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Diffusion

This is the simple diffusion equation:
deqn = D[u[x, t], t] ==dD[u[x, t], x, x];
TraditionalForm[deqn]

u®V(x, 1) =du® (x, 1)

Let generate a simple pulse function using picewise equations,

0 x< -1
glx_, e_]:=1 10 -eg<x<¢
0 x>1

Now, lets run some numerical simulations using the folowing initial and boundary conditions:
1. Initial condition: u(x, 0) = g(x) (our picewise function)
2. Boundary conditions (absorbing): u(0, ) = 0 and u(10, 7) = 0 note that our spatial domain L = {—10, 10}
3. lets choose a value for the diffusion coefficient d

d=0.08;
sol =
NDSolve[{degn, u[x, 0] ==g[x, 1], u[-10, t] ==0, u[l1l0, t] ==0}, u, {x, -10, 10}, {t, O, 100}]

NDSolve::mxsst : Using maximum number of grid points 10000
allowed by the MaxPoints or MinStepSize options for independent variable x. More..

{{u - InterpolatingFunction[{{-10., 10.}, {0., 100.}}, <>]}}
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Plot3D[Evaluate[u[x, t] /.sol[[1]]], {x, -10, 10},
{t, 0, 100}, PlotPoints -» 40, Mesh » False, PlotRange -» All]
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Lets loos at a plot of different times:

Plot[Evaluate[{u[x, 10] /. sol[[1]], u[x, 50] /. sol[[1]], u[x, 100] /.sol[[1]]1}],
{x, -10, 10}, PlotRange -» All, Frame - True]
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It can be seen form here that the numerical solution is a gaussian, just as the analytical solution. In the stochastic model

chapter, a stochastic process, simulating random walk, produces the same numerical result. However, deterministic walks can
also generate diffusion (Wolfram 2002)
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Fisher's Equation

Fisher's equations models a population with density dependent growth and diffusion in a one dimensional space. nota the the
equation is the same as diffusion, but now we add a term p u(1 — 1) which is logistic growth (non-dimensional), with growth
rate u. See Murray (1993)

deqn = D[u[x, t], t] ==dD[u[x, t], x, x] +pu[x, t] (1 -u[x, t]);
TraditionalForm[deqn]

u®Vx, = u(—ulx, ) ulx, t)+d u®O(x, 1)

Lets use a similar pulse function:

Clear[g];
0 x< -1
g[x_, €_] =7 0.001 -g<x=x<¢
0 x>1

The initial and boundary conditions are the same:

d=0.08; u=2;
sol =
NDSolve[{degn, u[x, 0] ==g[x, 1], u[-10, t] ==0, u[l0, t] ==0}, u, {x, -10, 10}, {t, O, 100}]

NDSolve::mxsst : Using maximum number of grid points 10000
allowed by the MaxPoints or MinStepSize options for independent variable x. More..

{{u - InterpolatingFunction[{{-10., 10.}, {0., 100.}}, <>]}}

Plot3D[Evaluate[u[x, t] /.sol[[1]]], {x, -10, 10},
{t, 0, 10}, PlotPoints -» 40, Mesh » False, PlotRange -» Automatic]

- SurfaceGraphics -

Let look at different plot for different times, so we can see the front of the travelling wave:
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Plot[Evaluate[
{u[x, 8] /.sol[[1]], u[x, 9] /.sol[[1]], u[x, 10] /. sol[[1]], u[x, 11] /.sol[[1]]}],
{x, -10, 10}, PlotRange -» All, Frame - True]
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