)>

\G] I

l\')|'—‘

1
2

(yln (4 4+ y*) — 2y + 4 arctan (g)

2
(here we have used the identity (*))

= ... =|1In(2) + 2arctan () — arctan(1) |

10. Find the volume of the solid that lies under the hyperbolic paraboloid z = y? — 22, and
above the square R = [—1,1] x [1, 3].

Solution. We can see that the function f(z,y) = y* — 2 is nonnegative over the given
rectangle. Therefore, calling S the solid we have

Vol(S //y—x )dA = //y—x dz dy

Thus | Vol(S) = 16 | cubic units.




