Math 525, Ordinary Differential Equations II Winter 2015

Assignment 1, due January 16, 2015, 9 AM in class

Exercise 1: (Linearization of discrete dynamical systems)

We study the discrete dynamical system in \mathbb{R}^n with differentiable function f(x):

 $x_{n+1} = f(x_n).$

- 1. Assume that \bar{x} is a fixed point and consider small perturbations around \bar{x} and define $x_n := \bar{x} + y_n$ where y_n is small. Derive the linearization of the above equation for y_n .
- 2. Prove the linear stability theorem which says that If λ_j are the eigenvalues of $Df(\bar{x})$, and if $|\lambda_j| < 1$, then \bar{x} is asymptotically stable.

Exercise 2: (Spectral Theorem)

Proof Theorem 1 in (1.3), which reads

- (a) If μ is an eigenvalue of a real matrix A, then $\lambda = e^{\mu}$ is an eigenvalue of e^{A} .
- (b) $Re\mu < 0$ if and only if $|\lambda| < 1$.

Exercise 3: (Abel's formula)

Study the time evolution of a test volume V(t) for the three dimensional system

$$\dot{x}(t) = \begin{pmatrix} 1 & 100 & \ln(1+t) \\ \frac{1}{(2-t)^2} & \frac{1}{1-t} & \frac{1}{3-t} \\ 0 & \sin 2t & \frac{1}{1+t} \end{pmatrix} x(t).$$

Show that volumes blow-up in finite time and find the blow-up time. Does the blow-up time depend on the initial volume?

Exercise 4: (Perko, p. 231, Problem Set 5, No. 2:)

Consider the nonlinear system

$$\dot{x} = x - 4y - \frac{x^3}{4} - xy^2$$
$$\dot{y} = x + y - \frac{x^2y}{4} - y^3$$
$$\dot{z} = z$$

- 1. Show that $\gamma(t) = (2\cos 2t, \sin 2t, 0)$ is a π -periodic solution.
- 2. Determine the linearization at $\gamma(t) : A(t)$.
- 3. Show that

$$\Phi(t) = \begin{pmatrix} e^{-2t}\cos 2t & -2\sin 2t & 0\\ \frac{1}{2}e^{-2t}\sin 2t & \cos 2t & 0\\ 0 & 0 & e^t \end{pmatrix}$$

is a fundamental matrix of the linearized system.

- 4. Write $\Phi(t)$ as $Q(t)e^{Bt}$ with a π -periodic matrix Q(t). Find the Floquet exponents and multipliers of $\gamma(t)$.
- 5. Sketch $\gamma(t), W^s, W^u, W^c$ and a few typical trajectories.

Exercise 5: (All those functions)

- 1. Find a function $f \in C_c^{\infty}(\mathbb{R})$ with $\operatorname{supp} f \subset [a, b]$, where $a < b \in \mathbb{R}$.
- 2. Let $\Omega \subset \mathbb{R}^n$ be bounded. Show that if $f \in L^2(\Omega)$ then it follows that $f \in L^1(\Omega)$.

(2)

(7)

(5)

(2)

(4)

- 3. If Ω is unbounded the above statement is not true. Show that $\rho(x) = \frac{1}{1+x}$ is contained in $L^2([0,\infty))$ but not in $L^1([0,\infty))$.
- 4. Show that $\rho(x) = e^{-x} x^{-\frac{2}{3}}$ is contained in $L^1([0,\infty))$ but not in $L^2([0,\infty))$.
- 5. Find a value $\gamma^* \in [0, 1]$ such that the function $f(x) = x^{\frac{3}{2}}$ is element of the Hölder space $C^{1,\gamma}([0, 1])$ for $\gamma \leq \gamma^*$ and f(x) is not contained in $C^{1,\gamma}([0, 1])$ for $\gamma > \gamma^*$.