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The linear Cattaneo equation appears in heat transport theory to describe heat wave
propagation with finite speed. It can also be seen as a generalization of a correlated
random walk. If the system admits nonconservative forces (or reactions), then a non-
linear Cattaneo system is obtained. Here we consider asymptotic behavior of solutions
of the nonlinear Cattaneo system. Following Brayton and Miranker we define a Lya-
punov function to show global existence of solutions and to show that each w-limit set
is contained in the set of all stationary solutions.

1. Introduction

A semilinear Cattaneo system is a system of the form
u+ Vv =f(u),

(1.1)
T+ DVu+v =0,

where u(t,z) € R and v(t,z) € R" are functions of time ¢ > 0 and space
z € & C R". The diffusion constant D and the time constant 7 are positive
and f : R = R is a nonlinear function with properties to be specified later. There
are two interpretations of this equation. First, it appears to describe heat trans-
port with finite speeds (Cattaneo®). Then u is a temperature distribution and v is
- the heat flow. It can also be seen as a generalization of a correlated random walk
(Hadeler®). Then wu is a particle density and v a particle flow.

If heat transport is considered in a closed system, then energy conservation
is assumed. Let 6(x,t) € R describe the temperature distribution at time ¢ in a
spatial domain @ C R" and let g(z,t) € R™ denote the heat flow, then conservation
of energy requires the first equation of (1.1) in the linear case (f = 0)

0:+V-q=0. (1.2)
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508 T. Hillen

In Fourier’s law it is assumed that the heat flow is proportional to the negative

gradient of the temperature
q=-kV0. (1.3)

Equations (1.2) and (1.3) lead directly to the heat equation §, = kAf. But the heat
equation gives rise to infinite speed of propagation of heat. To avoid this unphysical
property, Cattaneo® assumed that the flow adapts to the negative gradient of the

temperature by
Tq + 9= —kV0, (1.4)

which is the second equation of (1.1) in terms of heat flow. Maxwell2? derived the
same equation in 1867 but he directly cast out the time derivative because it “...
may be neglected, as the rate of conduction will rapidly establish itself.” For T =0,
Cattaneo’s law (1.4) becomes Fourier’s law (1.3). Cattaneo’s law (1.4) and the
conservation law (1.2) form a system of type (1. 1) From (1.4) and (1.2) one can
derive a telegraph equation for ¢

gtt + EGt = EAH (1.5)
T T

This equation is known as equation for second sound, where \/k/_r is the wave speed
of second sound (Joseph and Preziosil”). Cattaneo’s law has been modified in seve-
ral ways to describe heat transport with finite speed in media with memory. To get
more realistic adaptations to physical realizations, the law of Cattaneo is modified
by many authors. The models of Jeffrey type (the name Jeffrey appears by analogy;
Jeffrey considered stress and deformation), and those of Guyer and Krumhansl,”
Lord and Sulman,?! Gurtin and Pipkin® and Nunziato?® are important. For more
details see the review of Joseph and Preziosi'” or Duan et al4 In the fundamental
paper of Gurtin and Pipkin® it is assumed that the thermodynamic potentials (free
energy, entropy, inertial energy) depend on the history of the heat and of the flow.
This assumption leads to a constitutive equation for the heat flow '

d(ort) == [ a)V0(a,t - 5)as, (1.6

with some weight functional a(s). If we choose a(s) = kdy(s), the é-distribution
(which is not allowed in the context of Gurtin and Pipkin, since they assume
regularity), then Fourier’s law (1.3) follows. If we choose a(s) := ke=*/T (which
is allowed) then Cattaneo’s law (1.4) follows. Thus Cattaneo’s law says that the
effect of the gradient of the temperature on the flow decays exponentially with rate
1/7. If k is chosen such that fo (s)ds = 1 then a(s) is a probability density
of a Poisson process. Hence g is the ezpectation of the negative gradient of the
temperature with respect to a Poisson process.

Another way to obtain Cattaneo’s law is a generalization of a one-dimensional
correlated random walk (Hadeler?). Following Taylor,25 Goldstein® and Kac!® we
assume that particles move along the line with constant speed v and they change

s —————— I |
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Qualitative Analysis of Semilinear Catlaneo Equations 509

direction according to a Poisson process with rate u. We split the particle density
u(t,z) = ut(¢,z)+u~(t,z) into densities ut,u™ for right and left moving particles.
Then the correlated random walk is given by

-

u +yuf

Il

p(u™ —ut)

u
up —yug = p(ut —u”).

Written in terms of the particle density « and the particle flow v := u* — ™, this
system reads

Ut + Mz = 01 (17)
v+ yur = —2pv. (1.8)

Again (1.7) is a conservation law similar to (1.2) and (1.8) connects the flow to
the gradient of the particle density in the form of a Cattaneo law (1.4). Thus the
linear Cattaneo system can be seen as a generalization of the correlated random
walk model (1.7), (1.8) to several dimensions. For correlated random walk in one
dimension, nonlinear models are derived and qualitative properties are studied in
detail in Holmes,'® Hadeler® ! and in Hillen.'2"1> An n-dimensional generalization
of the correlated random walk Egs. (1.7), (1.8) is the Cattaneo system (1.1) with
f =0. The parameters of the one-dimensional case are y2/(2u) = D and 1/(2p) =
7. In both interpretations (heat flow and random walk), the parameter 1/7 is the
rate of a Poisson process. Throughout the paper we discuss the results in terms
of particles and random walks. Obviously the results are wiso useful in the heat
transport theory.

If the particles undergo reactions (or if the physical system is active) then the
conservation law is modified into u; + V - v = f(u), where f : R — R is assumed to
be continuously differentiable. The nonlinear Cattaneo system (1.1) was introduced
by Hadeler.® He described the connection to a damped wave equation. Assume that
solutions of the nonlinear system (1.1) are two times differentiable, then a reaction

telegraph equation follows:
Tug + (1 = 7f'(w))ue = DAu + flu).

We consider the System of Cattaneo type (1.1) on a convex bounded domain
Q C R™ with C'-boundary 8. Let n denote an outer normal at Q. In the one-
dimensional case, homogeneous Dirichlet and Neumann boundary conditions are
introduced in Hadeler® and Hillen.? A generalization of these boundary conditions
to the n-dimensional case leads to the following boundary conditions (Hadeler®):

e Dirichlet conditions: The flow in normal direction is proportional to the

density
u= \/gn ‘v, (1.9)
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Though this boundary condition is of mixed type (Robin boundary condition)
we call it Dirichlet boundary condition with respect to the physical meaning
that no particle will enter the domain from outside and particles can leave the
domain from inside. o

e Neumann condition: There is no flow through the boundary

n-v=0. (1.10)

In Sec. 2 we prove local existence of (weak) solutions of the boundary value problems
(1.1), (1.9) and (1.1), (1.10) following a classical semigroup argument to make the
paper self-contained. The main result is the following theorem which is proved in
Sec. 3 in the case of Neumann boundary conditions and in Sec. 4 in the case of
Dirichlet boundary conditions.

Theorem 1. Assume
(H1) fe€CY(R), and if n > 2 then

[f'(w)| <1+ |y|ﬂ_l) with B = n > andc>0,

n —
1
(H2) supf'(y) <=,
yeR T

(H3) F(y):= /Oy f(v) du, |y1|i-ﬁloo F(y) = —co.

Then for each of the problems (1.1), (1.9) or (1.1), (1.10) the solutions ezist globally.
Moreover, each w-limit set is contained in the set of all stationary solutions.

To prove this result we construct a Lyapunov function on an appropriate Hilbert
space. The two different boundary conditions have to be considered separately. Such
Lyapunov functions were first introduced by Brayton and Miranker? for systems of
hyperbolic equations for one spatial dimension. In Hillen'® it is adapted to systems
of one-dimensional correlated random walk for several types of particles. In Hadeler®
a hint is given for the case of several space dimensions. We consider a variational
problem such that the original system (1.1) appears as a gradient system. Then the
energy functional can be modified such that a Lyapunov function is given.

The technical condition (H1) is necessary to show local existence in the L2-
setting (Hale'!). The dissipative character of the equations is given by condition
(H2). If 7 is small enough, we can neglect the term 7v; in (1.1) and the Cattaneo
system (1.1) becomes a reaction diffusion equation u; = DAu + f(u). In this
case we expect balance of density peaks and convergence to stationary solutions.
Condition (H2) makes precise the meaning of “r is small enough” compared to a
given nonlinearity f. The third condition (H3) ensures that no blow up occurs and
that solutions exist globally. '
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Qualitative Analysis of Semilinear Cattaneo Equations 511

This result is a first step to prove the existence of a global attractor. If we use
the additional assumption that the set of all stationary solutions is bounded, then
it is not difficult to show that the interior of the level sets of the Lyapunov function
are bounded absorbing sets. Moreover, a compactness property has to be shown,
which will be done elsewhere. Global attractors for damped wave equations are
also studied by Ball,! Hale,!! Kapitanski,? Ladyzhenskaya,?’ Temam,?6 Webb28
and many others (see the literature in Temam?@). Most of them use modifications
of the classical energy ||u|2, + [|ue||%. which does not work in this case.

In the case of finitely many stationary solutions, a convergence result follows
from Theorem 1:

Corollary 1. Assume (H1), (H2), (H3) and that the set of all stationary solutions
is finite and discrete. Then each solution converges to a stationary solution.

2. Local Existence

To prove local existence for the linear problem we use a transformation w := ~yu,
with 7y := 1/D/7. Then system (1.1) is equivalent to

wy+V-v = f(w),

(2.11)
vt+'wa+lv =0,
T
with f(w) = 7f(w/7). The Dirichlet boundary condition for (2.11) is
w=n-v, (2.12)

whereas the Neumann boundary condition (1.10) is not modified. We introduce
Hilbert spaces
L% := (L*(Q))"*! and #! := (HY(Q))"+! .

Let y := (w, v) € £* and define operator matrices G : D(G) — £2 and B : R™! —
R™*! by

O _al L B _6,1 0
-0, 0 1 -1
G:= ) , B:i=-= ,
: . T .
-0y, 0 -1

where 9; is the operator of the partial derivative in the direction of the jth coordi-
nate, 1 < j < n. The domain of G depends on the boundary condition:

D(G) := {(w,v) € H: nv = w on 89 for Dirichlet boundary conditions, and
nv = 0 on 8Q for Neumann boundary conditions} . (2.13)

Then system (2.11) with f = 0 can be written as

y: =Gy + By. (2.14)

B
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512 T. Hillen

Since B is a bounded operator on £2, we first investigate the operator G.

Theorem 2. For Dirichlet and Neumann boundary conditions, the operator
(G,D(G)) is dissipative and generates a strongly continuous semigroup on L2.

Proof. We consider the two boundary conditions separately.
1. Neumann boundary conditions (1.10):
Lemma 1. The operator G is skew adjoint, i.e. G* = —G with D(G*) = D(G).

Proof of Lemma 1. The tuple of functions (r,s) € ! belongs to D(G*) if and
only if
((r;5), G(w,v)) 2 = (G*(ry5), (w,v)) 2 V (w,v) € D(G).

With the integral formula of Gauss we have

(r, ), G(w, v)) = /9 (=rV -v—s-Vu)ds

=/((Vr)-v+(V-s)w)dx—/ n-(rv) +n- (sw)dS. (2.15)
Q

an

The first integral in (2.15) is (—G(r,s), (w,v))c2. With the Neumann boundary
condition, the second integral is [;,(n - s)wdS. It vanishes for all w € H' if
7-5 =0 on Q. Hence G* = —G and D(G*) = D(G). square

Skew adjoint operators are dissipative and their spectrum belongs to the imag-
inary axis (Theorem of Stone, see Pazy®*). From the Lumer-Phillips Theorem
(Pazy??) it follows that G generates a strongly continuous semigroup of contrac-
tions.

2. Dirichlet boundary conditions (2.12):

In this case G is not skew adjoint, since D(G*) = {(w,v) € H! : n-v = —w} #
D(G). Instead of G we consider I' := P~1GP with P := diag(1,—1,...,—1). The
transformation P satisfies P2 = I. The domain of I' is

D(D) := {(w,v) € H! : n-v = —w}.

Then P : D(G) = D(T) is one-to-one. Hence (I',D(T)) and (G, D(G)) are repre-
sentations of the same operator.

Lemma 2. The operator T is skew adjoint.

Proof of Lemma 2. Consider (r,s) € D(I™*) and (w,v) € D(T), then it is easy to
verify that

(("') 5)’ I‘(w, ‘U)) = (ér(r’ s)a (wa 'U)) + LQ(_w)(r +1n-s)dS.

Hence 5 - s = —r for (r,s) € D(I').

—
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Qualitative Analysis of Semilinear Cattaneo Equations 513

Then T is dissipative and generates a strongly continuous semigroup of contrac-

tions. Then G = PT'P~! also generates a strongly continuous semigroup (Pazy??).
O

Since B : D(G) — £2? is bounded, Eq. (2.14) is solved.

Corollary 2. With Dirichlet or with Neumann boundary conditions, the operator
(YG + B, D(Q)) is generator of a strongly continuous semigroup on L2.

With (H1) a local existence result for the nonlinear Cattaneo-boundary value
problems (1.1), (1.9) and (1.1), (1.10) follows (see Pazy?* or Hale!!). In the original
(u,v) notation the domain of the infinitesimal generator is in the case of Dirichlet
boundary conditions

D :={(u,v) € H' : n-v=~u on 6Q}
and in the Neumann case

D= {(u,v) €EH' :n-v=0o0n N}.

Theorem 3. For each initial data (uo,vo) € D, there is a T > 0 such that there
ezists a unique solution

(u,v) € CY([0,T), £2) nC([0,T), H?)

of the nonlinear Cattaneo boundary value problem (1.1), (1.9) or (1.1), (1.10),
respectively. '

3. Proof of Theorem 1 for Neumann Boundary Conditions

For system (1.1) with homogeneous Neumann boundary conditions (1.10) on 8Q
we consider a functional P : D — R defined by

P(y) :== P(u,v) = /Q [DF(u) + %v"’ + D(Vu) - v| dz.

For (u,v) € D and (yp,€) € D we form tke first variation of P

d
ZPutenvted) = [Dfwp+v-6+ D)0+ DV glas.

Since v satisfies Neumann boundary conditions (1.10), it follows that

/ (n-v)pdS =0, ‘ (3.16)
an

hence we have

LD(V¢)-vdz:—LD(Vv)-<pdm.
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514 T. Hillen

Thus the first variation can be written as

d%P e (Py(u,v),(p,€)) 2, (3.17)

where the functional gradient Py(u,v) is given by
P,(u,v) = (Df(u) — DVv,v+ DVu). (3.18)

The functional gradient P, vanishes exactly at the stationary solutions of (1.1) and
(1.10).

The term (Vu) - v of P can be of either sign thus P is neither bounded above
nor below, i.e. P is not a Lyapunov function. We modify P by another functional
which is non-negative and vanishes at the stationary solutions,

Qy) = Q(u,v) = %/Q [D(f(u) - Vv)2+ %(DVu +v)?| dz. (3.19)

Then we consider the functional L := Q — AP : D — R, where A > 0 will be chosen
appropriately.

Lemma 3. Assume (H1), (H2) and (H3). Then for each A with sup f'(u) < A <
1/7, the functional L is bounded from below and limy| ;-0 L(y) = +o00. Moreover,
if {Yn}nen is a sequence in D such that {L(y,)} is uniformly bounded then {yn} is
also uniformly bounded in D.

Proof. We consider y € D.

L(y) = A [%D( £(w) = V)? + o~ (DVu+ )’ ~ ADF(u)
—,\-21-1;2 —ADVu - 'v] dr
_ fn ED( f(u) — Vo) + %(DVU +v)? — ADF(u)
= (—%Dz(Vuf + -21-(DVu - v)z)] dz
_ L [—/\F(u) + 2D(f(w) ~ Vo) + (3 -2 ovu+op

A 2002
+5D*(Vu) ]dx. (3.20)

Since F is continuous and satisfies (H3), the functional L(y) is bounded from below.
To show that limy,, 00 L(y) = 400 we consider each term of the D-norm of

y = (u,v) separately.
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1. |lu|lg2 = oo: Since F satisfies (H3), the first term in (3.20) diverges.

2. || Vu||(zay» = co: The last term (Vu)? — oco. :

3. |lv]l(z2y» — oo: Since A < 1/, the factor of (DVu + v)? is positive. If Vu
is bounded, then L(y) = co."If Vu grows such that (DVu + v)? is bounded,
then item 2 applies.

4. ||V||gs = oo: If f(u) stays bounded, then the second term in (3.20) leads to
L(y) — oo. If the term (f(u) — Vo) is bounded in L? then u is unbounded
and item 1 applies.

If {yn}nenis a sequénce in D such that L(y,) < Lo for all n € N, then from (3.20)
it follows that

funllo < Lo+ Amax @)

where max F'(u) is bounded since F is continuous and (H3) holds. O

We show that L decays along solutions. To evaluate dL(y(t))/dt at a solution
y(.) we have to differentiate Vu with respect to time. Since the component u is only
in C1([0,T),L*)NC([0,T), H') the time derivative of Vu is not defined. Therefore
we first consider solutions y € C([0,T),H!), T < co. Then P(y(.)) and Q(y(.))
are continuously differentiable with respect to time and we have

d

—P(t)) = (By(y(t)),ve)c2

= ‘/Q[D(f(u)_‘_— Vv)us + (v + DVu) - v¢] dz

=/[Duf —'r'utz]da:
Q
and

£ 0@ = [ [P - Vo e = Vo) + L (0T +00)

= / [Df’(u)uf —v}]dz — D/ [ueVve + ve - V) dz .
Q Q
Using Gauss theorem and the Neumann boundary condition (1.10), we get

/[UtV'T)t’*"Ut'VUt]d(E:/ Ut(T)'Ut)dSZO.
Q aN

Hence
FE0O) = [ 1D = Xad + (= )l s 3.21)

Since the right-hand side of (3.21) is continuous and well-defined on D we can define
dL(y(t))/dt for all solutions y € C([0,T),L?) N C([0,T), H') by dL(y(t))/dt :=
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516 T. Hillen

limn_so0 L(yn(t)), where yy is any sequence in C'([0,T), H') which approximates
Y.

Lemma 4. Assume (H1), (H2) and.(H3) and let y € C*([0,T), L?)nc(o,T),H")
be a solution of (1.1), (1.10). Then

1. the solution exists for all t > 0.
9. If A > 0 satisfies sup f'(u) < A < 1/7 then L is non-increasing along the
solution. Moreover, there is a constant C > 0 such that

2 Ly(t) < ~CIR, WO (322)

Proof. The bound (3.22) follows directly from (3.21). Indeed, by the choice of
A the factors (f'(u) — A) and (A7 — 1) in (3.21) are negative. As a consequence,
L(y(t)) is uniformly bounded in ¢

L(y(t)) < L(y(0)) =: Lo

From Lemma 5 it follows that y(t) is uniformly bounded in D for 0 <t < T
independent of T'. Hence the solution exists for allt > 0. O

To complete the proof of Theorem 1 it remains to show that each solution
converges in D to the set of all stationary solutions. This means that each sequence
(tn) — oo has a subsequence (s5) — oo such that y(s,) converges to a stationary
solution for n — oco. As shown in the proof of Lemma 3 the positive semi-orbit
{y(t),0 < t < oo} is uniformly bounded in D. Since D is compactly embedded in
£2 this semi-orbit is relatively compact in L£?. For each sequence (t,) — oo there
is a subsequence (sp) — oo such that y(s,) — § € L2 for n — co. From (3.22)
it follows that P, (y(ss)) = 0 for n = co in £2. Then obviously § is a stationary
solution of (1.1), (1.10). We solve formula (3.18) for the derivatives of u and v

Vu(sn) f(u(sn)) Pyy(s)
= - 5n)) -
Vu(sn) v(sn)/D i .
The right-hand side converges in L2, hence y(sn) = (u(sn),v(sn)) converges in D to
g. Then all accumulation points in D of the positive semi-orbit {y(?),0 <t < o}

are stationary solutions and Theorem 1 is proved in the case of Neumann boundary
conditions. a

4. Proof of Theorem 1 for Dirichlet Boundary Conditions

The functional P : D — R of the previous section cannot be used to define a
Lyapunov function for Dirichlet boundary conditions (1.9) since the boundary in-
tegral (3.16) does not vanish. Following Brayton and Miranker? we introduce the
boundary values of the solutions as independent functions, i.e. we define

V = {(U,U, a, b) € Hl X L2(BQ) X Lz(BQ)";u|aQ = a,vlan = b} .
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An clement of V is denoted by y = (u,v,a,b). On V we define a functional
R:V R

v vrD .
R(y) := / [DF(u) -} ;l-vl‘b- DuV'u] da - —7—- (n-v)*ds.
Q 2 2 Joa

We consider the first variation of R(y -+ ¢) in the direction of an arbitrary ¢ :=
(€, B) € V.

d

IR|€=0 = /[Df(u)tp +v - €& — DuVE — D(Vv)p| dz + VTD/ (n-v)(n-PB)dS.
= Q o

On 09 it is £ = B. Then by partial integration it follows that

—/DuVﬁdz=/DVu-£da:— Du(n-f5)dS.
Q Q an

Now the first variation can be written as

d
ERL::o = (Ry(¥), Q) L2 (@)~ +1 x L2(850) "+

with the functional gradient of R

Ry(y) == (D(f(u) — Vv),v+ DVu,0,D (\/%n v — 'u,) 'n) . (4.23)

The functional gradient R, vanishes exactly for stationary solutions of the Dirich-
let problem (1.1), (1.9). The Dirichlet boundary condition appears as an Euler
boundary condition for the variational problem of R (see Wan?7).

Now we can proceed as in the Neumann case. We define a Lyapunov function
on the space of solutions

Vp :={y € V : y satisfies Dirichlet boundary conditions (1.9)}.

Again Q : Vp — R is defined by (3.19) and L := Q — AR : Vp — R with an
appropriate constant A > 0. The functional L can be written as

L(y) = /n [—,\DF(u) - %D( f(u) — Vo)® + % (% - A) (DVu + v)?

+iD2(Vu)2] dz + A\D (u— L 117 - v) (n-v)dS.
2 o 5\ D

Since y satisfies the Dirichlet boundary condition (1.9), the boundary integral of L
reduces to

A
—VTD/ (n-v)?dS > 0.
2 a0

The remaining terms in L are the same as in the Neumann case (3.20). Then
analogous to Lemma 3 we have
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Lemma 5. Assume (H1), (H2) and (H3). Then for each A withsup f'(u) <A < 1/7
the functional L is bounded from below and limy), oo L(y) = +oo. Moreover, if
{Yn}nen is a sequence in Vp such that {L(yn)} is uniformly bounded then {yn} is
also uniformly bounded in V. -

To study the behavior of R, Q and L along solutions we again consider solutions
z(t) € Vp with z € C1([0,T), H?).

(u(®) = | (D2 —reflds,
%Q(y(t)) = /Q[Df'(u)ut —vl]dr - D\/.D/‘T/ u2ds,
L(y(t ) —/[D F'(w) = \u? + (A = 1)v ]—D\/D/'r/ u2ds.

Again the expressions on the right-hand sides are well-defined and continuous on
the whole space V. Hence the time derivatives of R, @ and L can be extended to
Vp. Similar to the previous section we have the following result.

Lemma 6. Assume (H1), (H2) and (H3) and let y(t) € Vp be a solution of
(1.1), (1.9) for 0 <t <T. Then

1. the solution ezists for all t > 0.
2. If A > 0 satisfies sup f'(u) < A < 1/, then L is non-increasing along y(t).
Moreover, there is a constant C > 0 such that

2L0) < ~CIRGO a@piinsaayes - (4.24)

To complete the proof of Theorem 1 in the case of Dirichlet boundary conditions
we use the same arguments as at the end of the previous section.
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